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Logarithms 
 
Section 1: Definition 
We come now to the question of what a logarithm is. We must remind 
ourselves first of the power notation and its effects. Remember that when n is 
an integer, . ....na a a a= , with n factors of a. 
 
Example 1 

4

5

6

3

(a )2 2.2.2.2 16

(b)10 10.10.10.10.10 100,000

(c)2 2.2.2.2.2.2 64

(d)10 10.10.10 1,000

= =

= =

= =

= =

 

♦♦♦ 
 
We need to remember that if n is a negative power, then we take the 

reciprocal, ie 1n
na

a
− = . (Assuming n to be positive, although it works just as 

well if n is negative.) Also note that if either a or n is not an integer, then we 
would evaluate na  using a calculator, Excel, Matlab or some other software. 
Check the following using your calculator. 
 
Example 2 

1.5

3.47

3.8

1.6

(a )2 2.828

(b)10 2,951.2

(c)0.942 0.797

(d)4.6 0.0870−

=

=

=

=

 

♦♦♦ 
 
We are now able to define the term logarithm. What is the logarithm of x? In 
fact we cannot answer this question unless another number a, known as the 
base, is also specified. Thus the question, what is the logarithm of x is 
meaningless, unless we make an assumption about the base a, whereas the 
question what is the logarithm of x base a is very meaningful. We shall define 
the logarithm by defining it in terms of its inverse. 
 
Suppose that a number yx a= , where a is the base specified and y is either 
known or can be found out somehow. Then we say that the logarithm base a 
of x is y, and write log ( )ay x= . 
 
Example 3 
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5
2

4
2

(a)32 2 ; l o g (32) 5

(b)16 2 ;log (16) 4

= =

= =
 

0
2

3
2

(c)2 1;log (1) 0

(d)2 0.125;log (0.125) 3−

= =

= = −
 

♦♦♦ 
 
Now complete the following table of logarithms base 2. Remember that a 
logarithm is actually a power. The answers are at the end of this section. 
 
Table 1 
Exponential form Logarithmic form 

52 32=  2log 32 5=  
42 16=  2log 16 =  
32 8=  2log 8 =  
22 4=  2log 4 =  
12 2=  2log 2 =  
02 1=  2log 1=  

12 0.5− =  2log 0.5 =  
22 0.25− =  2log 0.25 =  

 
The same thing can be done with powers of 10. Complete the following table 
and find the logarithms (base 10) of the numbers given. 
 
Table 2 
Exponential form Logarithmic form 

510 100,000=  10log 100,000 5=  
410 10,000=  10log 10,000 =  
310 1,000=  10log 1,000 =  
210 100=  10log 100 =  
110 10=  10log 10 =  
010 1=  10log 1=  

110 0.1− =  10log 0.1=  
210 0.01− =  10log 0.01=  

 
We can do the same with other numbers that are not such convenient powers, 
ie non-integer powers of the base. Try the following table. Once again, the 
answers are at the end of this section. 
 
 
 



Aviation Mathematics, AERO 1010 

G R Lockwood, University of South Australia, 2004 3 

Table 3 
Exponential form Logarithmic form 

4.8710 74,131.0=  10log 74,131.0 =  
2.810 630.96=  10log 630.96 =  
0.5410 3.467=  10log 3.467 =  

0.9810 0.105− =  10log 0.105 =  
2.7310 0.00186− =  10log 0.00186 =  

 
In fact there are only two really common bases1, base 10 and base e, where e is 
a special number like π . We shall consider this base later. In fact logarithms 
base 10 are so common, that we shall assume that if the base is not specified 
via a subscript then it is automatically base 10. Hence from now on, 

10log( ) log ( )x x= . Logarithms base e are even more common and have an even 
shorter notation that we shall see soon. 
 
Answers 
Table 1: 4, 3, 2, 1, 0, -1, -2 
Table 2: 4, 3, 2, 1, 0, -1, -2 
Table 3: 4.87, 2.8, 0.54, -0.98, -2.73 
 
 
Section 2: Properties of Logarithms 
 
The properties of logarithms, or logs, logs are similar to, and derive from, the 
properties of powers. Hence for every property of powers, or indices, there is 
a corresponding property of logs. These properties will not be justified, but 
they flow fairly easily from the corresponding property of powers, and the 
reader is referred to Calter and Calter2, chapter 20, for the justification. The 
properties are formulated in terms of some arbitrary base b. 
 
Table 4 
Property of Powers Property of Logs 

x y x yb b b +=  log log logb b bMN M N= +  
c

c d
d

b
b

b
−=  log log logb b b

M
M N

N
  = − 
 

 

( )dc cdb b=  log logp
b bM p M=  

                                                 
1 The exception to this rule is in computer science, where powers of two are so important that 
logarithms base 2 are frequently used, and given a special notation: 2log ( ) lg( )x x= . 
2 Technical Mathematics With Calculus, Calter and Calter. 
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1
p pM M=  ( )

1 1
log log logp

p
b b bM M M

p
= =  

0 1b =  log 1 0b =  
1b b=  log 1b b =  

 log ( ) log( )p
b b p b p= =  

; logx
by b x y= =  (by definition) logb xb x=  

(change of base) log ln
log

log lnb
N N

N
b b

= =  

 
There are plenty of examples of these properties in the reference, Calter and 
Calter. 
 
Side note: What on Earth is e? 
 
Most students understand relatively easily why 10 is/was such a common 
base for logarithms. The logs give the order of magnitude straight away. 
However logs base e do not have this advantage. So why use it? The answer 
to that is that so many problems involving powers or logs are problems of 
growth or decay, where some quantity is either growing or decaying. In 
problems such as finding the interest on a bank account, the times at which 
interest is paid are well spaced out, usually months and occasionally yearly. 
However many problems in nature require continuous growth or continuous 
decay. For example a heated object placed in cooler surroundings cools down 
continuously, rather than at discrete intervals. Hence mathematicians became 
interested in the constant that arose when the “interest periods” were allowed 
to shrink towards 0. The equation for compound interest (see Calter and 

Calter, section 20.2) became 1
1

ntk

y a
k

  = +  
   

. They then discovered that as k 

grew towards infinity, the expression 1
1

k

k
 + 
 

 actually grew to a fixed 

number, namely the number 2.71828182…, which they called e. Because these 
problems of continuous growth were so common, e became the default base 
for logarithms. 
 
Section 3: Calculators, Logs, Antilogs and Equations 
 
Modern calculators have greatly simplified the process of solving equations 
with powers or logs in them. It is literally just the touch of a button to find out 
a power or a log. The relevant buttons are usually marked log and ln for the 
logarithms base 10 and base e. The reverse operations, or antilogs, are usually 
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marked as 10x and ex. Try the following examples on your own calculator. 
Solutions are below the table. 
 
Table 5 
Logs Powers 
log47 1.672=  3.810 6,309.6=  
log4.7 =  1.2310 =  
log0.276 =  0.3910 =  
log1.375 =  0.2310− =  
log5,487 =  0.5810− =  
ln47 3.850=  3.8 44.70e =  
ln1.35 =  1.58e =  
ln0.135 =  0.27e =  
ln2.35 =  0.64e− =  
 
Solutions: log(4.7)=0.672, log(0.276)=-0.559, log(1.375)=0.138, log(5487)=3.739, 
ln(1.35)=0.300, ln(0.135)=-2.002, ln(2.35)=0.854.101.23=16.98, 100.39=2.455, 
10-0.23=0.5888, 10-0.58=0.2630, e3.8=44.70, e1.58=4.855, e0.27=1.310, e-0.64=0.5273. 
♦♦♦ 
 
Both of these operations are essential to solving many problems that we will 
encounter. However it is essential to realise the operations of taking a 
logarithm and raising the base b to a power are inverse operations. We shall 
thus use them to solve equations in a similar way to solving linear equations 
When solving a linear equation, we apply inverse operations. For example to 
reverse a multiplication, we divide. To reverse an addition, we subtract. 
Consider the following examples. 
 
Example 4 
Solve the equation 2 310 5x− = . Now the inverse operation to taking a power to 
base 10 is taking the log. Hence we have 

( )2 3log 10 2 3 log(5) 0.6990

2 3.6990
1.850

x x

x
x

− = − = =

=
=

 

♦♦♦ 
 
Example 5 
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4 3
2

4 3
2

10 14.8

4 3
log 10 log(14.8) 1.1703

2

4 3 2.3405
4 5.3405

1.335

x

x x

x
x

x

−

−

=

  −
= = = 

 
− =
=

=

 

♦♦♦ 
 
Example 6 
Solve the equation 2 1 11.9xe + = . Now the reverse operation to taking a power, 
base e, is taking a natural logarithm, ie log base e or ln. 

( )
2 1

2 1

11.9

ln 2 1 ln(11.9) 2.4765

2 1 1.4765
2 1.4765

0.738

x

x

e

e x

x
x

x

+

+

=

= + = =

+ =
=

=

 

♦♦♦ 
 
Example 7 

3
2

3
2

15

3
ln ln(15)

2

3
2

ln(15)
3

2 0.892
ln(15)

x

x

e

e
x

x

x

+

+

=

 
= =  + 

+ =

= − = −

 

♦♦♦ 
 
Of course we can also solve equations involving logarithms. The basis for this 
is as follows: if A=B then 

log( )

ln( )

10 10 ;10 ;

;  

A B A

A B A

A

e e e A

= =

= =
 

 
Example 8 

log(2 5) 0.8

log(2 5) 0.8

10 2 5 10 6.310
2 1.310

0.655

x

x

x
x

x

+

+ =

= + = =
=

=

 

♦♦♦ 
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Example 9 

2ln
2.13

2
ln 2.1

3

2
8.166

3
3 1

0.1225
2 8.166

3 0.2449
3.245

x

x

e e
x

x

x
x

 
 − 

  = − 

= = =
−

−
= =

− =
=

 

♦♦♦3 
 
Example 10 

5 1
ln

37

3

3

3

5 1
ln 3

7

5 1
7

5 1 7

5 1 7

1 7
28.32

5

x

x

x
e e

x e

x e

e
x

− 
 
 

−  = 
 

−
= =

− =

= +

+
= =

 

♦♦♦ 
 
Try following the above examples through to the end without writing down 
any intermediate results, as shown in Example 10. 
 
Section 4: Applications 
 
Two common applications of this sort of theory are growth and decay 
problems. In growth problems, some quantity, such as a population of 
bacteria, or the volume of infected emails, is growing exponentially. That is to 
say, they will follow a sort of relationship of the form 0

ktA A e= , where A is the 
current (or future) amount, A0 is the initial amount, k is a (positive) constant 
and t is the time (since the beginning of the experiment, for want of a better 
word). Typically one will be given the amount A0 at the start, when t=0, and at 
some later time and be asked to find the time required for A to double. Or one 
may be asked to find the time when the amount will reach a certain level. 
These are relatively simple examples of the equations solved above. Consider 
the following example. 

                                                 
3 Note that really the above examples are a trifle misleading. Numbers such as e2.1 should not 
be evaluated until the last possible moment, so that the solution to the above example 
becomes x=2/(e2.1)+3. This will lead to greater accuracy. 
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Example 11 
A virus is released upon an unsuspecting world by the sending of 10 infected 
emails. Five hours later, there are estimated to be 2,000 infected emails. Find 
how long it is taking for the number of emails to double, and predict when 
the number of infected emails will reach 20,000. 

0 0

5

5

1.060

 and 10, and at 5, A=2000

2000 10

200
5 ln(200)

ln(200)
  ( 1.060)

5
So 10

kt

k

k

t

A A e A t

e

e
k

k

A e

= = =

=

=
=

= =

=

 

 
Now the time taken to double will be found by answering the question: When 
is A=2A0? 

1.060
0 0

1.060

2

2
1.060 ln(2)

ln(2)
0.654

1.060

t

t

A A e

e
t

t

=

=
=

= =

 

ie the number of infected emails is doubling every 0.654 hours, or every 39 
minutes, 14 seconds. 
To answer the question: when will the number of infected emails reach 20,000, 
we must solve another equation, this time with t unknown. 

1.060

1.060

20000 10

2000
1.060 ln(2000)

ln(2000)
7.171

1.060

t

t

e

e
t

t

=

=
=

= =

 

ie there should be 20,000 infected emails after 7.171 hours, or 7 hours and 10 
minutes. 
♦♦♦ 
 
Decay problems are very similar, but revolve around quantities that are 
decreasing, typically the temperature of a cooling object or the amount of 
some radioactive substance. The equation to be used for these problems is 
almost the same: 0

ktA A e−= , where k is again assumed to be positive. 
 
References 
Calter and Calter, Technical Mathematics With Calculus, 4th edition. (Chapter 
20). 


