

Remembering what you have learned

Learning is an active process that involves developing a full understanding and meaning of concepts and theories. Often a partial understanding comes from reading the textbook, lecture notes, study guide and practical notes (termed 'passive' learning).

However, you can create a more effective understanding by:

- asking questions in tutorials and online discussions
- talking with fellow students (e.g., discussing concepts, clarifying terminology)
- applying your knowledge to new questions or problems
- using a combination of the techniques listed below (Rhoden & Starkey, 1998)

Technique	How to use it	Example	Use it for	Disadvantages
Understanding	Become active with the material, identify important points, list questions	Group listed items by a different principle, e.g., construct a table	Parts of a system or theory	You need to be inventive
Visual mnemonics	Learn a sequence of visual images & mentally attach the list items images	Picture a place on the route to work with one item to learn	List of unconnected items, e.g., characteristics of living things	Need to learn the items and then revise regularly
Word mnemonics	Make a word or sentence from the first letters of list items	e.g., ROYGBIV (rainbow colours); e.g., All Stations to Central (angle sign)	List of items that need to be remembered in order	You have to be inventive & revise mnemonic often
Environmental cues (i.e., flash or cue cards)	Put reminders or copies of the data you need to know in a place where you will see/hear them often	Photocopy the table of elements & cover your folder with it; write post-it notes; make cards with answers on back	Especially for equations, symbols, diagrams or pictorial representations	You need to change the items often or you stop noticing them to still treat information actively
Melody association	Make the words of the items that you need to know fit into the lyrics of a song	Learn the bones of the upper limb by singing them to 'Dem bones'	Lengthy lists, where connections or functions of the items are import- ant - maintains order	You may run out of suitable melodies or confuse the lists with the real lyrics of the song

Table 1: Techniques for learning lists of items

Table 2: Techniques for studying prac tasks

Technique	How to use it	Example	Use it for	Disadvantages
Listing steps	Write the steps of a procedure in sequence and memorise it; list steps next to mathematical working	Isolate the steps of preparing a microscope slide and say them over	Getting the steps into the right order; establish- ing routine problem solving steps	You need to do a lot of repetition, not practicing the actual procedure
Mentally performing the activity	As you say the steps, visualise yourself doing each one	Create a mental image of your hands preparing slides or making chemicals	Times when you can't physically practice the task	You need a bit of imagination to do it
Rehearsing the routine	As you read the steps of the procedure, mime doing them	Make movements you would make if you really had the slide in your hands or chemicals in the laboratory	Getting a feel for the physical activity	You mightn't feel comfortable doing this in the library??
Acting out the task	Work with a partner and act out the examination on each other	Examine the reflexes of the foot or lower limb on each other	Good for physical examination or learning anatomy	Might be difficult to find a partner; you might get embarrassed

Table 3: Techniques for learning theory

Technique	How to use it	Example	Use it for	Disadvantages
Mind or	Start with writing the	Write 'cell division'	Helping to	You need to be
concept	central theme in the	and draw lines	visualise the	creative; ideas
maps	middle of the page	from it to related	components of a	may look
	and develop sub-	words (see Buzan,	complex theory,	disorganised and
	ideas around it	1993)	obtain an	thus hard to
			overview	remember
Summaries	Read a section or chapter	Write points to	Helps to organise parts	You may find it
	and then	form lists of the	of a theory	hard to use your
	write a summary of	elements of the	into a shortened form;	own words, or
	the main ideas	'Big Bang' theory;	change the format of	you may end up
		annotate key	the information	copying and not
		equations		being active
Changed	Make the theory look	Use a flow chart	Sequencing elements	You have to be
format	different by working it into	to describe the	in a described or	inventive to
	another format:	elements involved in	proposed	change the look,
	table – for comparisons	the process of	theoretical	be careful to
	hierarchy – for details ا	glycolysis	explanation	include all
	& overviews			elements
	flow chart – for processes			
Populist	Practice explaining	Imagine that your	Make sure that you've	It's hard to use
speak	the theory in different	little sister asked	understood how	your own words,
	words	what quarks are –	the theory works	you may need
		see if you can	in an explanation	help to
		write it simply		understand it first

Technique	How to use it	Example	Use it for	Disadvantages
Collaboration	Ask fellow student to form a study group – run it with definite aims and a definite time period	Work on old tute sheets and take turns to start, finish & explain questions	Tasks that you often 'get stuck' on; prepare questions for tutorials	Others may not work, some people may take advantage of your work
Disappearing data (like a crossword)	Make copies of the material to be learned. White-out different elements on each copy, and then complete them from memory	Write out the formula for calculating the heat produced by dielectric heating, copy it, white-out symbols and try to re-create it	Theoretical explanations where each element contributed essential processes; solutions to programming or tutorial questions	It might be costly, you need to leave some time between preparing the sheets and finishing them
Examiner's hat	Pretend you are the examiner and create questions from the theoretical material	Read over section on the 'action of the superior & inferior rectus muscles' and then create a short- answer question	Useful towards the end of semester when you should be trying to see the material from various perspectives	Perhaps you find it hard to act like an examiner!
Dress rehearsal	Get hold of last year's exam papers and sit parts of them under exam conditions	'Sit' the first 40 minutes of the biology exam with no coffee or music	Preparing your mind and body for the exam 'marathon'	You may find it difficult to get previous papers

Activities

- Identify learning strategies that have worked for you previously. Modify these to suit the new material.
- Be prepared to experiment with learning strategies. Tell your friends what works for you and ask them what works for them.

References

Buzan, T. (1993). *The mind map book*. BBC Books. Rhoden, C., & Starkey, R. (1998). *Studying science at university*. Allen & Unwin.