Drops per minute (DPM) - Worksheet Answers

Answer 1

Total volume $=280 \mathrm{ml}$
Total time to administer= 4 hours
Drop factor $=60$
So, Drops per minute (DPM) =
$\frac{280}{4} \times \frac{60}{60}=\frac{280}{4}=70$ drops per minute

Answer 2

Total volume $=750 \mathrm{ml}$
Total time to administer $=6$ hours
Drop factor $=20$
So, Drops per minute $(D P M)=$
$\frac{750}{6} \times \frac{20}{60}=\frac{15000}{360}=41.66$

Answer 3

Total volume $=3 \mathrm{~L}=(3 \times 1000)=3000 \mathrm{mls}$
Time $=6$ hours
Drop factor $=15$
So, Drops per minute (DPM) =
$\frac{3000}{6} \times \frac{15}{60}=\frac{3000}{24}=125$

Answer 4

Total volume $=1500 \mathrm{mls}$
Time $=480$ minutes $=\frac{480}{60}=8$ hours
Drop factor $=15$
So, Drops per minute $(D P M)=$
$\frac{1500}{8} \times \frac{15}{60}=\frac{1500}{32}=46.87$

Answer 5

Total volume $=950 \mathrm{ml}$

Infusion rate $=120 \mathrm{ml} / \mathrm{hr}$
Drop factor= 60 (micro drip set can only have drop factor 60)
We can write the DPM formula like this:

Drops per minutes $=$ Infusion rate $(\mathrm{ml} / \mathrm{hr}) \times \frac{\text { Drop factor }}{60}$
So, from Example 3, DPM $=120 \times \frac{60}{60}=120$

Answer 6

Drop factor $=60$
DPM= 200
Volume remaining $=2.25 \mathrm{~L}=2250 \mathrm{mls}$
So, Time remaining=
$\frac{2250}{200} \times \frac{60}{1}=\frac{225 \times 6}{2}=675$ minutes

Convert the minutes into hours:
$(675 \div 60)$ hour $=11.25$ hours

