

MATHEMATICAL METHODS FOR ENGINEERS 1 (MATH 1063)

CALCULUS 1 (MATH 1054)

MATLAB Practicals

Kuva Jacobs and Yuliya Tugai

School of Information Technology & Mathematical Sciences

University of South Australia

February 2008, February 2013 (revised)

Table of Contents

Practical 1: Introduction to MATLAB ……………………………………………….. 1

Practical 2: Variables, Script M-Files and Graphing ………………………….….. 7

Practical 3: Arrays ..…………………………………………………………………… 13

Practical 4: For- and While-Loops, If-Statements ………………………….. 19

Practical 5: Function and Script M-Files …………………………………………… 27

Practical 6: Polynomial Functions and Symbolic Toolbox ……………………….. 35

Practical 7: Symbolic Toolbox (Cont’d) …………………………………………..... 41

Appendix A : MATLAB Layout Overview …………………………………………… 47

Appendix B : Summary of Tables ………...…………………………………………. 51

 i

 ii

 MME 1 & Calculus 1 – MATLAB Practical 1

Practical 1: Introduction to MATLAB
Aim of this Practical
1. Get a general understanding of the purpose of MATLAB.
2. Understand the MATLAB Workspace
 a) start up MATLAB
 b) type commands in main window

 c) change current directory
3. Use MATLAB as a calculator
 a) perform some arithmetic calculations
 b) understand the importance of operators, and functions
 c) use MATLAB’s help files
 d) use functions like , xsin xcos , or to solve problems || x

Working Through This Practical
 - Go through this practical at your own pace. It explains the environment in
 more detail than the following practicals.
 - Do each exercise or activity in the shaded areas.
 - Ask your practical supervisor if you have any questions or need advice.
 - MATLAB code will always be denoted by the courier font.
 - If you don’t finish during the scheduled practical time, it is your
 responsibility to finish it before your practical next week.
 - An arrow > at the start of the line in an exercise indicates an activity for you
 to complete.

What is MATLAB?
MATLAB is a powerful mathematical software package used by both engineers and
mathematicians in the workplace. The name stands for MATrix LABoratory.
Originally designed for manipulating matrices, MATLAB is great for many different
mathematical tasks.

Why do I have to learn MATLAB?
Some good reasons for learning MATLAB include
 - It will allow you to check your assignment/homework calculations
 - You will gain a better insight into mathematical functions through complex
 graphing that can’t easily be done by hand
 - You can quickly find solutions to problems that take a long time by hand
 (like finding the determinant of a 5x5 matrix)
 - Later, you will be able to find approximate numerical solutions to problems
 that can’t be solved by hand (like complicated integrals)

Getting Started in MATLAB
Availability: MATLAB is available in the following PC Labs at Mawson Lakes :
A2-23, GP1-06, F1-13, F1-15, F1-17, P1-12, P1-13, P1-15, MLAV, MLAV03.
It is not available in the barns.
For further availability check http://w3.unisa.edu.au/ists/students/pools/default.asp
under software and hardware search. You will need to type MATLAB in Software
search box. You can also check the current PC availability under find a computer
available for use.

 1

http://w3.unisa.edu.au/ists/students/pools/default.asp

 MME 1 & Calculus 1 – MATLAB Practical 1

Activity 1 Opening MATLAB
>Locate the folder on your desktop with format “<room name> Applications”, for
example “GP1-06 Applications”, and open it to find the MATLAB folder and icon.
Double click on the icon to launch MATLAB. You should now see the MATLAB
desktop layout as shown below.

The MATLAB Desktop Layout (please refer to Appendix A for details)
The MATLAB layout is divided into 4 windows (white area):
 a) Command Window (centre), where you will type in all commands after the
 double arrow “>>”
 b) Command History (bottom right), showing a history of commands in the
 order you typed them.
 c) Workspace (top right), which will show your current variables. We will come
 back to this when we introduce variables.
 d) Current Folder (left) has a toolbar with your current directory shown. All
 your work will be saved in this directory.

At the top of the screen in the grey coloured area you will see tabs Home, Plots and
Apps. When you start MATLAB it shows all menu items (modes) in Home tab
grouped by their function. At the bottom of grey coloured area you will see names of
the functional groups for a particular tab.

Activity 2 Understanding the Desktop Layout
> Change your MATLAB Current Folder to your “My Documents” folder or to a
folder on your USB drive. The folder you choose will be where your MATLAB
documents are saved.

 2

 MME 1 & Calculus 1 – MATLAB Practical 1

> To understand better the purpose of the three windows, type in the simple command
 3+5 in the Command Window and press enter.
> What happened in the Command, Command History and Workspace Windows?

MATLAB as a Calculator
MATLAB can be used as a powerful calculator. The following exercises demonstrate
the order in which MATLAB evaluates expressions.

Exercise: Calculations in MATLAB
The following commands illustrate the order of priority when evaluating expressions.
> Before typing each command into your Command Window, think about what you
expect the answer to be.
> If the output differs from your expected answer, figure out why.
> Type in the following commands, pressing Enter after each one.

5*2+3
3+5*2

> What if instead, we want to add 3 to 5 and then multiply the result by 2? We can use
brackets to change the order of evaluation as MATLAB will evaluate the contents of
each bracket pair first.
> Type in the following line of code:

 (3+5)*2
 Coding tip: Many students have troubles matching bracket pairs. Experienced

MATLAB users reduce these errors by
 1. typing both brackets (),
 2. then using the back arrow key ← to move back and fill in the bracket contents
(3+5).
> The following code is not valid. Type it in, press Enter, then read the error message
and change the code so that it works (note the vertical line pointing to the first error).
 2(3-5)

 Coding Tip: The up-arrow key ↑ on the keyboard will recall a previous line for you
to edit.
> Type in the following lines to figure out what the hat ^ key represents.

3^2
3^3

> Figure out the answers you would expect for the following two lines of code and
then type them in to verify your answer.

9-3^2
81/3^2

As we have just seen, the simplest mathematical operators are represented by the
following symbols.

Symbol Operator Order of Priority
^ Raise to a power 1 evaluated first
* Multiplication 2
/ Division 2

evaluated after any powers

+ Addition 3
- Subtraction 3

evaluated after any powers, multiplication and
division.

 3

 MME 1 & Calculus 1 – MATLAB Practical 1

Order of Evaluation

Operator Order of Priority
 - The power operator has the highest order of priority.
 - Multiplication and division both have equal 2nd order of priority.
 - Addition and subtraction both have equal 3rd order of priority.
‘Left-to-right’ rule
 Expressions are evaluated from left to right: the leftmost operation is performed
first and the rightmost operation is performed last. However, note that the
operator order of priority supersedes the above left-to-right rule.

Brackets
Round brackets, (), can be used to change the order of operations: any expression
enclosed in brackets will be calculated first

Exercise: Exploring the Effect of Brackets
> Type the following arithmetic expressions in the Command Window.
> Mentally calculate the answers before pressing the Enter key.
 (8+6)/(10-2^3)
 8+6/(10-2^3)
 8+6/10-2^3

 Coding Tip: The up-arrow on the keyboard will recall a previous line for you to
edit.

Exercise: Minimising Required Brackets
The following expressions both have a value of 12.
> Type in the equivalent MATLAB expressions to obtain the correct answer using as
few pairs of brackets as possible.

4/33/2

17

 (needs 1 pair of brackets)

)35(2

19
5

2/3

 (needs 3 or 4 pairs of brackets)

 4

 MME 1 & Calculus 1 – MATLAB Practical 1

Elementary Mathematical Functions

MATLAB has a number of built-in functions, such as square root, sine, cosine,
exponential, etc, functions. The following table gives a list of some commonly used
functions. Later you will also write your own functions.

round(x) Rounds x to nearest integer
floor(x) Rounds x down to nearest integer
ceil(x) Rounds x up to nearest integer
rem(y,x) Remainder after dividing byy x (eg remainder of 17/3 is 2)
sign(x) Returns 1 if 0x ; returns if 0 0x ; returns 1 if 0x
rand or rand(1) Generates a random number between 0 and 1
exp(x) Exponential function, xe
log(x) Natural logarithm function, xy ln (where) xe y
sqrt(x) Square root function, x
abs(x) Absolute value function, x

sin(x) Sine function, xsin
cos(x) Cosine function, xcos
tan(x) Tangent function, xtan

Exercise: Using Mathematical Functions
> Let x = 1.2. Verify that the following expressions have the values shown, by typing
in the correct MATLAB commands.
Mathematical
Expression

Answer MATLAB command/Tips

2

2

1

2

1 x
e

0.1942

1/sqrt(2*pi)*exp(-0.5*1.2^2)

x

x

3sin

4cos53

3.8866

(5+cos(4*1.2))^(1/3)/abs(sin(3*1.2))

 x2sin 0.3455 Sets of brackets required: 1

12

sin

x

e x

1.6259

Sets of brackets required: 3

 21ln
2

1
arctan xxx

0.6053

Note: you will need to look up the arctangent
function in the MATLAB help files (click on Help at
the top menu). Sets of brackets required: 3

Exercise: Kiwi Change
You go to the supermarket only to find you left your wallet at home. After hunting on
the floor of your rather messy car, you find 95c and decide to buy some kiwi fruit,
which are 35c each.
> Use the floor and rem functions to find out the answers to the following
questions:
How many kiwi fruit can you buy?
How much change do you have left?

 5

 MME 1 & Calculus 1 – MATLAB Practical 1

 6

MATLAB/Coding Terms you should become familiar with
Command, Command Window, Command History, Workspace, Current
Directory/Folder, Evaluate, Line of Code, Operator, Operation, Order of Evaluation,
Order of Priority, Elementary Mathematical Functions, Expression
To Hand Up:
Solutions for Kiwi Exercise

 MME 1 & Calculus 1 – MATLAB Practical 2

Practical 2: Variables, Script M-files and Graphing
Aims of Practical
1. Understand the purpose of variables and how to create variables.
2. Write a script M-File (a list of MATLAB commands, saved in a file) with an
 emphasis on using appropriate comments.
3. Learn how to plot a graph.
 a) Plot a graph of a straight line with fixed start and end points.
 b) Plot a graph of a straight line with variable start and end points.
 c) Plot a graph with two lines.
 d) Use key plotting options including setting the title and axis.

Naming of Numerical Values in MATLAB
Why would we want to name numerical values? Here is one example: Consider the
polynomial function to be calculated for x = 3. We could do so by 342 xxy
typing in the following:
 3^2 + 4*3 + 3
but what if we also want to know the answer when x = 7 and x = 5? Wouldn’t it be
easier to create a name for 3 called x as follows:
 x = 3
and then evaluate our polynomial function by typing in:
 x^2 + 4x + 3
x is what we call a variable.

Exercise: Using Variables
> Type in the above lines to set the value of x equal to 3 and then evaluate the value
of the polynomial y.

Warning: The above code contains an error that is commonly made by learners.
> What is the error?
> Change the value of x to evaluate the polynomial for x = 5 and 7. You will need to
re-run the command to solve the polynomial each time you update x.

 Coding Reminder: The up-arrow on the keyboard will recall a previous line for
you to edit.

Variables
Variables must be assigned values in the following format before they can be used in
an expression.
 <variable name> = <valid expression>

 Tip: Angular brackets <> will be used to represent something generic that will be
replaced in a specific example.

What this statement means is that the left hand side of an equals sign is always a
variable name, say, x. The right hand side is an expression representing a new
value to be assigned to that variable.

 7

 MME 1 & Calculus 1 – MATLAB Practical 2

 8

Exercise:
> Type in the following examples exactly as written to see what is a <valid
expression> and <variable name>.

> Check what happens in your Workspace Window when you create and update your
variables
 x=1+4 Valid? Y/N Reason (if invalid)_______________________

 x=1+2+…+10 Valid? Y/N Reason (if invalid)_______________________

 x+1=7 Valid? Y/N Reason (if invalid)_______________________

 x=2(6) Valid? Y/N Reason (if invalid)_______________________

 bigX=x+1 Valid? Y/N Reason (if invalid)_______________________

 x=newX+1 Valid? Y/N Reason (if invalid)_______________________

 x=x+1 Valid? Y/N Reason (if invalid)_______________________

The last example shows an important concept: a variable can refer to itself to be
given a new value. How would the last example work in the computer?

 Computer performs the
 following steps:

1. Calculate the right-hand
side, 4*2=8, and stores the
result, 8, in computer’s
memory;

2. Allocate memory for
variable y;

3. Assign value 8 to
variable y: y:=8

Command:
y=4*2

Output:
y=8

 Computer performs the
 following steps:

1. Calculate the right-hand
side, by taking last value, 8,
stored in y, and adding 1 to
it. Place the result, 9, in
memory;

2. Assign value 9 to
variable y, by overwriting
previous value: y:=9

Output:
y=9

Command:
y=y+1

 MME 1 & Calculus 1 – MATLAB Practical 2

Naming Variables
It is a good programming practice to give your variables meaningful names, so that you
and other people can read your code easily.

Exercise
A love-struck engineer specialising in planning the foundations of a building wrote the
following code to calculate the area of a rectangle.
> Determine what each variable represents and then rename the variables to write the new
code in MATLAB with meaningful variable names.

dinner = 4
nice = 7
roses = dinner*nice

Some important rules for variable names are:
 1. They are case sensitive: nice, NICE,NiCe and NicE are all different.
 2. They can have a length of up to 31 characters Pachycephalosaurus
 is a valid variable name (although it is quite frustrating to type).
 3. They must start with a letter, followed by any combination of letters,
 numbers and underscores. For example, week1, week1_prac,
 MATLAB_prac_1_is_fun,x are all valid variable names.
 4. There are some reserved words that can’t be used as a variable name, i.e.
 help, pi, sin, pretty, etc.
 5. clear statements are used to delete the values of previous variables.
 clear all deletes all values, whereas clear <variable name> just
 deletes the variable you nominate. It is a good programming practice to start
 your code with command clear all.

My preferred naming convention is to capitalise the start of each new word, as in
thisIsALongVariable however some people prefer to separate words with
underscores, as in this_is_a_long_variable.

Exercise
> Use MATLAB to evaluate the following functions at the given values of x . Type in the
command clear x beforehand.

5,63 xxf (answer is 3)

 3,3, xx
x

x
g (answers are 1,-1)

2,2 2 xxxh (answer is 6)

 9

 MME 1 & Calculus 1 – MATLAB Practical 2

Comments in MATLAB
When we write a code, it is helpful to add comments to describe or explain the purpose of
one or more lines of code. Conveniently, the symbol % lets us add text that will be read
only by users, not by MATLAB. All characters, letters and words after a percent (%) sign
on a given line are ignored, and not executed.

Exercise
> Type in the following line (including the comment):
 t = 9 % sets time variable equal to 9
> Then add a comment to the next line, which finds the acceleration at time t.
 a = 15*sqrt(t) % <add your comment here>

Comments as good coding practice
Soon, the code you will be able to write will become much more complicated. You will
need to add comments to make it easier for both you and others to read.

Script M-files
A script M-file allows you to place MATLAB commands in a simple text file and then
tell MATLAB to open the file and execute all commands precisely as if you had typed
them at the Command Window prompt.
Script M-files must have file names ending with extension ‘.m’ and must contain only
valid MATLAB code.

Exercise
> Open a new script M-file by clicking on New Script while in Home tab. A new window
will be opened. It has three tabs: Editor, Publish and View. To create, save, run, and edit
your M-file you need to stay in the Editor tab.
> From now on every M-file should start with comment headers that include your name
and student ID as well as a description of the purpose of the code as follows:
 % Practical 2 Graphing exercise
 % <Add your name, student ID and today’s date here>
> Add in the commands:

clear all
 x=2^3

> Save your M-file, for example, as prac2e1.m in your preferred directory and make sure
that the Current Folder in MATLAB is set to the same location.
> Enter command prac2e1 (or whatever name you saved your M-file as) in the
Command Window. It should execute your M-file code. Please, note absence of the file
extension .m

 Coding Tip: When you create M-files, try typing only the first couple of lines of code
and check that the M-file works.

 10

 MME 1 & Calculus 1 – MATLAB Practical 2

 Coding Tip: You can also click on the Run mode or press F5 key while having
MATLAB M-file Editor window open. Your M-file will be saved and executed. To see the
output you will need to return to the Command Window.

Plotting Graphs
There are several ways to plot graphs in MATLAB. We will start by using the plot
command to create a simple straight line graph by providing two sets of coordinates
([x1 x2], [y1 y2]) defining the start and end points, (x1, y1) and (x2, y2), respectively.

Exercise
> Create and run a script M-file called plotMe.m for the following command. Remember
to add your comment headers at the top.

plot([1 3], [2 5])

 Note: The graph will appear in a separate Figure Window named Figure 1 that is
often hidden behind the main MATLAB window. Maximise it on your taskbar if it does
not pop up.
> What does the graph look like? Verify which points of 1, 2, 3, 5 are x-coordinates or y-
coordinates.

Exercise
> Modify your plotMe script M-file to plot the functions 23 xy and over the xz 4
region of by following these steps. 31 x
1. Define the endpoints of x as the two variables x1 & x2.
2. Define the endpoints of y, as the two variables y1 & y2, in terms of x1 & x2.
3. Change the plot command to:
 plot([x1 x2], [y1 y2])
4. Run your file to check that your updated graph is correct.
5. Define the endpoints of z, as the two variables z1 & z2, in terms of x1 & x2.
6. Change the plot command so that both lines are plotted on one graph as
 follows:
 plot([x1 x2], [y1 y2], [x1 x2], [z1 z2])
7. Check that your updated graph is correct.

 11

 MME 1 & Calculus 1 – MATLAB Practical 2

 12

Table of the most useful commands for plotting graphs.

hold on

Allows plotting several graphs on the same
figure. All commands after this one apply
to a current figure, until the hold off
command is used.

plot([x1 x2], [y1 y2]) plots the straight line between points (x1,
y1) and (x2, y2)

axis([minX maxX minY maxY]) specifies axis limits
legend(‘y1=equation1’,
‘y2=equation2’)

sets the labels for the legend (must be after
plot command)

xlabel(‘label for x axis’) sets the label for the x - axis
ylabel(‘label for y axis’) sets the label for the - axis y

title(‘graph title’) sets the label for the title

hold off

Following commands no longer apply to the
current figure.

Exercise:
> Modify your script M-file, plotMe to specify an appropriate axis, legend, labels and
title. Remember to use the hold on and hold off commands.
> Use the help files for the plot command to change the colour of the lines.

 Important: From now on, it is expected that every graph you make will have an
appropriate title and label for both axes.

MATLAB/Coding Terms you should become familiar with
Variable, Script M-file, Comment, Valid.

To Hand Up
Your commented plotMe.m script M-file with the accompanying appropriately labelled
graph.

 MME 1 & Calculus 1- MATLAB Practical 3

Practical 3: Arrays
Aim of this Practical
1. Learn how to create an array, a list of ordered numbers.
 a) understand the advantages of the different ways of creating arrays
 including the standard format and the linspace command.
 b) access specific numbers in arrays using their position.
 c) use array commands to find quantities such as the sum of the
 numbers in the array.
2. Learn how to plot a graph using arrays and the plot command.
3. One-dimensional array operations.
4. Use the cell environment to execute several lines of code in an M-file.

Arrays
An array in MATLAB is a list of objects, e.g. numbers or characters that can easily be
stored and accessed. Each object or element in the array has a fixed position.

Arrays are useful in MATLAB as they allow an operation to be performed on more
than one number using a single command. Arrays are also important for plotting.

Exercise: Creating Arrays
> Try these different ways of creating arrays.
1) Type in the elements of the array one-by-one at the prompt within square brackets.
 Elements should be separated by commas or spaces.
 x1=[2, 5, 13, -1, 0.111, pi]
advantage: easy for small set of numbers, disadvantage: tedious and time consuming
for lots of numbers.

2) Create an array of integers with increment 1 (by default) from smallest to
largest:
 smallest= -3;
 largest= 24;
 x2= [smallest:largest]
 The following is also valid:
 x2= [-3:24]
advantage: fast, especially for many numbers, disadvantage: increment of 1 only.

3) > You can also specify the increment or the step size, h. Check the following
(note you must define smallest and largest first).
 h= 0.06
 x3= [smallest:h:largest]
advantage: allows different increments, disadvantage: one must calculate number of
elements.

4) > You can specify the number of points instead of the step size using the
linspace command.
 points= 20;
 x4= linspace(smallest,largest,points)

 13

 MME 1 & Calculus 1- MATLAB Practical 3

Useful Coding Commands

Ctrl+c (read: control c): command to stop execution of the code at any time. You will
need to press at the same time both ‘Ctrl’ and ’c’ keys on the keyboard
; (called semi-colon): suppresses the appearance of an unnecessary output when
typed at the end of the command line

Exercise: Stopping Calculations
> Type in the following command and see what happens.
 [1:0.0001:1000]

 Press Ctrl + c to stop the calculations!
>Type in the same line again, but this time add a semi-colon at the end.
 [1:0.0001:1000];

Array Subscripts
Subscripts, or indices, are used to refer to elements at a specified location in an array.
In MATLAB, A(i) is the ith element in the array A and i is the index (or position).
You can refer to one or more elements and use these to create new scalar variables or
sub-arrays.

Exercise: Accessing Array Elements
> Type in the following code and decide which commands create scalars and which
arrays.
> Check the output and determine the process by which the elements have been
selected:
 A= linspace(5,100,20)
 A(1)
 A(7)
 A(3:6)
> Now create two new sub-arrays of A as follows:
 a4 = A(1:2:13)
 a5 = A(8:-3:2)
>Recall the elements in the sub-arrays as follows:
 a4(2)
 a5(1:3)

Array Functions
Function Description
sum(Z) adds all elements of array Z
prod(Z) multiplies all elements of array Z
length(Z) returns the length of array Z
[Zmax, i] = max(Z) returns largest element Zmax of Z and its position, i
[Zmin, i] = min(Z) returns smallest element Zmin of Z and its position, i
sort(Z) sorts elements of array Z in ascending order
find(Z>3) finds the indices of elements of array Z larger than 3

 14

 MME 1 & Calculus 1- MATLAB Practical 3

Exercise: Using the Array Functions
>Create a script M-file called arrayFunctions.m to run the following code, starting by
entering comment headers with your name, the date and the purpose of the M-file.
1) Create an array of 23 random numbers between 0 and 200 called randy using

the following command:

 randy = 200*rand(1,23)
2) Find the average of the numbers in randy using the sum and length

commands.
3) Find the largest element and the smallest element in randy and swap them.
4) Sort randy into ascending order. Do you know how to sort it in descending
order?
5) Find the indices of elements in randy which are larger than 100.

Plotting Graphs with Arrays
Last week we introduced some of the basic plotting functionality, including plotting a
straight line and modifying the graph axes, title etc. This week we will look at using
arrays to plot functions.
How does the plot command work? Actually, it draws a straight line segment
between each set of coordinates that you give it. If the line you are trying to draw is a
curve, it will appear smooth by plotting many tiny lines.

Exercise: Graphing with Arrays
> Create a script M-file called plotArray.m for the following code in order to plot a
sine curve between 0 and 2 . Don’t forget to add comment headers.
 clear all
 points = 3
 x = linspace(0,2*pi,points)
 y = sin(x)
 plot(x,y)
> What is wrong with this graph? Change the variable called points to 5 and save
before re-running the code, then increase it to 10, 20, 40, 80, 200. Examine each new
graph and stop when you think that it is acceptable.

The MATLAB Variable Editor
Switch to ‘VARIABLE’ tab to edit your variables/arrays manually. It allows you to
edit your arrays and variables in a spreadsheet environment.

> Press Open icon to choose a variable or an array. Otherwise simply double click on
the name of the variable or an array you wish to edit in your Workspace Window. A
new window named ‘Variables - <name of the variable>’ will be opened. Change any
value and see what happens in the Workspace Window and in the Command Window
which moved below the new window.
> Choose any of your existing arrays. Plot a graph by highlighting the cells that you
wish to plot and then click on the graph button in Plot tab at the top of the grey
coloured area. You can choose from a range of plots by clicking the corresponding
icon.
> To switch off Variable Editor close the window named ‘Variables - <name of the
variable>’.

 15

 MME 1 & Calculus 1- MATLAB Practical 3

One-dimensional Array Operations

MATLAB has a specific array or ‘element-by-element’ multiplication, •*,
designed for one-dimensional arrays, that is also called ‘Hadamard product’ in
mathematics, and uses a dot, •, before multiply sign, *, eg V1•*V2

 • or [1 2 3] •* [0 1 1] = [0 2 3]

4

2

3

12

2

15

3*4

1*2

5*3

3

1

5

*

Exercise: Multiplication with Arrays
> First define A=linspace(0,5,11) and B=linspace(1,6,11), c=4,
and d=-1
> Find out what happens if you run the following equations:
 A*c+d
 A*c+d*B
> What happens if you multiply?
 A*B

Note: MATLAB sends you an error message that ‘Matrix dimensions should agree’.
It means that you forgot to use a dot before the multiplication sign. Matrix
multiplication MATLAB referred to will be taught in further courses.

> Try it again with a dot to perform array multiplication:
 A.*B.
.

Exercise: Multiplication of Arrays and Scalars
> Type in the following commands to find out which one works.
 A*5 A.*5 5*A
 A/5 5/A 5./A
 A^2 2^A 2.^A

Table of Array Multiplication Expressions Involving a Dot Before Operator

A.*B multiplies corresponding elements of A and B
A./B divides corresponding elements of A and B
5./A divides 5 by each element of A
A.^B calculates A(i)^B(i) for every corresponding element in A and B
2.^A finds 2^A(i) for every element of A
A.^3 cubes each element in A

 16

 MME 1 & Calculus 1- MATLAB Practical 3

Debugging exercise
The following exercise use code sections, also known as code cells or cell mode in the
M-file environment to break code into smaller sections. A code section contains lines
of code that you want to evaluate as a group in a MATLAB script, beginning
with two comment characters (%%). You can run each section and find the errors
independently. Such a procedure is called debugging.

> Use the cell mode environment by following these steps (making sure you update
the comment headers first):
1. Open new M-file in the Editor tab.
 You may like to dock the M-file Editor in the Command Window area by
 clicking Dock option in Editor window’ Actions button. In this case you can
 see your code in the Editor window and its execution results below in the
 Command window.
3. Type the code.

Cells or sections are marked by the double percent sign- %% and each cell has been
given a title. You will notice that when you click on a cell, the text is highlighted in
yellow.

4. Click on the first cell and execute it by pressing the Run Section button.
5. Correct and re-run the first cell.
6. Go through each of the following cells and debug it. You can choose a cell
 either by clicking on Advance button or simply by clicking the cursor within
 the cell you want to debug
7. After debugging this exercise, go to Publish tab. Press on Publish button to
 publish your script M-file as an HTML Document.

 You will probably find you have some unnecessary output.

8. Close the output window. Add in semi-colons at the end of lines with
 unwanted output in your M-file before republishing.
Notes on publishing:
Comment lines starting with the double percent %% will be formatted as headers.
Additional comment lines will be treated as text.
MATLAB commands will be formatted as code.
Command Window and graphical output will also be included.
For further information, type in the Search for documentation bar ‘Publish MATLAB
code’.

>Exercise:
%% Practical 3 debugging exercise
% Add your name and student ID here
%

Remember you can suppress output by adding the ;

%% Part 1
% Create an array that contains the cubic roots
% of all elements of array A
clear all
A = [0 1 8 27 64]

 17

 MME 1 & Calculus 1- MATLAB Practical 3

 18

cubic_root = A^(1/3) % **** There is a dot missing here
%-

%% Part 2
% Plot & sum an array containing the series 1/n^2
% for integers from 1 to 100
clear all
x=[1:100]
y=1/x^2 % **** There are two dots missing here
plot(x,y)
sum(y) % The answer should be 1.6350
%--

%% Part 3
% Conjecture that the limit of sin(x)/x = 1 as x -> 0
% by evaluating sin(x)/x for x = 0.1, 0.01,., 0.00000001
% Find the positions where it is 1 for the given precision
clear all
format long % uses 16 digits for each value
x=0.1^[1:8] % **** One dot missing here
y=sin(x)/x % **** One dot missing here
error = 1-x(8)
c=find(y>=error) %finds indices of elements of array that are bigger
 %than defined value of error
plot(x,y)
%-

%% Part 4
% Find out why this code is not working
% Update the value of maxX to make it work properly
clear all
maxX = 9 % change this value
X=[1:2:maxX]
Y=[10:-1:1]
X+Y
%----------
%% Part 5

% Find the sum of the series (n+1)*n^(1/3)
% for n = 1 to 100
% Your answer should be 2.047524258847828e+004
clear all
n_plus_1 = [2:101]
n_cubic_root = [1:100]^(1/3) % **** One dot is missing here
% note that the above line is a shorter version of part 1
sum_of_series = sum(n_plus_1*n_cubic_root) % **** add dot for the
%array multiplication

MATLAB/Coding Terms you should be familiar with
Array, Index, Dot notation, Cell mode, Sections.

To Hand up
Your commented plotArray.m script M-file with the accompanying appropriately
labelled graph.

 MME 1 & Calculus 1- MATLAB Practical 4

Practical 4: For- and While- Loops, If-statements
Aims of Practical
1. Get an overview of command sequence controls- for, while, if-else
2. Create a for- loop to repeatedly execute statements a fixed number of times.
4. Create a while- loop to execute commands as long as a certain condition is

met.
3. Use relational operators:
 a) greater than, less than, equal to, etc.
 b) Boolean operators: and, or, not.
4. Use if-else construction to change the order of execution.
5. Understand the purpose of count variables.
6. Learn how to indent in order to improve readability.
7. Implement a small problem that requires these commands.

Command Sequence Controls
MATLAB offers features to allow you to control the sequencing of commands by
setting conditions. The following table shows the main types

for - loop Executes a set of commands repeatedly by incrementing a

variable by a given step size until the set maximum is reached.

Simple example: For each hour from 1pm to 12pm, print the statement “it is <hour>
o’clock”.

while - loop Executes a set of commands if a condition after while is true.

Simple example: You are asked to count during one minute. In other words, while
chronometer hand have not done a whole circle, keep counting. In this case you do
not know what will be your last number.

if-else
statements

Executes a set of commands once, if a given condition is met,
else- executes a set of commands, if the given condition is not
met.

Simple example: If the hour of the day is 6pm, print the statement “it is dinner-time,
it’s <hour> o’clock”
Else the hour of the day is not 6pm, print the statement “it is not dinner-time, it’s
<hour> o’clock”.

for- loop syntax

for <variable> = <start>:<step>:<finish>

<commands>…..
 ……………..

 end

 19

 MME 1 & Calculus 1- MATLAB Practical 4

while- loop syntax

while <condition>

<commands>…..%executed if condition is true
 ……………..

 end

Example: for-loop versus while - loop

for i = 1:1:10
 i=i+1 %***********

 end

Note: the command ‘for i=1:1:10’ does not create an array.
Note: the command ‘for i=1:1:10’ is equivalent to ‘for i=1:10’.

Now, let’s do the same by using while- loop

i=1; %we need to have a starting point to be able
 to check the condition at the first time
while i<12 % to check is whether i<12 or not

 i=i+1 %this command is the same as in for-loop
 % we should get the next value of i
 end

This way is a bit longer, so if you definitely know how many times you will need to
do some commands, use for –loop. As you will see below, there are some situations,
when using while-loop is the only way to solve the problem.

Example: (from a past MATLAB test)
> Calculate the sum S of elements 12 iai , ,...2,1i , until the sum will exceed
20. Type in the following code and examine the output.

S=0; % Initial assignment for sum to be able to
 % check condition
i=1; % first value for i is 1
while S<20 %condition to check

 S=S+sqrt(2*i-1); % recurrent formula for S
 i=i+1; % next i
 end
 number_of_loops=i-1 % do you know why i-1?
 S % shows the final value

>Exercise: Understanding Looping
Type the above for- loop into MATLAB. How many times will the starred line of
the previous example be executed? What are starting point, increment (step) and
ending point of this loop?
Start: step: end: total number of loops:

 20

 MME 1 & Calculus 1- MATLAB Practical 4

Relational Operators
Symbol Example Meaning of Example

< a<6 true if a is less than 6
<= a<=6 true if a is less than or equal to 6
> a>6 true if a is greater than 6
>= a>=6 true if a is greater than or equal to 6
== a==6 true if a is equal to 6

 (note double equals sign)
~= a~=6 true if a is not equal to 6

Boolean operators
Symbol Definition Example Meaning of Example

& And (a>2) & (a<6) a is greater than 2 and less than 6
| Or (a<2) | (a>6) a is less than 2 or greater than 6
~ Not ~(a==6) a is not equal to 6

Simple if- statements

 if <expression>
 <commands>…%executed only when
 %expression is true

 end

Example:

% This code assigns the value of x to negativeValue
 % only if x is negative

x = 4;
if x<0

 negativeValue = x
end

Exercise: Using Relational Operators
> What is wrong with the following code? Type it in MATLAB to check the error
message.

% This code assigns the value of x to zeroValue only
 % if x is zero

x=4
if x=0

 zeroValue = x
end

> What happens when x equals to zero or x is not zero?

 21

 MME 1 & Calculus 1- MATLAB Practical 4

Complex if-elseif-else-end statements:

if <expression 1>
 <command> % evaluated if expression 1 is true
elseif <expression 2>
 <command> % evaluated if expression 2 is true
elseif expression3
 <command> % evaluated if expression 3 is true
….
else
 <command> % evaluated if none of expressions are
true
end

Example:
% If x is negative, assign value of x to negativeValue
% If x is positive, assign value of x to positiveValue
% If x is zero, assign value of x to zeroValue

x=4
if x<0
 negativeValue = x
elseif x>0
 positiveValue = x
else
 zeroValue = x
end

Exercise: Using if- statements
> Verify that the above code is correct by checking with a positive, negative and zero
value of x. It will be faster to run the code from a script M-file.
> Why we don’t need to check if x is actually zero when assigning it to
zeroValue?

 22

 MME 1 & Calculus 1- MATLAB Practical 4

Counter Variable
Often, loops involve a count or a counter variable that is updated each time the code
within a certain condition is executed.

Exercise :
>Type in the following code and verify the result.

 Tip: Clear the Command Window by going to Edit>Clear Command Window.

% determine the number of elements in allNumbers bigger
% than 100

count = 0 % initialize count
allNumbers = 200*rand(1,10); % array of random numbers
for index = 1:1:10
 if allNumbers(index)>100
 count = count+1; % update count
 end
end
count % print count

Indenting
Note that the above code has indents under each of for and if statement

Indenting makes code more readable, as you can see the logical structure which
becomes especially important when you have several for/if statements in one M-
file. While working on this practical, make sure that you follow this formatting
convention.

>Reconsider the above example without indenting. Which is easier to read?

 Coding Tip: There is an option called Smart Indent, which will indent highlighted
code properly and automatically. See Indent>Smart Indent (the first icon) in the M-
file Editor menu bar.

Example:
% determine the number of elements in allNumbers bigger
% than 100

count = 0;
for index = 1:1:10
 if allNumbers(index)>100

 count = count+1;
 end
end
count

 23

 MME 1 & Calculus 1- MATLAB Practical 4

Debugging Exercise
> Complete the exercises in the script M-file for this week. Run each cell separately
and follow the instructions, making sure that you also add in the required code
marked by starred lines.

 Coding Tip: If you are having trouble finding an error, try commenting out a few
lines to determine the line that is causing i. If you comment out a line containing for,
while or if-else, don’t forget to comment out the corresponding end
statements.

Exercises:
> Fill in the correspondent commands doing what required within
%**…**
%% Practical 4
% Enter your name, student ID and the date here
%---

%% Exercise 1
% Use a for- loop to print out the square of integers from 1 up to
%maxValue.

maxValue = 10;
for num = % ** increment num from 1 to maxValue **
 num % this line simply prints num
 square = num^2 % this line prints the square
end

> Use array operations from Practical 3 to solve the problem in
Exercise 1.

%% Exercise 2
% Use a while- loop to print out the square of integers from 1 up to
% maxValue.

maxValue = 10;
num=1;
while % ** num is not bigger than maxValue **
 num % this line simply prints num
 square = num^2 % this line prints the square
 num=num+1;
end
%-

--

%% Exercise 3
% Sam gets paid compound interest at a rate defined at 5% per annum.
% Calculate his resulting investment each year and after 10 years.
% Change the rate on the 8th year to 5.75%

rate = 0.05;
investment = 5000;
for year = % ** increment the year from 1 to 10 **
 if % ** year is 8 **
 rate = 0.0575
 end
 year % this line simply prints the year
 investment = (1+rate)* investment % compounding function
end
%---

 24

 MME 1 & Calculus 1- MATLAB Practical 4

%% Exercise 4
% create a graph that draws a straight line from the point (0,0) to
% every other
% point of the set (1,0), (1,1), (1,2), (1,3), (1,4).

hold on %allows us to plot multiple lines on a graph
for y = %** increment y **
 plot([0,1],[0,y]); % plot x coordinate and y coordinate arrays
end
hold off
%-

%% Exercise 5A
% Use an if-else statement to check if an integer is either a prime %
or a square number.
% Make sure you change the value of the integer.
% Check the help file to find a function that checks if a number is
% prime.
% note that this function works on both arrays and scalars.

integer = 4;
if % ** check if integer is a prime **
 Prime = integer % => If condition is met
elseif % ** check if the number is square **
 Square = integer % => Else condition is met
end
%-

--

%% Exercise 5B
% Add some lines of code in the correct place above to check if the
% number is divisible by 6 and assign it to variable FactorOf6.

%% Exercise 5C
% Modify the above code as follows:
% Use a for-loop to check if each integer from 1 to 100 is a prime, %
square or divisible by 6.
% Collect the integers that meet the above conditions to the
% correspondent arrays Prime, Square or FactorOf6.
% Create count variables pCount, sCount and fCount which are updated
% each time you find a new Prime, Square or FactorOf6 element and use
% these counters to add new elements to your arrays.
% Print Prime, Square & FactorOf6 after your for- loop is finished.

MATLAB/Coding Terms you should become familiar with
Valid, Relational and Boolean Operators, for-loops, while-loops, if-else
statements, Iteration.

To Hand Up
Your published Word document from the Practical 4 debugging exercise.

 25

 MME 1 & Calculus 1- MATLAB Practical 4

 26

 MME 1 & Calculus 1- MATLAB Practical 5

Practical 5: Function and Script M-files
Aims of Practical
1. Understand the purpose of function M-files including:
 a) the importance of functions through standard MATLAB functions
 b) the purpose of input and output variables
 c) the difference between function and script M-files
 d) creating and calling a function M-file
2. Be able to create a function M-file by following the steps provided including:
 a) write a function declaration statement
 b) use return statements to stop execution.
3. Be able to use commands that operate on functions, such as fzero and
 fplot.
4. Create function files from some provided code.

Script M-file
We discussed M-files as early as in Practical 2.
Generally speaking, script M-file is a list of commands (programming code) saved in
one document.
Some advantages:
 -Easy to use: you can run all the commands in your file by hitting one key.
 - No need to re-type or re-run lengthy code.
Disadvantages:
 - Values from the script M-file can’t be easily assigned to variables in the
 Command Window. You must open, edit and save the M-file to edit values.

Exercise: Creating a Script M-file
The following script M-file finds the value of the function at . 3sin xxy 3x
 % exercise1script.m
 x = 3
 y = sin(x) + x^3
> Run this M-file by typing the following in the Command Window:
 exercise1script
> Then update the M-file to find the value of for)(xf x 4, 5, 6.

Quite often we need to be able to calculate the value of a function)(xfy for any
value of x . Obviously, it is not practical to change value of x each time. For this
purpose MATLAB has a special type of M-file, called M-function.

 27

 MME 1 & Calculus 1- MATLAB Practical 5

Some Properties of Function M-files
A MATLAB file of a special format that contains code with optional inputs and
outputs is called function M-file.
Some advantages:
 - Functions can be called from inside of other script and function M-files.
 - Inputs allow variable values to be modified when calling the function
 (eg from the Command Window).
 - Outputs can be assigned to other variables at the Command Window or
 within a separate M-file.
Disadvantages:
- A slight disadvantage with a function M-file is that you must follow the prescribed
format, or else it won’t run correctly. Once you get the hang of that, you will see they
are often very useful.

The following function M-file finds the value of the function for any 3sin)(xxxf
value of x . Type it in and save as exercise1func.m in your Current Directory

% <insert your name and the date here>
% exercise1func.m
% input: x
% output: p, solved in terms of x

 function p = exercise1func(x) %Note special format!
 p = sin(x) + x^3

> Call this M-file from the Command Window using the following command and then
update it to find the value of for)(xp x =3, 4, 5, 6.
 exercise1func(3) % returns value for x = 3

> Consider the case, when the variable x is an array [3 4 5 6]. Modify your function
M-file so, that it will be able to work with arrays.

Constructing Function M-files
Function M-files allow you to define, construct and store your own functions.
Why would I want to do that? You may want to create a function that plots a graph
with certain fixed parameters, or create a complex equation that you will call often, or
even, you may want to create a modified version of an existing function, such as a
random number generator that creates numbers with values between 100 and 200
instead of 0 and 1.

First, let’s recall some of the in-built MATLAB functions you have already used. If
you type command help <name of the function> , such as help abs, in
the Command Window, MATLAB will print description and correct syntax of this
function. These functions have a few things in common and a few differences.

 Coding Tip : If the function you use does not work, try to type help <name
of the function> to check for correct syntax. This may also help you
immensely during the MATLAB test.

 28

 MME 1 & Calculus 1- MATLAB Practical 5

Function: y = abs(x)
Description: Assigns the value x to y if x is non-negative
 or –x if x is negative.
Input: 1 number: x
Output: 1 number: either x or –x

Function: y=rem(a,b)
Description: Assigns the remainder of a/b to y
Input: 2 numbers: a is the numerator, b is the denominator
Output: 1 number: remainder of a/b

Function: plot(xArray,yArray)
Description: Plots a graph, given an array of x-coordinates, xArray, and an array
 of y-coordinates, yArray.
Input: 2 arrays of equal length: xArray, yArray.
 Note: there can be many additional optional inputs.
Output: A graph.

Exercise: Determining the Inputs & Outputs
> For the following function (which you may recall from the first practical), use
MATLAB to help you write the description, inputs and outputs.
Function: round(a)
Description: ___
Inputs: ___
Outputs: ___

 29

 MME 1 & Calculus 1- MATLAB Practical 5

Exercise: Creating a Customised Random Number Generator
> Create a function M-file called myRand.m that outputs a random number between
the inputted values of minRand and maxRand by adding code in the starred lines.

The MATLAB rand function returns a random value between 0 and 1. You will
need to use this function as well as calculating the scale and offset values.

Example: If you want to find a number between 3 and 10, your scale is 7 and your
offset is 3.

 % <insert your name and the date here>
 % myRand.m
 % inputs: minRand, maxRand
 % outputs: y, a random number with value between
 % minRand & maxRand

function y = myRand(minRand, maxRand)
 % **calculate the scale**
 % **calculate the offset**
 % **calculate y, using your scale, offset and
 %MATLAB’s rand function**

Note: Save your function in the Current Directory, otherwise you will need to switch
to the directory you saved your function in or type in a full path.

>Type in the following lines to call this function from your Command Window and
verify that it works.

 myRand(1,10)
 myRand(100,100+1)
 myRand(3,pi)
 myRand(20)
 myRand(20,1)

>How do you think your function should handle the last two entries? You may need
to edit your function to accommodate inputs of this form or generate message about
the error.

Steps for creating function M-files
1. The function name and its M-file name must be identical (except that the M-file
must end with .m).
2. The first executable statement must be a function declaration of the form
function <outputVariables> = <functionName>(<inputVariables>)

 30

 MME 1 & Calculus 1- MATLAB Practical 5

Exercise
One of the following function declarations has been taken from the MATLAB rem.m
function M-file. Determine which one must be correct declaration:

 function rem = remainder(x,y)
 function out = rem(x,y)
 out = function rem(x,y)
 function out(x,y) = rem(x,y)

Exercise: Writing Function Declarations
Write down the <outputVariables>, <functionName> and
<InputVariables> for the two function M-files from the previous exercises and
verify they match the function declaration statement.

Function M-file 1: 3sin)(xxxp
 Function Name: _______________________

 Output Variables: _______________________

 Input Variables: _______________________

Function M-file 2: Creating a Customised Random Number Generator

 Function Name: _______________________

 Output Variables: _______________________

 Input Variables: _______________________

 31

 MME 1 & Calculus 1- MATLAB Practical 5

Exercise: Creating a Function M-file
> Follow steps below to create a simple function M-file that computes and outputs the
nth power of 2, 2n , where n is a number specified each time the function M-file is run.

1. Create a blank M-file and save it as twoN.m

2. What should go at the top of every M-file? Add in header comments. This time,
make sure you include the function description, inputs and outputs as well as your
name and the date.

3. Type the function declaration into your file called twoN.m
function <outputVariables> = <functionName>(<inputVariables>)
 a) replace <function Name> with twoN
 b) decide upon an appropriate input variable name. In this case you may call it
 simply n.
 c) decide upon an output variable name. The name y will be used in this case.
 (In other examples you could use fn, f_n or another name of your choice as
 an output variable name.)

Important: Every output variable must be assigned a value within your code.

4. Now, you need to write your code. This function is pretty simple, so the code
should only contain the following line:

y=2^n

 Note: if you have used different input/output variable names, you must change y to
match your output variable name and n to match your input variable name.

5. OK, now you’re ready to save and test your function M-file. After saving, make
sure that your Current Directory matches the one you saved your M-file in.

6. Run the following lines in the Command Window to verify your function M-file
works.
 twoTo8 = twoN(8)
 newNumber = twoN(5)
 squareOfTwo = twoN(2)
 twoN(9)
 rootOfPower = twoN(5)^(1/2)
 twoN %Why this does not work?

 32

 MME 1 & Calculus 1- MATLAB Practical 5

Exercise: Writing your Own Function M-file

Create a function M-file called quadRoots to find the roots of quadratic polynomials
of the form cbxaxy 2

Its inputs will be the coefficients a, b and c.
Its outputs will be the two roots, and calculated by the formula: 1r 2r

a

acbb
rr

2

4
,

2

21

Test quadRoots in the Command Window with the following three polynomials:
232 xxy (ans: , 11 r 22 r)

1062 xxy (ans: ir 31 , ir 32)

1362 xxy (ans: ir 231 , ir 232)

Return statements
Return statements can be used to break the flow of execution of a function.

Example:
% indexOf: a function that finds the first index of a given number
% in an array. If the number is not in the array, the function
% outputs the index as -1.
% Inputs: a number, an array
% Outputs: an array index or -1 (means there is no such number in
% your input)

function position = indexOf(value, inputArray)
position = -1; % sets index to -1, number not yet found in array
for i = 1:length(inputArray)
 i % this line shows how many times the for loop runs
 if value == inputArray(i)
 position = i;
 return; % return stops the loop if the number is
 % found
 end
end

Exercise: Using Return Statements

> Put the indexOf.m M-file in your Current Directory.
> Test it with the following commands in your Command Window:

idx = indexOf(8, [1, -1, 1, 4])
 idx = indexOf(8, [1, 1, 8, 1, 8])
 i=2
 xArray = [1, 2, 5, 7]
 idx = indexOf(i, xArray)

> Disable the return statement by adding a comment sign, %. Re-test the function
to see how many times the for- loop runs without it.

 Coding Tip: Make sure you save each time you edit your function.

 33

 MME 1 & Calculus 1- MATLAB Practical 5

 34

Functions operating on functions
Suppose a function y = demoFun(x) has been defined in a function M-file
demoFun.m

fplot(@demoFun,[a b])
Plots the function for a ≤ x ≤ b without
setting up arrays

fzero(@demoFun,[a b])

Finds one value of x for demoFun(x) = 0
provided that the signs of demoFun(a) and
demoFun(b) are opposite.

fzero(@demoFun,c)
Finds one value of x for demoFun(x) = 0 by
starting a search at x = c

fminbnd(@demoFun,a,b)
Finds the coordinates of a minimum point of
demoFun(x) at the interval a ≤ x ≤ b

quadl(@demoFun,a,b)

Finds an accurate value for
b

a
dxxy)(

Note: quadl uses arrays, so therefore you must
set your function up treating x as an array and so
using the dot notation for operations.

Exercise: Using Functions
1. Create a function M-file called myCubic.m whose output is the value of the
function 852 23 xxxy

 Input: x
 Output: y
> Verify that this function works by checking that myCubic(-5)=-58 and
myCubic(5)=142

2. Create a script M-file called cubicExercise.m that contains the following five
cells with code that:
 a) plots myCubic(x) between the values of [-5, 5],
 b) finds a local minimum of myCubic(x), located between 0 and 5,
 c) finds the all three roots of myCubic(x)using appropriate intervals
 [a,b]
 d) finds the value of the definite integral of myCubic(x) between -5 and 5.
 Hint: You will need to use the array dot notation so you can use the quadl

 function to calculate the integral of y.

3. Make sure cubicExercise.m is marked up using cell formatting and publish it.

MATLAB/Coding Terms you should become familiar with
Input, Function call, Function Declaration, Function M-file, Return Statement.
To Hand Up:
Your published document from the cubicExercise.m script M-file exercise.

 MME 1 & Calculus 1- MATLAB Practical 6

Practical 6: Polynomial Functions and Symbolic
Toolbox
Aims of Practical
1. Use coefficient arrays for representing polynomials in MATLAB.
2. Be able to add and subtract polynomials.
3. Have a general understanding of the polynomial commands available in
 MATLAB.
4. Use these commands in some short exercises.
5. Understand the purpose of the Symbolic Toolbox
6. Solve symbolic equations
 a) solve a single equation
 b) solve simultaneous equations

Polynomials in MATLAB
In MATLAB, a polynomial is represented by an array of its coefficients of the
powers. The MATLAB polynomial functions allow us to perform some useful
commands such as addition, multiplication and finding the roots of polynomials.

Example:

012345245 39704339743)(xxxxxxxxxxxp would be entered as
 p = [3 -4 0 7 -9 3],
so that p(1)=3 is a coefficient for (term with the highest power), p(2) =-4 is 5x

for ,.., p(6)=3 – for (the lowest power term). 4x 0x

Exercise: Creating Coefficient Arrays
> Write the polynomial corresponding to array of coefficients q)(xp
 q = [4 5 -6])(xp
> Type in the coefficient array s corresponding to polynomial)(xs

 s=[] 34)(4 xxs

Adding and subtracting polynomials
The coefficient arrays of the polynomials can be added and subtracted.

Exercise: Adding Polynomials with Coefficient Arrays
> Add the following polynomial coefficient arrays:
 p = [3 -4 0 7 -9 3]
 q = [4 5 -6]
 p + q

> What is the problem here? Re-define q as follows and check whether the addition
works as you would expect.
 q = [0 0 0 4 5 -6] %Now terms with corresponding
 powers will be added
 p + q

 35

 MME 1 & Calculus 1- MATLAB Practical 6

Note: To add or subtract two polynomials one should adjust their coefficient arrays
putting zeros for absent powers, so that coefficients of terms with the same power will
be on the same positions within both coefficient arrays.

Table of some MATLAB polynomial commands.
roots([c1 c2 c3]) finds the roots of a polynomial given its array of

coefficients, [c1 c2 c3].
poly([r1 r2]) constructs a coefficient array, given the roots, [r1 r2],

of the desired polynomial.
polyval(p,x) finds the value of the polynomial with coefficient array p

at any given number x.
conv(p,q) multiply two polynomials, and , with

coefficient arrays, p and q
)(xp)(xq

[Q,R]=deconv(p,q) finds the quotient and remainder of polynomial division,
)(/)(xqxp

Exercise:
>Define two polynomials and as coefficient arrays p and q in)(xp)(xq

MATLAB
 p=[1 2 3], q=[2 1]

> use conv function to multiply them

 conv(p,q)

>Now, by hand, convert the arrays p and q back to polynomials and multiply them.
Compare your result with the one you received from MATLAB. Is MATLAB result
trustworthy?

Exercise: Finding Polynomial Roots
> Find the roots of two polynomials, p(x) and q(x), with coefficient arrays p and q
 p = [3 -4 0 7 -9 3]
 q = [4 5 -6]

Exercise
> Multiply by using the conv function and corresponding coefficient)(xp)(xq
arrays.
> Use deconv function to find the remainder and quotient of)(/)(xqxp

Exercise: Re-creating Polynomials from Given Roots
> Find a polynomial with roots)(xs 51 r , 52 r , 43 r , and 44 r .

 36

 MME 1 & Calculus 1- MATLAB Practical 6

Exercise: A Polynomial Plot Function
> Create a function M-file called plotPoly.m that uses an array of polynomial
coefficients to plot the polynomial over an interval specified by the user.

% Input: coefficient array, endpoints array.
% Output: polynomial graph.
% **create x array using linspace**
% **create y array using polyval**
% **plot the graph using the plot command**
> Test your function for p and q from the previous exercise at the interval [-5, 5].

Exercise: Fitting a Polynomial Curve
> Check the help files under polynomial functions for an appropriate function that fits
a polynomial to a set of given data points.
> Create a script M-file called fitPoly.m with the following two cells
 1) Fit the points (1,7), (2,-1) and (3,3).
 2) Plot the resulting polynomial with your plotting M-file.

The Symbolic Toolbox

The past practicals have introduced MATLAB as a powerful programmable graphics
calculator. This week we will start showing you how, using MATLAB Symbolic
Toolbox, you can, not only solve equations, but also perform algebraic manipulations,
such as differential and integral calculus like finding the derivative analytically.)(' xf

Exercise
> Type in the following commands.
 clear all
 sin(x)
>What error message is displayed?

The reason for this error message is that you have not first given x a value. However,
if we make x a symbolic variable by using the syms x command, then we will be
able to create and manipulate formulae without giving x a value first.

Exercise: Creating Symbolic Variables
> Type in the following and see if you still get the same error message.
 syms x
 sin(x)

The syms command is actually a shortcut for the sym command. The longer way of
writing is:
 sym(‘x’)

 37

 MME 1 & Calculus 1- MATLAB Practical 6

Exercise: Creating Symbolic Variables
> Type in the following and decide which variables are symbolic.
 syms x
 y = x + 1.4*sqrt(x+3) + 5.49
 pretty(y)

>What does the pretty command do here?

Solving Equations
The Symbolic Toolbox can be used to find solutions for single or simultaneous
equations using the solve command.

Solving a Single Equation
The first task is to solve a single equation 0)(xf for the variable x, with the result
stored in the variable a.This can be done with command solve.

a = solve(f,x)

Exercise: Using solve for a Single Equation
> Go through and type in the code for the following steps to solve the single equation.

x
x

24
1

10
3

> Watch out! There is an error that you will need to correct!!

1. Decide what is (you will need to)(xf

rearrange the equation)
In this case x

x
xf 24

1

10
)(

3

2. Create a symbolic variable x syms x

3. Create a symbolic variable by f

assigning a symbolic expression to it
f=10/(x^3+1)-4+2x

4. Solve 0)(xf u = solve(f,x)

Exercise: Another Example of Solving Symbolic Equation
> Solve the general quadratic equation for any x by making the three 02 cbxax

coefficients a, b, c and x symbolic variables.
 syms a b c x
> Instead of creating a new variable f for function, use the following command to
solve directly:
 soln = solve(a*x^2+b*x+c)

The above command doesn’t specify the variable to solve for. If it is not specified, the
solve command will:
1) Solve for x by default or
2) Solve for the last alphabetical variable if there is no variable called x or
3) Solve for the only symbolic variable if there is only one.

 38

 MME 1 & Calculus 1- MATLAB Practical 6

Exercise
> Solve the equation again, replacing a with u, b with v, c with w and x with s.
 syms u v w s
 ...
> What is the answer this time?

Solving Simultaneous Equations
The solve command not only allows us to find solutions of single equations, but
also simultaneous equations.
The command for solving more than one equation is of the form
 [a1,a2,...,an] = solve(f1,f2,...,fn,v1,v2,...,vn)
This command can solve n equations for n unknowns.

Exercise: Using solve for Simultaneous Equations
> Use MATLAB to find the solution of the following simultaneous equations:

525

432

xy

xy

> This time you will need to create two functions, f1 and f2 to solve f1=0 and
f2=0 using the following command:
 [x,y] = solve(f1,f2)

MATLAB/Coding Terms you should become familiar with
Coefficient array, Symbolic Toolbox, Symbolic Variable.

To Hand up
The published document from your fitPoly.m script M-file together with the code
from your plotPoly.m function M-file.

 39

 MME 1 & Calculus 1- MATLAB Practical 6

 40

 MME 1 & Calculus 1- MATLAB Practical 7

Practical 7: Symbolic Toolbox (Continued)
Aims of Practical
1. Be able to graph symbolic equations using ezplot
2. Understand the advantages/disadvantages of the three types of graphing
 in MATLAB - plot, fplot, ezplot
3. Realise how numbers are represented with the Symbolic Toolbox.
4. Manipulate equations with algebraic operations.
5. Use the variable substitution & expression evaluation commands.
6. Perform symbolic differentiation and integration.

Graphing using the Symbolic Toolbox: ezplot

The Symbolic Toolbox command ezplot is very convenient for plotting. You will
need to specify the symbolic function and the endpoints (optional). By default, the
endpoints are 2 and 2 . Hence, you will need to determine endpoints only if they
are different from the default ones.
Note : It is possible to plot several functions on the same graph using ezplot and
hold on, hold off commands. But the graphs will have the same line
properties (colour, thickness, etc) and thus sometimes are hard to distinguish.

Exercise: Using the ezplot command
> Type the following code and examine output plots.
 syms x
 ezplot(sin(x))
 ezplot(sin(x),[-pi pi])
 hold on
 ezplot(sin(x))
 ezplot(3*x+2)
 hold off

 41

 MME 1 & Calculus 1- MATLAB Practical 7

 Table for comparison of three graph plotting functions

plot (p.13) fplot (p.32) ezplot (p.43)

Required
Inputs

-array of x- coordinates

-array of y- coordinates

-function handle

-endpoints

-symbolic function

-endpoints

Advantages
does not need a
function formula

full control of graph
parameters

function is stored in
M-file for easy
access (via handle)
and modification

can easily create a
graph using only
two lines of code

Disadvantages
requires more code to
generate

must create a
function M-file if it
is not MATLAB in-
build function

function is not
stored in easily
accessible M-file,

graphs have the
same colour

Example:

Create a graph of the function over the interval [-2,2].

1,3

10,2

0,

xx

xx

xx

y

Which plot command would you use?
Answer:
The answer depends on your overall task.

If you will need this function for further calculations, then use fplot command.
To use fplot, you will need to create a function M-file, specifying the three parts
of the function separately by using if statements.

If you want just to plot this function, then use ezplot with hold on and hold
off commands to plot it ‘piece-by-piece’, specifying endpoints.

clear all
syms x
hold on
ezplot(x,[-2, 0])
ezplot(2*x,[0, 1])
ezplot(3*x,[1, 2])
axis([-2 2 -2 6]) %> why do you need to do this?
title(‘Piece-wise function’)%what changes will happen if
 %you delete this command?
hold off

Note: If you plot several functions using ezplot, then the title of the figure will
be of the last function plotted.
The hardest option for this sort of function is to use the plot command.
Otherwise, all the above options are relatively same.

 42

 MME 1 & Calculus 1- MATLAB Practical 7

Example 2:
Quickly check that the equation)1ln(20 tspeed accurately reflects the speed of a
car for t between 0 and 10 seconds.

Hint: use ezplot.

Exercise:
In the table below you are given the results of a student’s weekly assignments to plot.
>Which graphing technique would you use in this case?

Week 1 2 3 4 5 6 7 8 9 10 11 12

Grade 88 97 100 49 76 33 100 88 87 63 10 82

Finding the value of an equation at a point using commands subs,eval.

Exercise: Evaluating Equations
Consider the function xxxf sec)2()(3
> Define this function f in the Symbolic Toolbox, by first defining x as a symbolic
variable.
> Find by evaluating this function at)157.0(f 157.0x using the subs command as
follows:
 y = subs(f,x,0.157)
> Find by evaluating this function at)123.0(f 123.0x using the eval command
as follows:
 x = 0.123
 y = eval(f)

As you can see the difference in these two examples is only in the number of
commands you need to use to evaluate the function at a certain x.

Algebraic transformation of a function using subs command

Exercise: Variables’ substitution
> Type the following commands, where function f is the same as in the previous
example.
 syms t
 y2=subs(f,x,t) %substitutes x with t
 y3=subs(f,x,t-1) %substitutes x with t-1
 y3=simple(y3) %to simplify the expression for y3

Exercise:
> Define function in the Symbolic Toolbox. Make sure that you 45)(24 xxxf

typed syms x before the function’ definition. Substitute x with t using subs
command. Do not forget to type syms t before substitution.

 43

 MME 1 & Calculus 1- MATLAB Practical 7

Numbers and the Symbolic Toolbox
Let’s use the following example to illustrate the difference between symbolic and
standard numbers representation.

Exercise:
> Use the polynomial roots command from last week’s practical to find the roots
of the polynomial . 69)(2 xxxp
> Now, define x as a symbolic variable and define the polynomial p in MATLAB as
follows:
 p = x^2+9*x+6
> Use the solve(p) command to find the roots using the Symbolic Toolbox.
> What is the difference between the answers for the standard and symbolic methods?

Formats for numbers in the Symbolic Toolbox
By default, the Symbolic Toolbox uses integers or rational fractions such as 1, 1/2.
Otherwise, it uses a real number approximation by a fraction of large integers, eg
3333/100000. Command sym(number) converts a number to its symbolic form
while double(number) command reverses symbolic representation to MATLAB
standard format. Therefore, sym command means ‘switch to Symbolic Toolbox’,
while double means ‘switch back to MATLAB’

Exercise: Understanding Numerical Formats
> For the following numbers, find out their symbolic and standard formats.

Number Command Examples
11/13 sym(11/13) double(11/13)
3.85
pi
0.33333
(4/5)2 sym((4/5)^2) double((4/5)^2)
491/2
591/2
e1
sin(1)

Most common Symbolic Toolbox algebraic operations

pretty formats the output to look like type-set mathematics
simplify performs algebraic and other function simplifications

simple

tries a number of simplification techniques including trigonometric
identities; running this command twice can further simplify a
complicated expression

collect collects like terms
factor attempts to factor the expression
expand expands all terms
poly2sym converts array of polynomial coefficients into a symbolic

expression with x as the variable
sym2poly converts symbolic polynomial into its coefficient array

 44

 MME 1 & Calculus 1- MATLAB Practical 7

Exercise: Using Algebraic Operations

Let 613)1(8)4()(222 xxxxxxp

> Define p in a script M-file called symPoly.m using the following commands:
 syms x
 p = x^2*(x+4)^2-8*x*(x+1)^2+13*x-6
> Now use the algebraic operations to help you create the following five cells.

1) Expand p
2) Find the factors of p
3) Store the coefficient array of p in a variable called coeff_p
4) Use the solve command to find when p = 0
5) Now try the polynomial roots command together with double to find the

roots of)(xp in standard MATLAB format.

Differentiation & Integration
The Symbolic Toolbox features special commands for differentiation and integration.
This practical will focus only on the basic diff and int commands. The default
variable for integration or differentiation is x (first), or t (if there is no x) but you can
specify another symbol.

Exercise: Finding Derivatives & Integrals
>Open your script M-file symPoly.m with the equation

613)1(8)4()(222 xxxxxxp .
> Create two new cells using the following commands to find the 1st and 2nd
derivatives of as well as the indefinite and the definite integral from -1 to 1.)(xp

dp=diff(p,x) %note that you do not need to specify x
 %because it is the default variable
d2p = diff(p,x,2) % How would you find the third
 derivative of x?
intp = int(p,x)
intpDef=int(p,x,-1,1)

Numerical Integration
Sometimes there is no explicit expression because the antiderivative can’t be written
in terms of familiar functions. Instead MATLAB can use numerical techniques to find
the definite integral by using the double command.

Exercise: Limitations of Integration Techniques

> Create a symbolic equation
vev

v
vf

sin
)(

> Use the int command to find the indefinite integral, and observe the output.
 intf = int(f,v)
> Modify the above command to find the definite integral between v=0 and v=pi.
 Does the command work?
> Observe what happens if you use the double command.
 defint=double(int(f,v,0,pi))

 45

 MME 1 & Calculus 1- MATLAB Practical 7

 46

Summary Table of some Symbolic Toolbox functions

sym(‘x’) or
syms x

Creates a symbolic variable x

sym(1/4) Creates symbolic number 4/1

double(1/4) Converts symbolic number to standard 4/1 25.0

subs(f,x,a) Substitutes variable x in with value and finds)(xf a)(xf

x=a
eval(f)

Finds value of at by assigning to)(xf a a x first.

ezplot(f,a,b) Plots the symbolic function over the interval)(xf],[ba

pretty Formats output to look like type-set mathematics

simplify Performs algebraic and other function simplifications

simple
Tries a number of simplification techniques including
trigonometric identities. Running this command twice can
further simplify complex expression.

collect Collects like terms

factor Attempts to factor the expression

expand Expands all terms

poly2sym Converts an array of polynomial coefficients into a symbolic
expression with x as the variable

sym2poly Converts symbolic polynomial into its coefficient array

diff(f,x) Finds 1st derivative of with respect to)(xf x

diff(f,x,n) Finds nth derivative of with respect to)(xf x

int(f,x) Indefinite integral of)(xf

int(f,x,a,b) Definite integral of with endpoints ,b)(xf a

MATLAB/Coding Terms you should become familiar with
Symbolic Variables, Symbolic Toolbox.

To Hand up
Your published Word document from the symPoly.m script M-file after completing
the “Using Algebraic Operations” and “Finding Derivatives and Integrals” exercises.

 MME 1 & Calculus 1- MATLAB Practical Appendix A

Appendix A: MATLAB Layout Overview

 (adopted from http://blogs.mathworks.com/loren/2012/09/12/the-matlab-r2012b-desktop-part-1-introduction-to-the-

toolstrip/#0807a1e1-04e4-41fe-8613-fdc587948079)

In this part we will discuss the appearance and organization of the MATLAB R2012b

Desktop layout.

At the top of the screen you can see grey coloured area - the MATLAB Toolstrip.

The white area consists of four windows: Current Folder, Command Window,

Workspace and Command History. We will learn more about them during practicals.

 The Toolstrip organizes MATLAB functionality in a series of tabs. Tabs are divided

into sections that contain a series of related controls. The controls are buttons, drop-

down menus and other user interface elements that you use to do things in MATLAB.

For example, the picture above shows the Home tab with sections for operations on

Files, Variables, Code and so forth. The File section has controls to do file related

operations including creating scripts (New Script), opening files (Open),and

 47

http://blogs.mathworks.com/loren/2012/09/12/the-matlab-r2012b-desktop-part-1-introduction-to-the-toolstrip/#0807a1e1-04e4-41fe-8613-fdc587948079
http://blogs.mathworks.com/loren/2012/09/12/the-matlab-r2012b-desktop-part-1-introduction-to-the-toolstrip/#0807a1e1-04e4-41fe-8613-fdc587948079

 MME 1 & Calculus 1- MATLAB Practical Appendix A

comparing two files (Compare).The light blue bar in the upper right corner called

the Quick Access Toolbar.

Global Tabs

When you open the MATLAB R2012b for the first time, you will notice three tabs --

the Home tab, the Plots tab, and the Apps tab. These three tabs are always there no

matter what you are doing in MATLAB. For that reason, they are called global tabs.

The Home tab, shown below, is where you go to do general purpose operations like

creating new files, importing data, managing your workspace, and setting your

Desktop layout.

The Plots tab, shown below, is where you go to create MATLAB Plots. The Plots tab

displays a gallery of plots available in MATLAB and any toolboxes that were

installed. To create a plot from the gallery, you select the variables in the Workspace

that you want to plot and then select the type of visualization you want to use for that

data. The downward facing arrow on the far right brings down the full extent of the

plot gallery with many more choices. The gallery is smart, only showing plots that are

appropriate for the data that you've selected.

The last of the global tabs is the Apps tab, shown below. It is the place you go to run

interactive MATLAB applications. The Apps tab presents a gallery of installed

applications. The downward facing arrow on the far right brings down the full extent

of the applications gallery with many more choices. To start an application you

simply click on the correspondent icon.

 48

 MME 1 & Calculus 1- MATLAB Practical Appendix A

Contextual Tabs

As we've seen, global tabs are always present regardless of what you are doing in

MATLAB. In addition to global tabs, the Toolstrip also has contexual tabs.

Contextual tabs only appear when you're doing certain things in MATLAB. Let's look

at the Editor as an example. When you edit a file, three new tabs appear -- the Editor

tab, Publish tab, and View tab.

The Editor tab, shown above, contains all the functions you need when you're editing

your file. All of those great capabilities of the Editor are there organized in a way to

make them easier to find and use. This window opens over the Desktop layout.

Editor
actions
button

In the upper right corner of the Editor window (and any other window) you will find

Actions button. After clicking on it and choosing Dock option the Command window

area in the Desktop becomes divided on two parts with the Editor window placed at

the top and the Command window at the bottom. If the Editor is docked in the

Desktop, those tabs related to the Editor appear next to the global tabs as shown

below.

 49

 MME 1 & Calculus 1- MATLAB Practical Appendix A

 50

Publishing is a very useful feature in MATLAB. The Publish tab takes all the

formatting controls you need to create beautiful MATLAB documents with publishing

and puts them in a single place.

The View tab is the last of the Editor contextual tabs. It is where you go to control the

layout and appearance of files in the Editor. You'll also find contextual tabs in the

Variable Editor. These features of MATLAB will be discussed later in our practicals.

Minimizing the Toolstrip

To Minimize the Toolstrip right-click anywhere in the Toolstrip and select "Minimize

Toolstrip" or double-click on any of the tabs. To restore the Toolstrip right-click

anywhere on the Toolstrip and select "Restore Toolstrip" or double-click on any of the

tabs. When the toolstrip is minimized it looks like this:

 MME 1 & Calculus 1- MATLAB Practical Appendix B

Appendix B: Summary of Tables

Practical 1

Mathematical Operators
Symbol Operator Order of Priority
^ Raise to a power 1 evaluated first
* Multiplication 2
/ Division 2

evaluated after any powers

+ Addition 3
- Subtraction 3

evaluated after any powers, multiplication and
division.

Elementary Mathematical Functions
round(x) Rounds x to nearest integer
floor(x) Rounds x down to nearest integer
ceil(x) Rounds x

 up to nearest integer
rem(y,x) Remainder after dividing byy x (eg remainder of 17/3 is 2)
sign(x) Returns 1 if 0x ; returns if 0 0x ; returns 1 if 0x
rand or rand(1) Generates a random number between 0 and 1
exp(x) Exponential function, xe
log(x) Natural logarithm function, xy ln (where) xe y
sqrt(x) Square root function, x
abs(x) Absolute value function, x

sin(x) Sine function, xsin
cos(x) Cosine function, xcos
tan(x) Tangent function, xtan

Practical 2
Table of the most useful commands for plotting graphs.

hold on

Allows plotting several graphs on the
same figure. All commands after this one
apply to a current figure, until the hold
off command is used.

plot([x1 x2], [y1 y2]) plots the graph
plot([x1 x2], [z1 z2])
axis([minX maxX minY maxY]) specifies axis limits
legend(‘y1=equation1’,
‘y2=equation2’)

sets the labels for the legend (must be
after plot command)

xlabel(‘label for x axis’) sets the label for the x - axis
ylabel(‘label for y axis’) sets the label for the - axis y

title(‘graph title’) sets the label for the title

hold off

Following commands no longer apply to
the current figure.

 51

 MME 1 & Calculus 1- MATLAB Practical Appendix B

Practical 3

Array Functions
Function Description
sum(Z) adds all elements of array Z
prod(Z) multiplies all elements of array Z
length(Z) returns the length of array Z
[Zmax, i] = max(Z) returns largest element Zmax of Z and its position, i
[Zmin, i] = min(Z) returns smallest element Zmin of Z and its position, i
sort(Z) sorts elements of array Z in ascending order
find(Z>3) finds the indices of elements of array Z larger than 3

Dot Multiplication
A.*B multiplies corresponding elements of A and B
A./B divides corresponding elements of A and B
5./A divides 5 by each element of A
A.^B calculates A(i)^B(i) for every corresponding element in A and B
2.^A finds 2^A(i) for every element of A
A.^3 cubes each element in A

 52

 MME 1 & Calculus 1- MATLAB Practical Appendix B

Practical 4

for- and while- Loops and if- Statements Structure

for- loop syntax

for <variable> = <start>:<step>:<finish>

<commands>…..
 ……………..

 end

while- loop syntax

while <condition>

<commands>…..%executed if condition is true
 ……………..

 end

Complex if-elseif-else-end statements:

if <expression 1>
 <command> % evaluated if expression 1 is true
elseif <expression 2>
 <command> % evaluated if expression 2 is true
elseif expression3
 <command> % evaluated if expression 3 is true
….
else
 <command> % evaluated if none of expressions are
true
end

Relational Operators

Symbol Example Meaning of Example
< a<6 true if a is less than 6
<= a<=6 true if a is less than or equal to 6
> a>6 true if a is greater than 6
>= a>=6 true if a is greater than or equal to 6
== a==6 true if a is equal to 6

 (note double equals sign)
~= a~=6 true if a is not equal to 6

Boolean operators
Symbol Definition Example Meaning of Example

& And (a>2) & (a<6) a is greater than 2 and less than 6
| Or (a<2) | (a>6) a is less than 2 or greater than 6
~ Not ~(a==6) a is not equal to 6

 53

 MME 1 & Calculus 1- MATLAB Practical Appendix B

Practical 5
Functions operating on functions

fplot(@demoFun,[a b])
Plots the function for a ≤ x ≤ b without
setting up arrays

fzero(@demoFun,[a b])

Finds one value of x for demoFun(x) = 0
provided that the signs of demoFun(a) and
demoFun(b) are opposite.

fzero(@demoFun,c)
Finds one value of x for demoFun(x) = 0 by
starting a search at x = c

fminbnd(@demoFun,a,b)
Finds the coordinates of a minimum point of
demoFun(x) at the interval a ≤ x ≤ b

quadl(@demoFun,a,b)

Finds an accurate value for
b

a
dxxy)(

Note: quadl uses arrays, so therefore you must
set your function up treating x as an array and so
using the dot notation for operations.

 54

 MME 1 & Calculus 1- MATLAB Practical Appendix B

Practicals 6 & 7

Polynomial Functions

roots([c1 c2 c3]) finds the roots of a polynomial given its array of
coefficients, [c1 c2 c3].

poly([r1 r2]) constructs a coefficient array, given the roots, [r1 r2],
of the desired polynomial.

polyval(p,x) finds the value of the polynomial with coefficient array p
at any given number x.

conv(p,q)
multiply two polynomials, and , with
coefficient arrays, p and q

)(xp)(xq

[Q,R]=deconv(p,q) finds the quotient and remainder of)(/)(xqxp

Symbolic Toolbox Commands

sym(‘x’) or
syms x

Creates a symbolic variable x

sym(1/4) Creates symbolic number 4/1

double(1/4) Converts symbolic number to standard 4/1 25.0

subs(f,x,a) Substitutes variable x in with value a and finds)(xf)(xf

x=a
eval(f)

Finds value of at by assigning to)(xf a a x first.

ezplot(f,a,b) Plots the symbolic function over the interval)(xf],[ba

pretty Formats output to look like type-set mathematics

simplify Performs algebraic and other function simplifications

simple
Tries a number of simplification techniques including
trigonometric identities. Running this command twice can
further simplify complex expression.

collect Collects like terms

factor Attempts to factor the expression

expand Expands all terms

poly2sym Converts an array of polynomial coefficients into a symbolic
expression with x as the variable

sym2poly Converts symbolic polynomial into its coefficient array

diff(f,x) Finds 1st derivative of with respect to)(xf x

diff(f,x,n) Finds nth derivative of with respect to)(xf x

int(f,x) Indefinite integral of)(xf

int(f,x,a,b) Definite integral of with endpoints ,)(xf a b

 55

 MME 1 & Calculus 1- MATLAB Practical Appendix B

 56

	cover
	MATHEMATICAL METHODS FOR ENGINEERS 1 (MATH 1063)
	CALCULUS 1 (MATH 1054)

	contents_2
	p1_2
	Practical 1: Introduction to MATLAB

	p2_2
	Practical 2: Variables, Script M-files and Graphing

	p3_2
	Practical 3: Arrays

	p4_2
	Practical 4: For- and While- Loops, If-statements

	p5_2
	Practical 5: Function and Script M-files

	p6_2
	Practical 6: Polynomial Functions and Symbolic Toolbox

	p7_2
	Practical 7: Symbolic Toolbox (Continued)

	appA_2
	Appendix A: MATLAB Layout Overview

	appB_2
	Appendix B: Summary of Tables
	Practical 1
	Practical 2
	Practical 3
	Practical 4
	Practicals 6 & 7

