
Introduction to Matlab

School of Mathematics and Statistics
University of South Australia

February, 2008.

Contents

1 General Information 5

1.1 Overview . 5

1.2 Professional Matlab . 6

1.3 What is Matlab ? . 6

1.4 Logging On and Logging Off . 7

1.5 Getting general HELP on using the computer in the pools 8

1.6 Getting rid of windows and retrieving them 8

1.7 Saving to and Loading from a Storage Device 8

1.7.1 Working on a storage device . 9

1.7.2 Saving M-files to a storage device 9

1.7.3 Loading M-files from a storage device 10

2 Simple Mathematics: Matlab as a Calculator 10

2.1 Basic arithmetic operations . 10

2.2 Variable names . 11

2.3 Comments, clear, semicolons and Ctrl-C 12

2.3.1 comments using % sign . 12

2.3.2 clear previous variables . 12

2.3.3 suppress output using ; . 12

2.3.4 Ctrl-C . 13

2.4 Elementary Mathematical Functions . 13

2.4.1 Other useful functions . 14

2.5 Assignment statements . 15

2

3 Script M-files 15

3.1 Creating, saving, executing and editing script M-files 16

3.2 Matlab Search Path . 16

3.3 Revision exercises . 17

4 Arrays 19

4.1 Constructing arrays . 19

4.2 Array subscripts . 21

4.2.1 Special array functions: sum, prod, length, max, min, sort, find, diff 22

4.3 Calculating with arrays . 22

4.3.1 Basic arithmetic operations on arrays 22

4.3.2 Using mathematical functions on arrays 24

4.4 Using arrays to plot graphs . 25

4.4.1 Plotting several graphs on the same axes. 26

4.4.2 zoom on . 28

4.4.3 Creating separate graphs in one M-file 29

5 Control Loops in an M-file: for, while, if 30

5.1 for loops . 30

5.2 while loops . 32

5.3 if-else-end constructions . 33

6 Function M-files 34

6.1 Constructing Function M-files . 36

6.2 Functions operating on functions: fplot, fzero, fminbnd, quadL 38

3

7 Polynomials 40

8 The (“Maple”) Symbolic Math Toolbox 41

8.1 Algebraic operations . 42

8.2 Solving symbolic equations . 43

8.2.1 Solving a single equation . 44

8.2.2 Solving simultaneous equations . 46

8.3 Variable substitution and expression evaluation: subs, eval 46

8.4 ezplot . 48

8.5 Differential and integral calculus . 48

9 Matrices and Vectors 50

10 Other Useful Commands and Examples 52

10.1 global . 52

10.2 Finding limits in “Maple” . 52

10.3 Function calculator: funtool . 53

10.4 diff commands in Matlab and “Maple” 53

10.5 Finding the maximum value of a function 54

11 Trouble Shooting 55

4

1 General Information

1.1 Overview

This booklet (guide) aims to introduce students to a number of the essential concepts of
Matlab , Release 14, Version 7 (a MathWorks product). It can be used in conjunction
with with the MATLAB Practicals Booklet provided in the courses Mathematical
Methods for Engineers 1 and Calculus 1.

This booklet is designed to assist the learning of Matlab relevant to the syllabuses for the
first year mathematics courses in the Applied Science and Engineering degree programs at
the Mawson Lakes campus of the University of South Australia. The three course textbooks
are Calculus (7th edition) by C.H. Edwards and D.E. Penney, Using MATLAB in
Calculus by G. Jensen, and Understanding Linear Algebra Using MATLAB by
E. & M. Kleinfeld. It is best to read, attempt and fully comprehend the concepts being
introduced in this guide before progressing to similar sections in Jensen. However, it is
expected that they will complement each other most beneficially.

During the early learning of this software, for example in the courses Mathematical Meth-
ods for Engineers 1 and Calculus 1, it is essential that students bring along this guide
and MATLAB Practicals Booklet, and a floppy disk or a flash drive (memory stick) to
each computer practical session. Although you can obtain assistance from the Practical
Supervisor during class, it is expected that you must spend considerable unsupervised
time working through the guide and Matlab Practicals Booklet to be able to master the
Matlab software.

5

1.2 Professional Matlab

A number of courses in the later years of engineering programs (especially those related to
Electronics, Computer Systems and Telecommunications) will use Professional Matlab
together with a collection of various associated mathematical toolboxes. Many postgradu-
ate students in other engineering and science disciplines use Matlab , as well as technical
and research establishments that employ graduate engineers. An increasing number of the
world’s leading universities (and most Australian universities) are incorporating Matlab
into their teaching programs. All students using this booklet will be expected to know
Matlab well enough so that extended computer code can be written in Matlab up to
at least the second year of all programs.

In this introductory booklet, only Matlab and the Symbolic Math Toolbox will be men-
tioned.

1.3 What is Matlab ?

At the simplest level, Matlab is a powerful calculator. At the more advanced level, Mat-
lab is a high-performance language for technical computing. It integrates computation,
visualisation, and programming in an easy-to-use environment where problems and solu-
tions are expressed in familiar mathematical notation. Matlab is an interactive system
whose basic data element is an array that does not require dimensioning. This allows
you to solve many technical problems related to science and engineering, especially those
involving data that can be held in matrices and vectors. Because Matlab has been de-
signed around engineering and scientific applications, it requires only a fraction of the time
to write a program compared to scalar non-interactive languages such as C or FORTRAN.

Matlab is structured using a large collection of files, called M-files. These are of two quite
different types, namely script M-files and function M-files. You can use these M-files to
do arithmetic calculations, numerically solve equations, create graphics, etc. You can use
the M-files supplied in Matlab to build up sophisticated computer programs. But, most
importantly, you will need to create and store your own M-files to supplement those already
provided by Matlab in order to solve your specific problems.

By using the Symbolic Math Toolbox, your Matlab M-files can also include differen-
tial and integral calculus, linear algebra, algebraic simplifications, algebraic solution of
equations, variable-precision arithmetic, etc.

6

1.4 Logging On and Logging Off

Matlab is available in the following Computer Pools at Mawson Lakes:
GP1-01, GP1-02, GP1-06, GK3-19, F1-13, F1-15, F1-17, P1-12, P1-13, P1-15. It is re-
motely possible that Matlab might be temporarily unavailable on a PC at times of
maximum usage by other students.

Log onto a computer. Your user name is your Mail ID. The first time you log on, your
password is a combination of your surname and your birthday. It uses the first four letters
of your surname, followed by the day and month of your birthday. Anne Bloggs, born on
February 25, has the password blog2502. If your surname has fewer than four letters,
fill the rest with the letter x. Hence, Peter Ho, born on December 7, has the password
hoxx0712.

A group of icons will then appear. One icon is “Change Password”. It is advisable to
change your password the first time. Double click the icon. Choose a password that
has from 6 to 8 characters, each of which must be a letter or a digit. Close the window
afterwards.

There is an icon displaying the computer pool room number followed by the word “Appli-
cations”; for example, “GP1-01 Applications”. Double click this icon. Then double click
the “Matlab ” folder, followed by the “R2007b” folder and the “Matlab R2007b” icon
(or whatever Release is installed).

The default Matlab Desktop Layout which appears is shown at the back of this guide.
In the “Command History”, you can view previously used functions, and can copy and
execute selected lines. However, the “Command Window” is the most important, and
this is where you enter variables and commands, and where you define functions and run
M-files. We suggest you opt to expand this window by clicking on “View”, followed by
“Desktop Layout” and then choosing “Command Window Only”. You can always bring
back the other windows later by choosing “Default” under “Desktop Layout”.

In Command Window, you will see “>>”: >> is the Matlab prompt. When the Command
Window is the active window, a cursor should appear to the right of this prompt, indicating
that Matlab is waiting to answer a mathematical query or execute a command. We will
return to this prompt in Section 2.

When you have finished your Matlab session, and saved on disk or flash drive every-
thing that you wish to save, you need to exit from Matlab . To do this, enter either the
command quit or exit after the prompt, or else click File followed by Exit Matlab .
Perform one of these to return to the icons. (Later, when you have finished doing every-
thing in a session, log off the computer.)

7

1.5 Getting general HELP on using the computer in the pools

If you are having trouble using a computer in one of the pools, assistance is available.
Return to the Desktop Window containing the icons. Double click on “Utilities and Net-
work Apps”, then click on “Internet Explorer”. Click on “Bookmarks”. You can then
acquire HELP by clicking on either “UniSA ITS HelpDesk” or “UniSA Computer Pools
Information”.

1.6 Getting rid of windows and retrieving them

Quit often while using Matlab you will have a number of windows in operation simultane-
ously. For example, you might have the Matlab Command Window, a couple of windows
containing M-files you have constructed, at least one window containing graphical output,
and even a Microsoft Word window where you have copied output in preparation for the
final printed report. You can reduce an individual window to an icon on the bar at the
bottom of the screen, out of the way, and can retrieve it later on. Each window has some
grey buttons at the top right-hand corner with symbols on them.

If you wish to move a window out of the way temporarily, click on the left button with a
’-’. It can be recalled later by clicking on the corresponding icon on the bar at the bottom
of the screen. The centre button increases or decreases the size of the window. The right
button, with an ’x’, removes the window totally.

Some windows may get in the way of the icons. We assume you know how to use the mouse
button to move windows around the screen.

1.7 Saving to and Loading from a Storage Device

NOTE: Even though you are not in a position to be storing files on to a storage device
such as a disk or a flash drive at this stage, we have included this in the General Informa-
tion section. You should read this subsection now, and then return later when you have
constructed M-files or output which needs to be saved on to a disk or flash drive.

While you are working in a computer pool, any files that you create which need to be
accessed should be saved on to the PC’s hard drive, in this case the Scratch e: drive.
However, at the end of a session, when you log off the computer, you will lose all such files
that you have saved unless you save them to disk or flash drive.

8

1.7.1 Working on a storage device

Soon you will be constructing M-files. These will be explained in more detail later, but
previous information has already signalled that there are two quite different types, namely
script M-files and function M-files. A script M-file will contain a sequence of Matlab
commands designed to solve a particular problem. A function M-file is of a different form,
and enables you to extend the list of standard Matlab functions by constructing, naming
and saving your own functions. As long as you are in the Matlab environment you can
access all of the M-files which constitute the professional version no matter on which disk
drive or flash drive you are working. However, if you need to access an M-file which has
been stored on a floppy disk or flash drive, you must change your working directory to
that drive. After the >> prompt, type in cd a: (or another letter, instead of a, for the
appropriate drive) which changes the directory to the a: drive (the floppy disk or flash
drive). Then, to get a list of the files that are stored on the disk or flash drive, you can
enter dir after the prompt.

1.7.2 Saving M-files to a storage device

Let us assume you have an active window (such as the M-File “Editor/Debugger” window)
containing an M-file, and you have placed a disk in the disk drive.

Click on File, then on Save As....
In the Save in: box, specify the location where you want this M-file saved. If you merely
wish to save it during this session, you must specify the e: Scratch drive on the computer.
If you wish to save it on your floppy disk or flash drive, you need to choose the a: or
another appropriate drive.

In the File name: box, you must enter the name you have chosen for this M-file. All
Matlab M-files must have names that finish with .m such as test1.m or project.m or
myfunctn.m or prac3wk8.m, etc. NOTE: every year some students cause all sorts of
anguish to themselves by selecting a name for their M-file which happens to already be
the name of one of Matlab ’s own M-files. This must not be done! For example, do not
name your M-file sin.m because this is where the trigonometric function sin x is stored
in Matlab . Never name your M-file solve.m because that is the name of a file in the
Symbolic Math Toolbox which solves an equation. As there are hundreds of M-files in
Matlab , you need to be careful when naming your own.
Once you have selected a name, click on Save.

Thereafter, if you make any changes to this M-file, and you need to save those changes, you
click on File, then on Save in the “Editor/Debugger” window. Alternatively, you could
click on the “Save” icon.

9

1.7.3 Loading M-files from a storage device

After the Matlab prompt, change directory to the floppy. Type in dir just to check what
is on the floppy disk or flash drive. Click on File, then Open and double click the required
M-file. This will open the file inside the “Editor/Debugger” window where additions and
corrections can be made, and later saved as described above. A typical example of such a
window is shown at the back of this guide.

2 Simple Mathematics: Matlab as a Calculator

2.1 Basic arithmetic operations

You can use Matlab as a calculator. Firstly, we will perform simple arithmetic using
the operations + (addition), - (subtraction), * (multiplication), / (division), ^ (raise to a
power, or exponentiation). We will also include parentheses (brackets).

Enter the Matlab Command Window as described in Section 1.4. Type in each of the
following arithmetic expressions after the >> prompt and press the Enter key at the end of
each line. Before doing so, mentally calculate the answer you expect to see in
each case.

(7+6)/(10-2)

7+6/(10-2)

7+6/10-2

9+(6*2)/(3*4)

9+6*2/(3*4)

9+6*2/3*4

1.00001^100000

You will notice that the last expression is very close to the exponential number e. This
will be explained later in lectures.

Some students are unsure of the use of parentheses (brackets). They often use many
unnecessary brackets, thereby making expressions hard to interpret. But other students
omit brackets when they are absolutely needed. The order in which these operations are
evaluated in a given expression is given by the usual rules of precedence, which can be
summarised as follows:

10

Expressions are evaluated from left to right, with the power operation having
the highest order of precedence, followed by both multiplication and division
having equal precedence, followed by both addition and subtraction having
equal precedence. Brackets can be used to alter this usual ordering.

Exercise: Each of the following two expressions has the value 12 (do the calculations
yourself). Type in the equivalent Matlab expressions so that you obtain the answer 12
in each case. If you make an error and wish to try again, you can retype the expression or
you can use the up-arrow ↑ to recall a previous line and then edit it.

5+
93/2 + 1

2(5 − 3)
(needs 3 or 4 pairs of brackets)

17
2
3

+ 3
4

(needs one pair of brackets)

2.2 Variable names

You would have noticed that Matlab gives the result of each calculation the default name
ans. This clearly will become confusing and unacceptable when a sequence of commands
is executed, especially in an M-file. Hence, you should always give the result a variable
name. This variable name can then be used in subsequent calculations in a manner similar
to putting a result in the memory of a calculator. The rules for variable names are

• variable names are case sensitive; crows, Crows, cROWs, CROWS are all different
variables

• variable names can contain up to 31 characters; prideofsouthaustralia is accept-
able

• variable names must start with a letter, followed by a mixture of letters, digits
or underscores. Other symbols and spaces are not allowed; x, ABC, item3week1,
profit_1999, Pride_of_South_Australia are all acceptable variable names

Type in the following sequence of commands after the prompts on consecutive lines

x=7.231

y1=x+1/x

y2=x-1/x

difference=y1^2-y2^2

Exercise: explain why the answer must be 4 for any initial x. Then use the up-arrow
repeatedly to change x to any other non-zero value, find new y1, y2 and demonstrate that
difference is always 4.

11

Note: this continual use of the up-arrow will become unmanageable and very confusing
when we have a longer sequence of commands. That is where the use of M-files will become
crucial.

2.3 Comments, clear, semicolons and Ctrl-C

2.3.1 comments using % sign

All text after a percent sign (%) is taken as a comment statement and is simply ignored by
Matlab . It helps you and readers understand what certain variables represent or what
outcomes your commands are trying to achieve.

2.3.2 clear previous variables

If you have been working with Matlab in a long session you may wish to re-use a variable
name for a different purpose. This is especially important if, say, you had an array variable
x and now you want to use x for a scalar variable or a shorter array x. Then you can
delete the previous variable from the Matlab workspace using the command clear x.
You can also delete all variables no longer required using clear all. This is useful if you
are starting a new problem .

2.3.3 suppress output using ;

A semicolon (;) after a calculation command tells Matlab to suppress the result. When
you have a large amount of data, or certain variables are not needed to be shown in the
final output, they need not be displayed. They will still be held in memory ready for future
use. For example, suppose you want to know where the straight line passing through the
points (x1, y1) = (3, 4) and (x2, y2) = (8, 7) intersects the y-axis. Type in the following
commands:

clear all

x1=3, y1=4

x2=8, y2=7

%let m be the slope of the line y=m*x+b

m=(y2-y1)/(x2-x1);

% y-y1=m*(x-x1) intersects y-axis when x=0

% this gives b=y1-m*x1

y_intercept=y1-m*x1

12

Exercise: add a command to find where the straight line intersects the x-axis.

Exercise: You know that two points on the curve y = sin x are x1 = π
6
, y1 = 1

2
and x2 = π

3
,

y2 =
√

3
2

. In Matlab , pi represents the number π while sqrt(3) represents the number√
3.

Use the up-arrow to change the commands above to find the intercepts on both axes of the
straight line joining these two points.

2.3.4 Ctrl-C

Sometimes you will inadvertently set Matlab into a never-ending loop or cause masses
of numbers to scroll down the screen. You can interrupt Matlab at any time by pressing
Ctrl-C.

2.4 Elementary Mathematical Functions

All of the mathematical functions on your calculator are available in Matlab , as well as
many other elementary functions. To view a list of the common functions, click on “Help”
at the top of the Matlab Command Window, then click on “Matlab Help”, and then
double click on Matlab Functions Listed by Category.
Then click on Elementary Math Functions.
(Note there are also Specialized Math Functions beyond the scope of this introduction.)
For brief information about any of the elementary functions, merely double click on that
function name. You can use the back-arrow near the top of the window to move back to
previous windows. Of special significance, note there are the six trigonometric functions
as well as their corresponding inverse functions. For example, the Matlab expression
sin(x) represents sin x. Note the use of brackets around the x. Of course, Matlab
only uses natural radian measure and never degrees. Type in the following (non-comment)
commands:

theta=3*pi/4

y1=sin(theta), y2=cos(theta), y3=tan(theta)

% note than you can put more than one command on a given line,

% separated by commas. Now find the reciprocal of each:

z1=csc(theta), z2=sec(theta), z3=cot(theta)

% Find alpha, beta such that sin(alpha)=0.721 and tan(beta)=-1.78

alpha=asin(0.721), beta=atan(-1.78)

13

There are also the six hyperbolic functions and their inverse functions, to be discussed later
in Chapter 6 of Grossman. Of special importance, note that

• the exponential function ex is represented in Matlab by exp(x)

• the natural logarithm function ln x is represented in Matlab by log(x)

• the square-root function
√

x is represented in Matlab by sqrt(x)

• the absolute value function |x| is represented in Matlab by abs(x)

Exercises: Let x = 1.253. Show that the variables u, v, w, y, z have the values shown by
typing in the corresponding Matlab commands:

mathematical expression answer Matlab command

u =
1√
2π

e−
1
2
x2

0.1820 u=1/sqrt(2*pi)*exp(-0.5*x^2)

v = x arctan x − 1

2
ln(1 + x2) 0.6523 v=x*atan(x)-0.5*log(1+x^2)

w =
3
√

5 + cos 4x

| sin 3x| 3.0107 w=(5+cos(4*x))^(1/3)/abs(sin(3*x))

y = sin2(πx) 0.5094

z =
esinx

√
x2 + 1

1.6128

2.4.1 Other useful functions

round(x) rounds x to the nearest integer
floor(x) rounds x down to the nearest integer
ceil(x) rounds x up to the nearest integer
rem(y,x) the remainder after dividing y by x

sign(x) =−1 if x< 0 ; =0 if x=0 ; =1 if x> 0
rand generates a random number between 0 and 1

Exercise: You have $50. Each item costs $3.35. How many items can you buy and how
much change will you have left?

number_of_items=floor(50/3.35)

% change default format to one with two decimal places

format bank

change=rem(50,3.35)

14

Note: to view other possible formats, type in help format after the Matlab prompt.

Exercise: There are 211 students to be arranged into tutorial classes which can hold 24
students per class. Use Matlab commands to determine the number of tutorial classes
needed and how many spare places are left.

2.5 Assignment statements

The preceding Matlab commands that assign the value of the expression after the ’=’ sign
to the variable before the ’=’ sign are assignment statements. Note that all variables
in the expression after the ’=’ sign must have previously been allocated a value, or else an
error occurs. For example, enter the following commands:

a=3

B=4

c=sqrt(a^2+b^2)

You will see the error message ??? Undefined function or variable ’b’.

Consider the following:

clear all

x=7

x=x^2-12

The last line has nothing at all to do with a mathematical equation. It is a Matlab
assignment statement that calculates x2 − 12 at x = 7 and stores the result in the variable
x, thereby over-writing the previous value.

3 Script M-files

As has been mentioned already, for simple problems it is easy to enter your requests after
the prompt in the Matlab Command Window. However, as the number of commands
increases or whenever you wish to make major changes, this becomes very tedious. Instead,
you should place Matlab commands in a simple text file, and then tell Matlab to open
the file and evaluate all the commands precisely as it would if you had typed them after
the prompt. These files are called script M-files and must have filenames ending with
the extension ’.m’. Examples of possible M-file names are example1.m, proj1Y2000.m,
question5.m, mechdevice.m, etc.

15

3.1 Creating, saving, executing and editing script M-files

To create a script M-file, click on “File” in the Matlab Command Window, then on “New”
followed by “M-file”. This opens the M-file “Editor/Debugger” window, where you can
enter your sequence of Matlab commands, in simple text format without any prompts.
See the picture at the end of this guide. As a first example, reconsider the problem of
finding the intercepts on the axes from Section 2.3.3. Type in the following:

clear all

x1=3

y1=4

x2=8

y2=7

%let m be the slope of the line y=m*x+b

m=(y2-y1)/(x2-x1);

% y-y1=m*(x-x1) intersects y-axis when x=0

% this gives b=y1-m*x1

y_intercept=y1-m*x1

x_intercept=x1-y1/m

Now save this file as described in Section 1.7.2. If you are working on the hard drive,
specify e: in the Save in: box, or else a: or another drive if you wish to save on a disk
or flash drive. In the File name: box type in example1 and enter. You will note that
the header now shows the directory location as well as example1.m as the name of this
M-file.

Return to the Matlab Command Window and enter example1 after the prompt. Assum-
ing you have changed to the same directory, this will execute the sequence of commands
in example1.m.

Return to the “Editor/Debugger” window. Use the mouse, arrows, backspace and delete
facilities to change x1,y1,x2,y2 to the values specified in the second exercise in Section
2.3.3. Then Save and again enter example1 after the >> prompt. Of course this can most
simply be accomplished using the up-arrow once.

3.2 Matlab Search Path

Suppose you type in crow after the prompt; in other words >> crow

How is this to be interpreted? Matlab interprets this statement using the following
hierarchy:

16

1. It checks to see if you merely wish to print out the value of a variable named crow

in the current Matlab workspace. If not,

2. it checks to see if crow is a built-in Matlab command. If not,

3. it checks to see if you wish to execute an M-file named crow.m that you have saved
in your current working directory. (There is a further possibility not discussed here.)

3.3 Revision exercises

Exercise 1: Suppose you want to find the two zeros of the quadratic ax2 + bx + c. (As
you would expect, Matlab already has a procedure to do this automatically, but let us
solve this independently.) Firstly, to solve 5x2 − 17x− 12 = 0, you should create, save and
execute an M-file quadzeros.m (for example)

clear all

a=5, b=-17, c=-12

x1=(-b+sqrt(b^2-4*a*c))/(2*a)

x2=(-b-sqrt(b^2-4*a*c))/(2*a)

Then change this to find the zeros of each of the quadratics

3x2 + 5x − 13 2x2 − 7x + 23 2.34x2 + πx −
√

6

Exercise 2: Suppose the three sides of a triangle have lengths (in cm) a = 11.7, b =
6.9, c = 7.1. Find the three angles A, B, C using the cosine rule

a2 = b2 + c2 − 2bc cos A

and the sine rule
a

sin A
=

b

sin B
=

c

sin C
.

Convert the angles into degrees.

Construct the following in an M-file triangle.m, and then execute it.

clear all

a=11.7; b=6.9; c=7.1;

% let cA represent cos(A), and sB represent sin(B)

cA=(b^2+c^2-a^2)/(2*b*c);

A=acos(cA);

sB=b*sin(A)/a;

17

B=asin(sB);

C=pi-A-B;

% convert angles into degrees for output

A=A*180/pi; B=B*180/pi; C=C*180/pi;

fprintf(’angle A is %6.2f degrees \n’, A)

fprintf(’angle B is %6.2f degrees \n’, B)

fprintf(’angle C is %6.2f degrees \n’, C)

You will notice that the fprintf command produces neat output. In each case, the variable
to be printed is at the end, while %6.2f stipulates where the value is to be printed along
with how many positions (6) and how many decimal places (2). The \n moves to a new
line after printing whatever precedes it, in preparation for more output.

Exercise 3: Consider the two simultaneous linear equations

a11x + a12y = b1

a21x + a22y = b2

Matlab provides various ways to solve this automatically, given values for the coefficients,
as we shall see later. But for now, you will write your own M-file. You will need to
give values for the four coefficients and the numbers on the right hand side, find detA =
a11a22 − a12a21 so that

x =
a22b1 − a12b2

detA
and y =

a11b2 − a21b1

detA
,

providing detA �= 0. Test your M-file on the following two problems:

2x − 3y = 2 3x − 11y = 17
5x + 6y = 59 −6x + 22y = 23

The solution of the left system is x = 7, y = 4. The right system clearly does not have a
solution.

Entering Long Expressions: if an expression does not fit on a single line, use three dots
. . . to indicate that the statement continues on the next line. Do not leave any unnecessary
blank spaces and press Enter or Return immediately to advance to the next line, and
continue entering the statement. Be careful to create this break at a sensible point in the
expression, preferably after a comma or mathematical operation.

18

4 Arrays

All of the computations considered so far involve single (scalar) numbers. One of the
powers of Matlab is its ability to do computations on arrays, where the same operation
is performed on all numbers in a data array using a single command. Special types of
arrays such as matrices and vectors will be discussed in more detail in Section 9, as will
mathematical operations specific to them.

4.1 Constructing arrays

We will illustrate four somewhat different ways of constructing a simple array of numbers.
The whole array is represented by a variable name along similar lines to scalar variables.
For example, a, x, Y, A3, Xarray are suitable names for arrays providing they have
not already been used for another purpose. The first method of constructing an array is
merely to list the numbers in the array, enclosed inside square brackets and divided either
by spaces or commas. Type in the following after the prompt:

x=[3, -5.1, 0, 6, 11, -17, pi]

y=[8 2 -12 3/4 1.234567 1 10]

This is fine if you have only a few numbers to input into an array (seven in each of the
above two examples). However, if there are hundreds, we need another method. This is
possible if the numbers in the array are equally spaced. We use the colon notation. Type
in the following after the prompt:

A=[-3:21]

B=[3.33:12]

Clearly [a:b] is an array starting at a with increments of one until we reach b but not going
beyond b. If a and b are integers with a < b, the number of elements in the array is
b − a + 1. Why?

Suppose we want an array to extend over the interval from a to b with n equal subintervals

of length h. Then clearly h =
b − a

n
and the number of elements in the array will be

n + 1. Why? For example, suppose you wanted an array of values from 2.5 to 4.0 with
25 subintervals, which implies that the values need to be incremented by a step-size of
h = 0.06. Why? The number of values in the array will be 26. Show that the following
three expressions are equivalent by entering each expression (Matlab command only)
after the prompt:

19

• C=[2.5:0.06:4.0] [a:h:b] is an array from a to b with step-size h.

• C=linspace(2.5,4.0,26) linspace(a,b,n+1) is an array from a to b with
n subintervals, n + 1 points (avoids having to find h).

• C=2.5 + 1.5*[0:0.04:1] divides the interval from 0 to 1 into 25 equal
subintervals of length 0.04 and then scales & shifts.

Which of the above do you prefer?

Of course, when you have an array with a large number of elements you should follow
statements like those above with a semi-colon “;” to avoid printing lines of probably un-
wanted numbers in your output.

Example 1:
An array from −2π to 2π using 150 subintervals is

array1=linspace(-2*pi,2*pi,151);

Example 2:
An array from 3 to 76 with steps of 0.5 is

array2=[3:0.5:76];

Exercise: Suppose we need an array (in hours) to represent the 24 hours of a day, from
midnight to midnight, and we want to have time-steps of one minute. Then a suitable
array might be:

day=[0 : 1/60 : 24];

What equivalent statement uses the linspace command?

You can append the elements of one array to the end of another array. Enter the following:

clear all

x1=[1 6 -7]

x2=[5 9 0 -1 11]

x=[x1 x2]

20

4.2 Array subscripts

Given an array, you may need to access only one or some of the individual elements
contained in the array, rather than the whole array itself. If A is an array with n elements

in it, and i is an integer such that 1 ≤ i ≤ n, then in Matlab A(i) is the ith element in the
array (often denoted by Ai in mathematics). To illustrate this, enter the following into an
M-file and then execute it. Firstly you will construct an array containing 9 random numbers
between 0 and 1. Then you will use these elements of A to introduce scalar variables or
new arrays which are merely sub-arrays of A. In each case the new variable names before
the “=” signs have been suggested so that you can read the output conveniently. Please
study carefully the expressions following the “=” signs. They will be used
extensively later in this course and in subsequent courses.

A=rand(1,9)

% the next two lines define scalar variables

a1=A(1)

a7=A(7)

% the remaining lines define new arrays

a3456=A(3:6)

a1357=A(1:2:7)

a852=A(8:-3:2)

Exercise 1: After executing the above M-file, what would you expect to see if you now
entered each of the following after the prompt? Because we have not allocated a variable
name for either expression, both of course will be named ans by default.

a852(3)

a1357(2:3)

Exercise 2: The Matlab command

Q=linspace(0,100,141);

creates an array which has 140 subintervals and 141 points. Print out only

• the 46th element of Q

• the first four elements of Q

• the last three elements of Q.

21

4.2.1 Special array functions: sum, prod, length, max, min, sort, find, diff

The functions sum, prod, length, max, min, sort, find of an array are self explana-
tory by creating and executing the following in an M-file (do not type in the comment
statements). diff(Z) is a new array containing the differences between consecutive ele-
ments of Z.

clear all

% create an array with 11 elements,

% each of which is a random number between 0 and 5

Z=5 * rand(1,11)

Zsum=sum(Z)

Zprod=prod(Z)

Zlength=length(Z)

% ’max’ finds the maximum value and its subscript (index) number

[Zmax,i] = max(Z)

[Zmin,j] = min(Z)

% ’sort’ and ’find’ create new arrays

Znew=sort(Z)

Zbig=find(Z>3.0) % for example, finds subscripts where Z(i) is >3.0

Znewbig=find(Znew>3.0) % have now moved to end of array

4.3 Calculating with arrays

Performing arithmetic calculations on arrays containing large data sets is considerably
easier with Matlab than with other computer languages such as C or Pascal. It is
precisely the ease of array manipulation that makes Matlab suitable for mathematical,
scientific and engineering applications.

4.3.1 Basic arithmetic operations on arrays

If X is an array and a, b are scalar values, then a∗X +b creates a new array by multiplying
all the elements of X by a and then adding b to each position. What do you expect X/a+ b
to give?
Enter X=[1:8] after the prompt. Then execute

y=10*X+7

z=(y-7)/10 %why is this the same as X?

v=3*X/2 -1

22

If A, B are two arrays containing the same number of elements and c1, c2 are scalars,
then expressions of the form c1A ± c2B will create new arrays. Enter the following:

clear all

A=[1:2:11] , B=[8:-1:3]

C=B-A

D=(3*A-4*B)/2 + 5

However, there are some other very important differences. Later you will see
that Matlab includes standard operations with matrices and vectors, which
are also examples of arrays. Hence, to distinguish those operations, a dot must
be placed immediately before the ∗ / ^ operators in each of the following
circumstances, where A, B are arrays of the same length and c is a scalar.

A .* B A ./ B c ./ A A .^ B c .^ A A .^ c

In other words, a dot is required before the operator whenever two arrays are multiplied
together, whenever you divide by an array, and whenever an array occurs in any power
expression. These always create a new array of the same length as A (and B). Enter the
following and take careful note of the answers:

clear all

X=[1 2 3 4] , Y=[-1 4 2 1/2]

K1=X.*Y % multiply the corresponding elements

K2=X./Y % divide the corresponding elements

K3=5./Y % divide 5 by each element of Y

K4=X.^Y % raise the numbers in X to the corresponding power in Y

K5=2.^X % raise 2 to the power of each number in X

K6=Y.^3 % cube each element in Y

Example 1: Create an array curo that contains the cube roots of all integers from 24 to
30.

clear all

A=[24:30];

curo=A.^(1/3) % note the dot and brackets

Rather than introducing the array A at all, this could be done immediately using

clear all

curo=[24:30].^(1/3)

23

Example 2: What is the value of the sum

100∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+ . . . +

1

1002
?

Enter the following:

clear all

% create an array n

n=[1:100]; % note the semi-colon (do not print out the 100 values)

b=1./n.^2; % note the two dots (and the semi-colon)

total = sum(b) % you should get total = 1.6350

Or you could be clever and find this total without actually introducing the array names
n, b.

clear total

total = sum([1:100].^(-2)) % note the dot as [1:100] is an array

Exercise: Consider the 40 values
n7

2n
for n = 1, 2, 3, . . . , 40. Use Matlab ’s max function

to determine the largest of these values and the number n for which it occurs. You should

obtain that it is the 10th value equal to 9.7656e+003 which you must know is scientific
notation for 9765.6.

4.3.2 Using mathematical functions on arrays

Given an array X and a function f , then the Matlab command Y=f(X) produces a new
array Y such that the elements of Y are Y (i) = f(X(i)) (or in mathematics Yi = f(Xi)).
This, coupled with the basic arithmetic operations on arrays discussed in Section 4.3.1,
enables powerful but simple data manipulation.

Example 1: Enter the following into an M-file and then execute it.

clear all

X=[0:pi/6:2*pi]

Y=sin(X)

Z1=1-2*Y.^2 % note the dot

Z2=cos(2*X) % why are Z1 & Z2 equal?

24

Example 2: Consider the values tan2(m) for m = 1, 2, . . . , 200. How many of these values
are greater than 100?

clear all

m=[1:200];

b=tan(m).^2; % note the dot

c=find(b>100) % finds the positions, not the actual values

number=length(c) % answer is 13 values

Example 3: You should know the classic limit lim
x→0

sin x

x
= 1. Demonstrate this by

evaluating
sin x

x
for each of x = 0.1, 0.01, . . . , 0.00000001.

clear all

format long % use 16 characters for each value

x=0.1.^[1:8] % note the dot because [1:8] is an array

y=sin(x)./x % note the dot because x is an array

Exercise: The output from an engineering system is y = t2e−t sin t for t ≥ 0. We want
to find the maximum value which certainly occurs within 0 ≤ t ≤ 3. Although Matlab
has other more efficient ways of doing this (see later), you could merely investigate this
function by dividing the interval [0,3] into 10,000 subintervals (10,001 points). Fill in the
missing code in the second and third lines in the following M-file, recalling that the expo-
nential function ex is exp(x) in Matlab . You should obtain ymax=0.5239, posn=5759,

time=1.7274.

clear all

t=linspace(, ,);

y= ;

[ymax,posn]=max(y) % use array max function

time=t(posn) % finds corresponding value in the t array

4.4 Using arrays to plot graphs

In this section we will use Matlab ’s plot command to produce graphs. In Sections 6.2
and 8.4 you will see there are two other commands to create graphs, namely fplot which
uses function M-files and ezplot which is inside the Symbolic Math Toolbox.
If x = {x(1), x(2), . . . , x(n)} and y = {y(1), y(2), . . . , y(n)}, then the Matlab command
plot(x,y) opens a graphics window, called a Figure window, scales the axes to fit the

25

data, plots the points (x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n)), and then graphs the data
by connecting the points with straight lines. If a Figure window already exists, another
plot command clears the current Figure window by default (unless instructed not to do
so) and draws a new plot. Type in the following as an attempt to graph y = sin x for
0 ≤ x ≤ 2π. [You could replace the last two lines with plot(x,sin(x)).]

clear all

x=linspace(0,2*pi,11);

y=sin(x);

plot(x,y)

Clearly this attempt is unacceptable because we have not used sufficient points!.
Change the 11 to 201 and execute the code again.
In general, most graphs can be satisfactorily plotted using arrays of, say, 101 to 201 points,
although erratic or wildly fluctuating functions would require many more points. Please
note that you only need two points to plot a single straight line. For example, to plot a
straight line from the point (1,7) to the point (3,-5) you need the command
plot([1 3],[7 -5]).
Note: Students often get this wrong by forgetting that the first array always contains
the x-coordinates, not the two coordinates of the first point. Similarly, the second array
contains the y-coordinates.

Exercise 1: Plot the graph of y =
xex

x2 − π2
for −3 ≤ x ≤ 2 using a step-size of 0.02. You

will need three dots in the expression to generate the array y.

Exercise 2: Plot the graph of y = sin 9x + sin 10.5x + sin 12x for −π ≤ x ≤ π using 601
points.

4.4.1 Plotting several graphs on the same axes.

Example 1: Suppose you want to plot the oscillations y1 = cos t, y2 = cos 3t and their
sum y3 = y1 + y2, for 0 ≤ t ≤ 4π, on the same axes. Here t is measured in seconds and
y1, y2, y3 are measured in cm.

clear all

t=linspace(0,4*pi,201);

y1=cos(t); y2=cos(3*t); y3=y1+y2;

plot(t,y1,t,y2,t,y3)

26

You notice that we found the three y-arrays in a single line of code and they were plotted
in different colours. But the empty space at the right end of the graphs is annoying, and
how can we label the output so that each graph can be identified? There are many facilities
provided by Matlab to assist you in producing attractive, meaningful graphs. Change
the above M-file to the following (this is important!):

clear all

t=linspace(0,4*pi,201);

y1=cos(t); y2=cos(3*t); y3=y1+y2;

axis([0 4*pi -2 2]) % specifies the axes limits

hold on

plot(t,y1,’b--’,t,y2,’g:’,t,y3,’r’)

legend(’y1=cos(t)’,’y2=cos(3*t)’,’y3=y1+y2’)

plot([0 4*pi],[0 0],’k’) % adds the t axis in black

xlabel(’time in seconds’)

ylabel(’displacement in cm’)

title(’oscillations’)

hold off

A short diversion
To get assistance with the Matlab commands featured above and in the next example,
you can use the help facility. Enter each of the following after the >> prompt and carefully
read the information until you understand precisely what each of the lines in the previous
(or next) M-file is accomplishing.

• help axis

• help plot

• help hold

• help legend

• help text

• help print a menu of print options for your Figure

Alternatively, if you do not know the precise name of a Matlab command for which you
need help, you can click on the Help button at the top of the MATAB Command Window,
then click on “Matlab Help” followed by “Matlab Functions Listed by Category” and
then on a topic of interest. For example, to get help on many graphics related commands,
click on Plotting and Data Visualization.

27

Another help option is the lookfor facility. Suppose you were interested in commands
involving the use of complex numbers. After the >> prompt enter lookfor complex.

Example 2: By using hold on and hold off, you can plot several functions on the same
axes using a number of plot commands. The functions f(x) = x2 and f−1(x) =

√
x are

inverse functions for x ≥ 0 and hence their graphs must be reflections through the line
y = x. Execute the following M-file, carefully noting the results of each command:

clear all % file available in M-files folder as file1.m

axis([0 4 0 4]), axis square

hold on

x1=linspace(0,2,101);

y1=x1.^2; % note the dot

plot(x1,y1)

x2=linspace(0,4,101);

y2=sqrt(x2);

plot(x2,y2)

plot([0 4],[0 4],’k:’) % dotted line in black from (0,0) to (4,4)

text(1.5,3.5,’y=x^2’)

text(3.1,1.7,’y=sqrt(x)’)

grid on % adds grid lines if you want them

title(’reflection property of inverse functions’)

4.4.2 zoom on

Matlab provides an interactive tool to expand sections of a plot to see more detail. This
is particularly useful if you need to obtain accurate information about where two graphs
intersect, or to find the coordinates of an extreme point. The command zoom on, either
in your M-file or after the >> prompt turns on the zoom mode. Then go to the Figure
window, place the pointer where you want an enlargement and click with the left button.
Continue this process and you can zoom in to obtain three or four decimal place accuracy.

28

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

y=1−x3

y=tan(x)

Example: Suppose you want to find graphically the point of intersection of y = tan x and
y = 1 − x3. (Note that there are other non-graphical ways of doing this, described in Sec-
tions 6.2 and 8.2.) Firstly, plot both of these functions on the same axes for −1.2 ≤ x ≤ 1.2,
with at least 800 points to enable zooming. You might also like to add the x and y axes
to obtain a figure similar to that on the previous page.
Enter the command zoom on. Then zoom in at the point of intersection until you are able
to find its coordinates to the accuracy of (0.6376 , 0.7408).

Exercise: Plot y = 10e−t sin t for 0 ≤ t ≤ 2π and then use zoom on to find its maximum
value.

4.4.3 Creating separate graphs in one M-file

If you want two separate Figures to be created in one M-file, you can use the figure(n)
command where n is a number associated with the window and precedes the set of plotting
commands.

Example: At time t seconds, t ≥ 0, a moving point has coordinates x = sin 2t, y = cos 3t
(metres), and so its speed is given by

speed(t) =

√(dx

dt

)2

+
(dy

dt

)2

=
√

4 cos2 2t + 9 sin2 3t.

Plot the path taken by the point over one cycle 0 ≤ t ≤ 2π, where t is regarded as a
parameter, and also plot the speed against time. Use the following M-file. (You can add
your own labels, etc.)

29

clear all % file available in M-files folder as file2.m

t=linspace(0,2*pi,500);

x=sin(2*t);

y=cos(3*t);

figure(1)

plot(x,y)

axis equal % same scale (metres) on each axis

speed=sqrt(4*cos(2*t).^2+9*sin(3*t).^2); % note the dots

figure(2)

axis([0 2*pi 0 4])

hold on

plot(t,speed)

hold off

5 Control Loops in an M-file: for, while, if

Matlab , along with other computer programming languages and programmable calcula-
tors, offers features that allow you to control the sequencing and execution of commands
by incorporating decision making facilities. The while and if commands are often used in
conjunction with the relational operators
Relational Operator Mathematical Meaning

< less than <
<= less than or equal to ≤
> greater than >
>= greater than or equal to ≥
== equal to =
~= not equal to �=

5.1 for loops

A for loop allows a group of commands to be repeated a fixed predetermined number of
times. It is typically of the form

for variable=start:step:finish

commands

................

end

Note that variable is not an array variable, but a scalar variable that runs through all
the numbers in the array start:step:finish one at a time.

30

Example 1: Calculate the following using both (i) arrays and (ii) for loops:

1 + 1.1 + 1.2 + . . . + 3 and 1 × 1.1 × 1.2 × . . . × 3

(i) clear all (ii) clear all

x=[1:0.1:3]; s=1;

total=sum(x) p=1;

product=prod(x) for t=1.1:0.1:3

s=s+t ; p=p*t ;

end

total=s

product=p

Example 2: Write a simple M-file to produce the following graphic. Use the fact that
x = cos(t), y = sin(t), 0 ≤ t ≤ 2π, is the (assumed known!) parametric representation of
the unit circle centred at the origin.

clear all

t=linspace(0,2*pi,181);

% use 181 points to plot circle

x=cos(t); y=sin(t);

plot(x,y)

axis equal, axis off

hold on

for i=1:20:161

% each line needs 2 x-values and 2 y-values only

plot([0 x(i)],[0 y(i)])

end

hold off

31

Example 3: Suppose you wish to construct a table of values which converts degrees C
into degrees F using the standard formula F = 1.8C + 32 for C = 25, 26, 27, . . . , 40.

clear all

fprintf(’ deg C \t deg F \n’) % \t leaves space \n goes to new line

for C=25:40

F=1.8*C+32; % do not print yet, use fprintf instead to line up

fprintf(’%4.0f \t %5.1f \n’,[C F])

end

5.2 while loops

A while loop allows a group of commands to be repeated an indefinite (unknown) number
of times until an expression becomes false (is no longer satisfied). It is typically of the form

while expression

commands

................

end

The commands between the while and end statements are executed as long as all elements
in expression are satisfied.

Example: For what value of n does the summation

n∑
k=1

1√
k

=
1√
1

+
1√
2

+
1√
3

+ . . . +
1√
n

first exceed 30?

clear all

s=0;

k=0;

while s<30

k=k+1;

s=s+1/sqrt(k);

end

number_of_terms=k

sum=s

32

5.3 if-else-end constructions

The simplest form is

if expression

commands evaluated if expression is true

end

but could be of the more detailed form

if expression1

commands evaluated if expression1 is true

elseif expression2

commands evaluated if expression2 is true

elseif expression3

commands evaluated if expression3 is true

.....................

else

commands evaluated if no other expression is true

end

Example 1: Let us consider a very simple situation firstly. Suppose a shop offers a 5%
discount on bills over $100. Execute the following M-file for both $78.85 and then $122.40.

clear all

bill=78.85;

if bill>100

bill=bill*0.95;

end

format bank

final_charge=bill

Example 2: The following M-file calculates the current amount of income tax due on a
given taxable income. It also introduces Matlab ’s input command which enables data
to be input from the keyboard when required by printing out a suitable message. Execute
the following M-file for a variety of different taxable incomes:

clear all % file available in M-files folder as file3.m

income=input(’enter taxable income:>>’)

format bank

33

if income <= 5400

tax=0

elseif income <= 20700

tax=(income-5400)*0.20

elseif income <= 38000

tax=3060+(income-20700)*0.34

elseif income <= 50000

tax=8942+(income-38000)*0.43

else

tax=14102+(income-50000)*0.47

end

Example 3: Most if constructions occur inside a for or while loop.
In how many ways can x = 59, 650 be written as the sum of squares of two integers m and
n? In other words, find all integer pairs m, n such that m2 + n2 = x, which is equivalent
to asking whether n =

√
x − m2 is an integer. Execute the following:

clear all

x=59650

for m=1:sqrt(x) % m cannot exceed sqrt(x) if m^2+n^2=x

n=sqrt(x-m^2); % next test if n is an integer

if n = = round(n) % no space between the two equal signs

pair=[m,n]

end

end

6 Function M-files

Almost all of the Matlab commands that you have been using are stored in function
M-files. Before fully explaining the construction of this type of M-file, it is worth looking
more deeply inside Matlab to view some of them.

1. The Matlab type command enables you to view the content of any M-file, including
the many hundreds stored inside the Matlab software. After the prompt, enter
type(’cos’). The response is merely “cos is a built-in function” and so no
documentation is available as to how Matlab actually evaluates cos(x).

2. However, now enter type(’gammainc’). The M-file gammainc.m, located in Spe-
cialized Math Functions, contains a special function, namely the Incomplete Gamma
Function = γ(x, a). You do not need to be familiar with this function. Examine the

34

first line
function b = gammainc(x,a)

The first word function is essential and indicates this is a function-type M-file.
gammainc is the name of the function and must correspond to the name of the
M-file, gammainc.m.
There are two input variables, namely x (which could be a scalar or an array) and
a (which is usually a scalar). There is one output variable b which is the same length
as x.

Now go to the end of the M-file gammainc.m. You will notice that the output
variable b is finally given a value.

To see this function working, after the >> prompt enter gammainc(4,1.5)

(ans=0.9540) and gammainc([3 3.5 4],2.28) (ans= 0.7427 0.8189 0.8745). Note
that the input and output variables x,a,b are dummy variables merely used to define
the function.

3. Enter type(’linspace’) after the prompt. This displays the content of linspace.m,
in Elementary Matrices and Matrix Manipulation, which is the function M-file con-
taining the linspace command. The first line is

function y = linspace(d1,d2,n)

You are aware that the input dummy variables d1,d2 are the ends of the interval and
n is the number of points. Notice that the only executable commands in this M-file
are

if nargin = = 2

n = 100;

end

y = [d1+(0:n-2)*(d2-d1)/(n-1) d2];

The first three lines set n=100 by default if you forget to input a value for n. The last
line determines the output array y containing the n points. Exercise: check that
this formula is correct.

4. Enter type(’quadL’) to view quadL.m in Function Functions - Nonlinear Numer-

ical Methods. This function finds a numerical approximation to

∫ b

a

funfcn(x)dx

where funfcn(x) is any function, either built-in by Matlab or defined by you in a
function M-file funfcn.m as explained in the next Section 6.1. The first line is

function [Q,fcnt] = quadl(@funfcn,a,b,tol,trace,varargin)

The last three input variables are optional. The ouput variable Q contains a value
for the integral, while fcnt is optional if you require extra information. At the end
of this M-file notice that values are calculated for these output variables. (Do not
bother looking at all the commands in between.)

35

Exercise: Enter quadL(@tan,0,1.5) to show that an accurate estimate of∫ 1.5

0

tan x dx is 2.6488.

6.1 Constructing Function M-files

Why might you wish to define and construct your own functions and store them in function
M-files?

• the mathematical formulation of a function might be quite long and complicated. It
might be better to define it separately rather than inside a script M-file.

• the same expression of one or more variables might be required a number of times,
either within a single M-file or on different occasions. It is more economical to define
the expression as a function in an M-file.

• many Matlab commands operate on functions which must be held in function M-
files (see Section 6.2).

Once a function has been constructed by you in an M-file, it can be used in the same
ways as all other Matlab functions. It can be evaluated, used in any other M-file, or
differentiated/integrated in the Symbolic Math Toolbox (see Section 8.5). In fact, your
function can later be used in constructing yet another new function.

The first time Matlab executes a function M-file, it opens the file and compiles the com-
mands into an internal representation in memory that speeds their execution for all ensuing
function calls.

Suppose you wish to construct a function myfunc. Function M-files must follow specific
rules.

1. The function name and the M-file name must be identical. Therefore, a function
myfunc must be stored in a file named myfunc.m.

2. The first executable statement must be of the form
function output_variables = myfunc(input_variables)

3. Do not include any clear commands inside a function M-file.

4. Each executable command most probably will finish with a semicolon to avoid print-
ing out numbers each time the function is accessed. Any required values can be
printed in the Command Window or in the calling script M-file.

36

5. Each output variable should be given a value within the M-file.

6. Function M-files terminate execution and return output values when they reach the
end of the M-file, or if they encounter the command return beforehand.

Note: You cannot run a function M-file by entering the name of the M-file after the >>

prompt as you do with a script M-file. You must give values for the input variables and
evaluate as an arithmetic expression.

Example 1: The number of different combinations of r items from n items is given by the
binomial coefficient

Cn
r =

(n
r

)
=

n(n − 1) . . . (n − r + 1)

r!

where n ≥ 1 and r ≥ 0 are integers, r ≤ n. Create a function M-file comb.m containing
the function comb(n,r):

function y=comb(n,r)

if r = = 0 % no space between the two equal signs

y=1;

return

end

top=prod([n:-1:n-r+1]);

bottom=prod([1:r]);

y=top/bottom;

Now enter after the prompt

comb(4,0) , comb(3,3) , comb(5,2) , comb(9,5) , comb(25,14)

Example 2: Consider the function

trigs(x, n) = sin x +
sin 3x

3
+

sin 5x

5
+ . . . +

sin(2n − 1)x

2n − 1

where x is the point (or array of points) where the function is being evaluated and n is the
number of terms used in this series of sine functions. For example,

trigs(1.27, 4) = sin 1.27 +
sin 3(1.27)

3
+

sin 5(1.27)

5
+

sin 7(1.27)

7
.

Construct the function M-file trigs.m:

37

function y=trigs(x,n)

% commence the sum for y with the first term

y=sin(x); % y is an array if x is an array

for k=2:n

kodd=2*k-1;

y=y+sin(kodd*x)/kodd;

end

Now evaluate trigs(1.27, 4) (=0.8347) and trigs(1.27, 40) (=0.7822).
You can, of course, now plot a graph of trigs(x, n) for a given n. Construct the following
script M-file and then run it.

clear all

x=linspace(-2*pi,2*pi,801);

y=trigs(x,4);

axis([-2*pi 2*pi -1 1])

hold on

plot(x,y)

hold off

Change the trigs(x,4) to each of trigs(x,40) and trigs(x,200) and execute. The
graphs you see are part of Fourier Series theory which many students will meet next year.

6.2 Functions operating on functions: fplot, fzero, fminbnd, quadL

Suppose a function y = func(x) has been defined in a function M-file func.m. Then

• fplot(@func,[a b]) or fplot(’func(x)’,[a b]) plots the function for
a ≤ x ≤ b without requiring you to set up arrays

• fzero(@func,[a b]) or fzero(’func(x)’,[a b]) finds a root of the equa-
tion func(x) = 0 inside the interval [a, b] providing func(a) and func(b) have oppo-
site signs
fzero(@func,c) or fzero(’func(x)’,c) finds a root of the equation
func(x) = 0 by commencing a search at x = c.

• fminbnd(@func,a,b) or fminbnd(’func(x)’,a,b) finds the coordinates of
a minimum point for a ≤ x ≤ b.

• quadL(@func,a,b) or quadL(’func(x)’,a,b) finds an accurate value for∫ b

a

func(x) dx.

38

Note: quadL uses arrays in its calculations. Hence the M-file func.m must use the ar-
ray dot notation in the definition of func(x). This is not required for fplot, fzero or
fminbnd.

Example: Consider the function f1(x) =
x − cos x

2 + x2
. Define it in the function M-file f1.m.

function y=f1(x)

% use dots as quadL(@f1,a,b) occurs in calling M-file

y=(x-cos(x))./(2+x.^2); % ";" to avoid printing inside f1.m

Now construct and execute the following M-file. This will graph the function for
−10 ≤ x ≤ 10, find its zero (from the graph, between 0 and 1), find the x and y coordinates
of the minimum and integrate the function from the x-intercept to x = 10.

clear all

fplot(@f1,[-10 10])

hold on

plot([-10 10],[0 0],’k’) % adds x-axis

hold off

x_intercept=fzero(@f1,[0 1])

[xmin,ymin]=fminbnd(@f1,-3,3) % finds both the x-coordinate

% and y-coordinate of minimum

accurate_integral=quadL(@f1,x_intercept,10)

As well as the graph, the following output should result:

x_intercept = 0.7391

xmin = -0.4562

ymin = -0.6132

accurate_integral = 1.8910

Exercise 1: Consider the output OP (t) = 1 − 4e−t sin t for t ≥ 0. Define this function
in an M-file and then use fplot to graph it for 0 ≤ t ≤ 5, find the two zeros, find its

minimum value and evaluate

∫ 5

0

OP (t) dt.

Exercise 2: Knowing that tanx has a vertical asymptote at x = π
2
, see what occurs

if you enter after the prompt fplot(@tan,[1 2]). Remember that tanx is already
stored in tan.m. Knowing that

√
x only exists for x ≥ 0, see what occurs if you enter

fplot(@sqrt,[-1 4]).

39

7 Polynomials

Matlab has a number of commands to make manipulating and evaluating polynomials
very simple. In the Help Window, in the \mat\polyfun topic you will see the following
commands:

roots - Find polynomial roots

poly - Convert roots to polynomial

polyval - Evaluate polynomial

polyvalm - Evaluate polynomial with matrix argument

residue - Partial-fraction expansion (residues)

polyfit - Fit polynomial to data

polyder - Differentiate polynomial

conv - Multiply polynomials

deconv - Divide polynomials

In Matlab (but not in the “Maple” Symbolic Math Toolbox) a polynomial is
represented by an array (row vector) of its coefficients in descending order. For
example, enter the polynomial p(x) = 3x5 −4x4 +7x2 −9x+3 as p=[3 -4 0 7 -9 3].
What polynomial q(x) does q=[4 5 -6] represent?
Matlab does not provide a special function for adding or subtracting polynomials other
than using arrays of the same length. Hence you would need to pad out the shorter array
with leading zeros in this circumstance. Note that when poly forms a polynomial with
given roots, it makes the leading coefficient equal to one. A few of these concepts are
illustrated by executing the following M-file. Examine carefully the output.

clear all % file available in M-files folder as file4.m

p=[3 -4 0 7 -9 3]

q=[4 5 -6], qpadded=[0 0 0 4 5 -6];

newp=p+2*qpadded

proots=roots(p)

qroots=roots(q)

p1=poly(proots) % check that p=3*p1, as expected

q1=poly(qroots) % check that q=4*q1, as expected

y=polyval(p,2.31) % evaluate p(2.31)

pder=polyder(p) % check answer is dp/dx

qder=polyder(q) % check answer is dq/dx=8*x+5

pq=conv(p,q) % multiply p(x)*q(x)

[Q,R]=deconv(p,q) % Q=quotient, R=remainder for p/q

Exercise: Add the commands x=linspace(-1.7,2,300); plot(x,polyval(p,x))

to the previous M-file to see a graph of y = p(x) for −1.7 ≤ x ≤ 2.

40

8 The (“Maple”) Symbolic Math Toolbox

In all previous sections of this introduction Matlab has been used as a powerful pro-
grammable graphics calculator. A variable x must have a numerical value (or array values)
before expressions involving x can then be evaluated. For example if you merely enter the
single command sin(x) after the prompt you receive the error message
??? Undefined function or variable ’x’.

However, commands in the Symbolic Math Toolbox enable you to enter formulae such as
sin(2*x), x*exp(x), x^2+3*atan(x), cos(x)^2+sin(x)^2, etc, where x is a symbolic
variable. Each expression can be given a variable name (also symbolic) thereby allow-
ing algebraic, trigonometric and other functional manipulations and simplifications as well
as permitting differential and integral calculus. You will be solving and computing with
mathematical symbols rather than numbers.

The tools in the Symbolic Math Toolbox are built upon the core of the powerful software

program called Maple
�R which is used in many universities in Australia and overseas. For

convenience only in this guide we will refer to the smaller Symbolic Math Toolbox attached
to Matlab as “Maple”. The interface between Matlab and “Maple” is smooth and it is
easy to move in and out of this Symbolic Math Toolbox.

The simplest way to enter “Maple” is to make one or more variables into symbolic symbol(s)
using the syms command. Enter the following and examine the output:

syms x

y=x^2-5/x % y is automatically another symbolic variable

z=y*x-8 % z is automatically another symbolic variable

You notice that no attempt has yet been made to simplify z. Add the command
z=simplify(z).

Note that in earlier versions of Matlab the first two lines above were equivalent to the
single command y=’x^2-5/x’. This notation for constructing a symbolic expression
using single quotation marks is still valid in many parts of “Maple” although it is being
phased out because Matlab already uses single quotation marks in other situations. Often
in the “Maple” help menu you will still see the single quotation formulation but it is
recommended you ignore it wherever possible to avoid confusion.
Numbers can be held in various possible formats in “Maple”. The default format is an
integer or rational fraction. If this is not possible, a real number will be approximated

41

by a fraction of large integers. The sym function converts the argument into a symbolic
expression in “Maple”. Conversely, the double function converts a symbolic number back
into a double-precision value in Matlab . In each of the following cases the symbolic
expression in the middle column results from the corresponding sym command, while the
last column results if you then apply the double(...) command to each symbolic value
in the middle column:

sym(11/13) 11/13 0.8462

sym(3.85) 77/20 3.8500

sym(pi) pi 3.1416

sym((4/5)^2) 16/25 0.6400

sym(sqrt(49)) 7 7

sym(sqrt(51)) sqrt(51) 7.1414

sym(exp(1)) 6121026514868073*2^(-51) 2.7183

sym(sin(1)) 7579296827247854*2^(-53) 0.8415

Alternative formats can be viewed by entering help sym.

Exercise: What do you expect to result if you enter the following?

syms x

y=x+1.4*sqrt(x+3)+5.49

pretty(y) % output to look like type-set mathematics

8.1 Algebraic operations

A selection of commands in “Maple”:

simplify performs algebraic and other functional simplifications

simple tries a number of simplification techniques including

trigonometric identities; may need using twice

collect collects like terms

factor attempts to factor the expression

expand expands all terms

poly2sym converts array of polynomial coefficients in \mat into

a symbolic expression in ‘‘Maple" with x as the variable

sym2poly converts symbolic polynomial in ‘‘Maple" into coefficient

array in MATLAB

At the simplest level, enter factor(28809).

42

Example 1: Suppose p(x) = x2(x + 4)2 − 8x(x + 1)2 + 13x − 6. Expand and factor in
“Maple”, convert into an equivalent Matlab array, find the roots numerically, re-assemble
the polynomial coefficients from the roots and then change back into a symbolic form.

clear all % file available in M-files folder as file5.m

syms x

p=x^2*(x+4)^2-8*x*(x+1)^2+13*x-6;

p=expand(p)

p=factor(p)

P=sym2poly(p) % change into MATLAB array P

polyroots=roots(P) % numerically find roots in \mat

Q=poly(polyroots) % re-assemble polynomial from its roots

q=poly2sym(Q) % change back to Maple expression

You will notice that the coefficients of x3 and x2 in q(x) are not exactly zero but are
infinitesimally small due to tiny round-off errors introduced when numerically solving for
the roots in Matlab .

Example 2: Using trigonometric identities you should be able to show that

sin x

cos x − sin x
+

sin x

cos x + sin x
is equivalent to tan 2x.

Use simple in “Maple” to check this.

clear all % file available in M-files folder as file6.m

syms x

y=sin(x)/(cos(x)-sin(x))+sin(x)/(cos(x)+sin(x));

pretty(y)

y=simple(y)

8.2 Solving symbolic equations

You have seen that fzero numerically finds where a function is zero in Matlab .
“Maple” uses the solve facility which can solve n simultaneous algebraic or transcen-
dental equations for n unknowns. It firstly attempts to find an exact analytic solution. If
this is not possible, it then attempts to find a numeric solution in variable precision format.

The command is of the form [a1,a2,...,an]=solve(f1,f2,...,fn,v1,v2,...,vn).

43

Here, f1,f2,...,fn are symbolic expressions that are to be made zero,
v1,v2,...,vn are the variables in alphabetical order to be solved for,
and a1,a2,...,an are the corresponding answers.

8.2.1 Solving a single equation

To solve a single equation f(x) = 0, this reduces to a=solve(f,x).

Of course there might be more than one solution for a.
What happens if you do not specify the variable for which the equation is to be solved?

If there is only one symbolic variable in the expression, it will solve for it by default.
Otherwise x is the default variable. If there are two or more symbolic variables, none of
which is x, and you forget to specify the one for which the solution is required, it appears
to choose the last alphabetical one.

Example 1: Solve the equation
10

x2 + 1
= 4 − x. This is equivalent to solving

10

x2 + 1
− 4 + x = 0. There are various ways:

clear all

syms x

f=10/(x^2+1)-4+x; % f is now a symbolic expression

soln=solve(f,x) % note the three solutions

or, knowing that x is the default variable,

clear all

syms x

soln=solve(10/(x^2+1)-4+x) % no need to use f or specify x

In earlier versions of Matlab , you could use

clear all

soln=solve(’10/(x^2+1)=4-x’)

but this is being phased out.

Exercise: Change to 10/(x^2+1)+2+x=0 and solve again.

44

Example 2: Solve the general quadratic equation ax2 + bx + c = 0 for x.

clear all

syms a b c x

soln=solve(a*x^2+b*x+c)

giving the output soln=[1/2/a*(-b+(b^2-4*a*c)^(1/2))]
[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

However, if for some reason you wanted to solve the same equation for b, you would need

clear all

syms a b c x

soln=solve(a*x^2+b*x+c,b)

giving the ouput soln=-(a*x^2+c)/x.

Example 3: We know sin θ = 0.5 has an infinite number of solutions. Enter

clear all

syms theta

angle=solve(sin(theta)-0.5)

giving the output angle=1/6*pi.

Example 4: Unlike Example 3, the equation sin θ = 0.5 − cos θ, −π ≤ θ ≤ π, does
not have obvious solutions. But “Maple” can find two solutions exactly. The answers are
hardly in a form that you would use and so it is better to convert them into numeric values.

clear all

syms theta

angle=solve(sin(theta)-0.5+cos(theta)) % hardly usable

angle=double(angle) % looks better in MATLAB

giving the output angle=[atan((1/4-1/4*7^(1/2))/(1/4+1/4*7^(1/2)))]
[atan((1/4+1/4*7^(1/2))/(1/4-1/4*7^(1/2)))+pi]

angle=-0.4240

1.9948

45

Example 5: By means of a simple sketch you can see that ex = 4− x2 has two solutions.
However, there is no analytic way to find them. Enter

clear all

syms x

soln=solve(exp(x)-4+x^2)

giving the output soln=1.0580064010906363086213874461232. This indicates that a
numerical solution process was needed in “Maple”, and the answer is in variable precision
format. If you wish, you can follow with soln=double(soln). Note that only the
solution nearest to zero was found.

8.2.2 Solving simultaneous equations

Find the points of intersection of the two circles 2x2 − x + 2y2 − 8y = 0 and
x2 + 2x + y2 − 6y + 1 = 0.

clear all % file available in M-files folder as file7.m

syms x y

eqn1=2*x^2-x+2*y^2-8*y;

eqn2=x^2+2*x+y^2-6*y+1;

[X,Y]=solve(eqn1,eqn2)

giving the output X = [2] Y = [3]

[-14/41] [3/41]

which implies the two points (x, y) = (2, 3) and (x, y) = (−14

41
,

3

41
).

8.3 Variable substitution and expression evaluation: subs, eval

Suppose you have a symbolic expression f which includes the symbol x and you wish to
substitute for x another symbol c or a numerical value x0. Then you can use the general
subs command g=subs(f,old,new) which in our cases would be g=subs(f,x,c)

or g=subs(f,x,x0). Here old, new can be arrays. The result g is still a symbolic
variable or symbolic constant in “Maple”.

46

Example 1: Consider a function of the two Cartesian coordinates f(x, y) =
2xy

(x2 + y2)2
.

Change to polar coordinates using x = r cos θ, y = r sin θ and then determine the value of
f at an arbitrary point on the unit circle r = 1.

clear all

syms x y r theta

f=2*x*y/(x^2+y^2)^2;

F=subs(f,[x y],[r*cos(theta) r*sin(theta)]);

F=simple(F) % previous answer is messy

f_on_unit_circle=subs(F,r,1)

which gives the output F=sin(2*theta)/r^2

f_on_unit_circle=sin(2*theta)

An alternative is to use the eval command. It is of the form ans=eval(S) where S is
a symbolic expression for which at least one of its symbolic variables has just been given
a value. If all variables are given numerical values, the answer is a number in Matlab ,
not “Maple”.

Example 2: Let us compare simple Matlab and “Maple” codes which both evaluate the
expression y = (x3 + 2) sec x at x = 0.123.

Matlab code Maple code using subs Maple code using eval
clear all clear all clear all

x=0.123; syms x syms x

y=(x^3+2)*sec(x) S=(x^3+2)*sec(x); S=(x^3+2)*sec(x);

y=subs(S,x,0.123) x=0.123;

y=double(y) y=eval(S)

Example 3: Reconsider Example 1 at the top of the page. Change the last line to the
corresponding two lines in the following M-file:

clear all

syms x y r theta

f=2*x*y/(x^2+y^2)^2;

F=subs(f,[x y],[r*cos(theta) r*sin(theta)]);

F=simple(F)

r=1;

f_on_unit_circle=eval(F)

47

8.4 ezplot

If S is s symbolic expression, then ezplot(S,[a b]) graphs the function y = S(x)
(or y = S(t)) over the domain a ≤ x ≤ b. If [a b] is omitted, the default domain is
−2π ≤ x ≤ 2π. Also, if no title command is used, the default title is the expression S.
Of course you are not using arrays and so the dot notation is not applicable.

Example: In “Maple”, plot the function y =
sin 2x

ln(x2 + x + π)
for −10 ≤ x ≤ 10.

clear all % file available in M-files folder as file8.m

syms x

y=sin(2*x)/log(x^2+x+pi);

ezplot(y,[-10 10]) % notice title

hold on

plot([-10 10],[0 0],’k’) % plot x-axis

hold off

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

sin(2*x)/log(x^2+x+pi)

8.5 Differential and integral calculus

Although there are many other commands that will be needed in later semesters of your
degree program, we will restrict the discussion to diff and int in this introduc-
tion. The default variable is x; otherwise it is t; but if you wish to differentiate or integrate
with respect to some other symbol, say v, it must be specified.

48

Suppose S is a symbolic expression involving the symbolic variable v (and perhaps other
symbols). Then

• diff(S,v) represents
dS

dv

• diff(S,v,n) represents
dnS

dvn

• int(S,v) represents the indefinite integral
∫

S(v) dv (without the “+c”)

• int(S,v,a,b) represents the definite integral
∫ b

a
S(v) dv

Example 1: Let G(x) = e−x cos x. Find G′(x), G′′(x) and
∫

G(x) dx, giving answers in
factored form.

clear all % file available in M-files folder as file9.m

syms x % use (first) default variable

G=exp(-x)*cos(x)

dG=diff(G); % diff(G,x) is the same

dG=factor(dG)

d2G=diff(G,2); % diff(dG) gives same result

d2G=factor(d2G)

intG=int(G); % int(G,x) is the same

intG=factor(intG)

giving the results G = exp(-x)*cos(x)

dG = -exp(-x)*(cos(x)+sin(x))

d2G = 2*exp(-x)*sin(x)

intG = -1/2*exp(-x)*(cos(x)-sin(x))

Example 2: Evaluate

∫ a

−a

1

t2 + 1
dt and

∫ ∞

−∞

1

t2 + 1
dt.

Note that the Matlab /“Maple” equivalent of ∞ is inf.

clear all

syms t a % use (second) default variable t

ans1=int(1/(t^2+1),-a,a) % gives ans1 = 2*atan(a)

ans2=int(1/(t^2+1),-inf,inf) % gives ans2 = pi

49

Example 3: There is no explicit expression for

∫
sin v

v + ev
dv because this antiderivative

does not exist. Nevertheless the definite integral

∫ π

0

sin v

v + ev
dv can be evaluated numerically

by introducing the double command as described previously.

clear all % file available in M-files folder as file10.m

syms v % not a default variable

S=sin(v)/(v+exp(v));

intS=int(S,v) % Note: no antiderivative exists!

defint=double(int(S,v,0,pi))

which produces the following output:

Warning: Explicit integral could not be found.

> In c:\\mat\toolbox\symbolic\@sym\int.m at line 58

In c:\\mat\bin\file10.m at line 4

intS = int(sin(v)/(v+exp(v)),v)

Warning: Explicit integral could not be found.

> In c:\\mat\toolbox\symbolic\@sym\int.m at line 58

In c:\\mat\bin\file10.m at line 5

defint = 0.3993

9 Matrices and Vectors

Each array that was discussed in Section 4 was, in effect, a row vector or row matrix.
But you are aware that a rectangular array represents a matrix and a single array column
represents a column vector.

To construct a matrix with m rows and n columns (called an “m by n matrix”, written
m×n matrix), each row in the array ends with a semicolon. For example, run the following
M-file mat.m:

A=[3 -5 1;-2 0 -4;6 7 9]

B=rand(3,3)

C=[1 -3;-1 5;2 8]

50

The element A(i,j) is in the ith row and jth column. Hence, after the prompt, enter
a23=A(2,3), b31=B(3,1), c12=C(1,2). The comma separates the row number(s)
from the column number(s).

What is A(3,[2 3]), B([1:2:3],[1:2:3])?

A single colon “:” before the comma means “take all rows”, whereas a single colon after
the comma means “take all columns”. Hence A(:,2) is column number 2 in the matrix
A while B(1,:) is the first row of B.

Providing matrices have the same shape they can be added or subtracted. Providing
they have compatible shapes they can be multiplied using the established rules for matrix
multiplication. Hence calculate after the prompt D=2*A-B, F=A*B, G=A*C, Asq=A^2.
However, B+C and C*A produce error messages.

Note: A.^2 does not square the matrix but squares each element in the ma-
trix. Similarly, A.*B is not matrix multiplication but merely multiplies the
corresponding positions in the two matrices.

det(A) is the determinant of A, written |A|.

A′ is the transpose of A and is written in mathematics as AT. It is formed by inter-
changing the rows and columns. Hence, if you need to input the column vector

v =

⎛
⎜⎜⎜⎝

v1

v2
...

vn

⎞
⎟⎟⎟⎠

you could enter v=[v1;v2;...;vn] or v=[v1 v2 ...vn]′.

The magnitude or Euclidean norm of the vector v, given by

||v|| =
√

v2
1 + v2

2 + . . . + v2
n ,

is represented in Matlab by norm(v).

51

If A is a square matrix with |A| �= 0, then inv(A) represents the inverse of A, denoted
in mathematics by A−1.

The n × n identity matrix I is represented in Matlab by eye(n). For the matrix A

at the beginning of this section, verify that A*inv(A)=inv(A)*A=eye(3).

10 Other Useful Commands and Examples

Previous students have found other commands useful and have suggested they be included
in this introduction. Also included are examples that further illustrate efficient usages of
commands already discussed.

10.1 global

Often a variable (which could be a scalar variable, or an array, or a symbolic variable
representing a mathematical expression) has been determined in one M-file and might also
be needed in another M-file, for example a function M-file. However, it might not be
practical or possible to pass it across as an input variable to the function. Two M-files can
share a common Matlab workspace for a variable var if the command

global var

occurs in both M-files before it is defined or used in either.

10.2 Finding limits in “Maple”

Suppose you need to find

lim
x→1

2x − 2

2x − 2

for which both the numerator and denominator tend to zero. This is an example of an
indeterminate form of which many others will be investigated in later mathematics using
L’Hôpital’s Rule. One method is to find the limit graphically. Enter:

clear all

syms x

f=(2^x-2)/(2*x-2);

ezplot(f,0.95,1.05)

zoom on

52

You might notice a small hole in the graph at x = 1 because the expression is undefined
there. However, by zooming in, you see that the function is tending towards a value 0.6931
as x → 1. Do you recognise this value? To obtain an exact answer, use the “Maple”s limit
command. Add to the above M-file the extra command lim=limit(f,x,1) to obtain
the answer lim = log(2) (which is ln 2).

Exercise 1: Change the previous M-file to demonstrate that lim
x→0

sin x

x
= 1, both graphi-

cally and using limit.

Exercise 2: Change the previous M-file to find

lim
x→0.25

(tan πx)tan 2πx (clearly undefined at x = 0.25)

to obtain 0.3679 graphically and 1/e using limit.

10.3 Function calculator: funtool

The command funtool opens an interactive graphical function calculator that uses
mouse clicks to perform operations on symbolic expressions. It can simultaneously ma-
nipulate and graph (in two separate windows) two functions f(x) and g(x) and allows
constant horizontal shifts. A third window controls the calculator, and contains the sym-
bolic functions f and g, the chosen domain of these functions, and a constant value a .
Below this are four rows of buttons that enable you to combine and operate on f and g in
a variety of ways as well as controls for the calculator itself.
Try funtool when you have some time to help visualise how functions behave and interact.

10.4 diff commands in Matlab and “Maple”

You should have discovered that the diff command has a different meaning in Matlab
compared to “Maple”. In Matlab diff(vec) finds the differences between elements
in the array vec. In “Maple”, if S is a symbolic expression, diff(S) finds its derivative.

However, you know that

df

dx
= lim

h→0

f(x + h) − f(x)

h
.

Hence, if the differences are divided by a tiny step-size they should be crude approximations
to the derivative.

53

10.5 Finding the maximum value of a function

You are aware that the Matlab commands max, min find the maximum and minimum
elements in an array (and their locations) while fminbnd helps to find the minimum value
of a function defined in a function M-file. Seeing there is no such command as fmaxbnd,
how can we print out the maximum value of a function f(x), for a ≤ x ≤ b, without using
the zoom on facility? For example, find the x and y coordinates of the maximum turning
point of y = xe−x cos x, 0 ≤ x ≤ π.

Using Matlab
The value of x where f(x) has a maximum is the same as the value where −f(x) is a
minimum. Hence, set up the function M-file negf.m

function y=negf(x)

y= - x*exp(-x)*cos(x);

and run the following M-file

clear all

[temp1,temp2]=fminbnd(@negf,0,pi);

xmax=temp1, ymax= -temp2 % gives xmax=0.5959, ymax=0.2718

Using “Maple”
Solve for where the derivative is zero and then substitute back into y = f(x). However, be

aware that there might be other (real or complex) solutions to the equation
df

dx
= 0.

clear all

syms x

f=x*exp(-x)*cos(x);

xmax=double(solve(diff(f))) % gives xmax=0.5959

x=xmax;

ymax=eval(f) % gives ymax=0.2718

54

11 Trouble Shooting

In previous years students have experienced various problems. We have collected some
“frequently asked questions” with answers in the hope it will save you some time.

Question: I tried to execute my M-file proj.m using >> proj but received
??? Undefined function or variable ’proj’.

or
I tried to use my function proj(x) held in proj.m but received
??? Can not find function ’proj’.

Error in ==> c:\\mat\toolbox\\mat\specgraph\fplot.m

On line 85 ==> x = xmin; y = feval(fun,x);

Reason: You are not working in the same directory where the M-file proj.m is held.
Answer: Change directory or save the M-file into the correct directory (see Page 8).
**

Question: I attempted to evaluate an elementary Matlab function such as mod(101,7)
(or another Matlab function) but received the following message
??? ??? Error using ==> mod

Too many input arguments.

I then asked for help using help mod and received
No help comments found in mod.m.

Reason: Both responses indicate that you have inadvertently named one of your
own M-files mod.m previously. It has taken precedence over Matlab ’s
inbuilt function.

Answer: Change the name of your own M-file to one that does not exist in Matlab .
**

Question: Why do I receive one of the following error messages, or similar?
??? Error using ==> .*

Matrix dimensions must agree.

or
??? Error using ==> plot

Vectors must be the same lengths.

Reason: When doing a calculation involving two arrays, or graphing using the plot

command, the arrays must be of the same size.
Answer: Check the size of each array involved.
**

Question: Why did I not get any numbers printed on the screen?
Reason: Semicolons at the end of a Matlab assignment statement prevent answers

being displayed.
Answer: Leave off semicolons where you want numbers to be shown in the output.

55

Question: Why did I get thousands of numbers printed on the screen?
Reason: Semicolons at the end of a Matlab assignment statement prevent answers

being displayed.
Answer: Place semicolons where you do not want numbers to be shown in the output.
**

Question: Why do I continually get the following error message?
??? Error using ==> ^

Matrix must be square.

or
??? Error using ==> *

Inner matrix dimensions must agree.

Reason: You have asked for something like x^2 or f(x)*g(x) where x is currently an
array. It is only possible to square an array x or multiply f(x)*g(x) if x is a
square matrix.

Answer: If you think x is a scalar variable, it is possible that you were also using the
same symbol to represent an array and forgot to clear it. But more likely x is
an array and you should be using the dot notation x.^2 or f(x).*g(x). The
location might be in a script M-file or, more obscurely, in a function M-file
where you did not allow for later array evaluations.

**

Question: Why are parts of my graphical figures missing?
Reason: You have probably lost graphs or graphical components.
Answer: Make sure each figure is numbered. Within a figure, use the hold on

. . . hold off facility to avoid losing command outcomes.
**

Question: When I access a function M-file, either by doing an evaluation after the >>

prompt or else calling from another M-file, why do I get no answer back or else
receive the empty answer: [] ?

Reason: Although the first line in your function M-file was of the form
function y=fred(x)

you have not assigned any value to y during the file.
Answer: Make sure output variables are given values in function M-files.
**

Question: When using solve on a transcendental equation in “Maple”, why do I get
complex solutions, or else a real solution which is not the one I want?
Reason: Consider, for example, the equation xex + x3 − 2 = 0. Using syms x ,

ans=solve(x*exp(x)+x^3-2) yields a complex solution only.
Answer: Use fzero in Matlab instead. If the function has been defined in func.m,

then ans=fzero(@func,[0 1]) yields ans=0.7482 which is probably the
solution you were seeking within the specified interval.

56

Index

>> prompt, 7
array subscripts, 21
arrays, 19,55
axis, 27
change directory, 9,55
clear, 12
collect, 42
comments using %, 12
det, 51
diff, 22,49,53,54

differences, 22,53
differentiate, 49,53,54

dot notation, 23,56
double, 42,46,54
eval, 47
expand, 42
eye(n), 52
ezplot, 48
factor, 42
figure, 26,29,56
find, 22,25
fminbnd, 38,39,54
for, 30,31
format, 15
fplot, 38,39
fprintf, 18
funtool, 53
fzero, 38,39,56
global, 52
help, 8,27
hold on & hold off, 76,28,56
identity matrix, 52
if, 33
inf (∞),49
input, 33
int, 49
inv, 51
legend, 27
length, 22,25
limit, 53

linspace, 20,35
load file from disk, 10
logging on and off, 6,7
lookfor, 28
“Maple”, 41
max, 22,25
M-files, 15,34,36,55,56

script M-files, 15
function M-files, 34,36,56

min, 22
norm, 51
plot, 25,26
poly, 40
poly2sym, 42
polyder, 40
polynomials, 40
polyval, 40
pretty, 42
print, 27
prod, 22
quadL, 35,38,39
random number, 14
roots, 40
save file to disk, 9,16,55
semicolon ;, 12,50,55,56
simple, 42
simplify, 42
solve, 43,44,46,54,56
sort, 22
subs, 46,47
sum, 22,24
sym, 42
sym2poly, 42
Symbolic Math Toolbox, 41
syms, 41
title, 27
transpose, 51
variable names, 11
while, 32
zoom on, 28,52

57

“Getting Started with Matlab ”: Copyright 1994-2001 The MathWorks, Inc.

58

“Getting Started with Matlab ”: Copyright 1994-2001 The MathWorks, Inc.

59

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

