Theorem 5.2.14

Theorem

Consider the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$. We know that the characteristic equation of this is $t^2 - c_1 t - c_2$. If r is a repeated root to this characteristic equation, then apart from the solution r^n , we also have the solution $a_n = nr^n$.

Proof

Trying the solution $a_n = nr^n$, we also find that $a_{n-1} = (n-1)r^{n-1}$, $a_{n-2} = (n-2)r^{n-2}$. So the right hand side of the recurrence relation becomes

$$c_{1}a_{n-1} + c_{2}a_{n-2} = c_{1}(n-1)r^{n-1} + c_{2}(n-2)r^{n-2}$$

$$= c_{1}nr^{n-1} - c_{1}r^{n-1} + c_{2}nr^{n-2} - 2c_{2}r^{n-2}$$

$$= n(c_{1}r^{n-1} + c_{2}r^{n-2}) - (c_{1}r^{n-1} + 2c_{2}r^{n-2})$$

$$= nr^{n} - (c_{1}r^{n-1} + 2c_{2}r^{n-2})$$

(as r^n is a solution to the recurrence relation)

Now we have run into a bit of a snag, and need to find some more information about c_1 and c_2 . We remember that the characteristic equation was

$$t^2 - c_1 t - c_2 = 0.$$

On the other hand, we also know that r was a repeated root of that equation.

So we can confidently say that the equation must also be

$$(t-r)^2 = 0 \text{ or }$$

$$t^2 - 2rt + r^2 = 0.$$

Hence, by comparing the t term and the constant term in our two equations,

$$2r = c_1$$
 and $-c_2 = r^2$

So
$$c_1 r + 2c_2 = 2r^2 - 2r^2 = 0$$
. Hence

$$nr^{n} - (c_{1}r^{n-1} + 2c_{2}r^{n-2}) = nr^{n} - 0 = nr^{n}.$$

But this is exactly what we were trying to prove, as it is what the right hand side is. So we accept that $a_n = nr^n$ is a valid solution to the original recurrence relation.

* * *