e e CHAPTER 3

ELEMENTARY NUMBER THEORY
. AND METHODS OF PROOF

The underlying content of this chapter is likely to be familiar to you. It consists of
properties of integers (whole numbers), rational numbers (integer fractions), and real
numbers. The underlying theme of this chapter is the question of how to determine the
truth or falsity of a mathematical statement.

Here is an example involving a concept used frequently in computer science. Given
any real number x, the floor of x. or greatest integer in x, denoted | x |, is the largest integer
that is less than or equal to x. On the number line, [x] is the integer immediately to the
left of x (or equal to x if x is, itself, an integer). Thus [2.3] = 2, [12.99999] = 12, and
[—1.5] = —2. Consider the following two questions:

I. For any real number x.is [x — || = [x] — 17
2. For any real numbers x and y.is [x — v| = |[x] — [v]?

Take a few minutes to try to answer these questions for yourself.

It turns out that the answer to (1) is yes, whereas the answer to (2) is no. Are these the
answers you got? If not, don’t worry. In Section 3.5 you will learn the techniques you need
to answer these questions and more. If you did get the correct answers, congratulations!
You have excellent mathematical intuition. Now ask yourself, “How sure am I of my
answers? Were they plausible guesses or absolute certainties? Was there any difference
in certainty between my answers to (1) and (2)? Would | have been willing to bet a large
sum of money on the correctness of my answers?”

One of the best ways to think of a mathematical proof is as a carefully reasoned
argument to convince a skeptical listener (often yourself) that a given statement is true.
Imagine the listener challenging your reasoning every step of the way, constantly asking,
“Why is that so?”" If you can counter every possible challenge. then your proof as a whole
will be correct.

As an example, imagine proving to someone not very familiar with mathematical
notation that if x is a number with 5x + 3 = 33, then x = 6. You could argue as follows:

If 5x + 3 = 33, then 5x + 3 minus 3 will equal 33 — 3 since subtracting the same
number from two equal quantities gives equal results. But 5x 4 3 minus 3 equals 5x
because adding 3 to 5x and then subtracting 3 just leaves 5x. Also, 33 — 3 = 30.
Hence 5x = 30. This means that x is a number which when multiplied by 5 equals
30. But the only number with this property is 6. Therefore, x = 6.
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126 Chapter3 Elementary Number Theory and Methods of Proof

Of course there are other ways to phrase this proof, depending on the level of math-
ematical sophistication of the intended reader. In practice, mathematicians often omit
reasons for certain steps of an argument when they are confident that the reader can easily
supply them. When you are first learning to w rite proofs, however, it is better to err on the
side of supplying too many reasons rather than too few. All too frequently, when even the
best mathematicians carefully examine some “details” in their arguments, they discover
that those details are actually false. Probably the most important reason for requiring
proof in mathematics is that writing a proof forces us to become aware of weaknesses in
our arguments and in the unconscious assumptions we have made.

Sometimes correctness of a mathematical argument can be a matter of life or death.
Suppose, for example, that a mathematician is part of a team charged with designing a new
type of airplane engine, and suppose that the mathematician is given the job of determining
whether the thrust delivered by various engine types is adequate. If you knew that the
mathematician was only fairly sure, but not positive, of the correctness of his analysis.
you would probably not want to ride in the resulting aircraft.

At a certain point in Lewis Carroll’s Alice in Wonderland (see exercise 28 in Section
1.2). the March Hare tells Alice to “say what you mean.” In other words, she should be
precise in her use of language: If she means a thing, then that is exactly what she should
say. In this chapter, perhaps more than in any other mathematics course you have ever
taken, you will find it necessary to say what you mean. Precision of thought and language
is essential to achieve the mathematical certainty thatis needed if you are to have complete
confidence in your solutions to mathematical problems.

3.1 Direct Proof and Counterexample I:
Introduction

Mathematics, as a science, commenced when first someone, probably a Greek, proved
propositions about “any” things or abour “some” things without specification of
definite particular things. — Alfred North Whitehead, 1861-1947

Both discovery and proof are integral parts of problem solving. When you think you have
discovered that a certain statement is true, try to figure out why it is true. If you succeed.
you will know that your discovery is genuine. Even if you fail, the process of trying will
give you insight into the nature of the problem and may lead to the discovery that the
statement is false. For complex problems, the interplay between discovery and proof is
not reserved to the end of the problem-solving process but, rather, is an important part of
each step.

In this text we assume a familiarity with the laws of basic algebra, which are listed in
Appendix A. We also use the three properties of equality: For all objects A, B.and C. (1)
A=A, (2)if A= Bthen B = A,and (3)if A=Band B =C.thenA =C.In addition.
we assume that the set of integers is closed under addition. subtraction, and multiplication.
This means that sums, differences, and products of integers are integers. Of course, most
quotients of integers are not integers. For example, 3 = 2. which equals 3/2, is not an
integer, and 3 + 0 is not even a number.

The mathematical content of this section primarily concerns even and odd integers
and prime and composite numbers.

Definitions

In order to evaluate the truth or falsity of a statement, you must understand what the
statement is about. In other words, you must know the meanings of all terms that occur
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It follows from the definition that if you are doing a problem in which you happen
to know that a certain integer is even, you can deduce that it has the form 2 - (some
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Example 3.1.1 Even and Odd Integers

Use the definitions of even and odd to justify your answers to the following questions.
a. Is 0 even?

b. Is =301 odd?

. . 3
c. If @ and b are integers, is 6a’b even?

k you have d. If @ and b are integers, is 10a + 8b + 1 odd?
u succeed. ; .

trying will e. Is every integer either even or odd?
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b. Yes, =301 = 2(—151) + 1.
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and C. (1) c. Yes, 6a*h = 2(3ab), and since a and b are integers, so is 3a2b (being a product of
n addition, TRRELN:
iplication. d. Yes, 10a +8b + 1 = 2(5a + 4b) + 1, and since a and b are integers, so is 5a + 4b
urse, most (being a sum of products of integers).
. 1s not an : : i

e. The answer is yes, although the proof is not obvious. (Try giving a reason yourself.)
d integers We will show in Section 3.4 that this fact results from another fact known as the

quotient-remainder theorem. ]

The integer 6, which equals 2 - 3, is a product of two smaller positive integers. On

the other hand, 7 cannot be written as a product of two smaller positive integers: its only

kst e positive factors are 1 and 7. A positive integer, such as 7, that cannot be written as a
that occur product of two smaller positive integers is called prime.
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An integer 7 is prime if, and only if, n > 1 and for all positive integers r and s. if
n=r-s,thenr =1ors=1. Aninteger n is composite if, and only if, n > 1 and
n = r - s for some positive integers 7 and s with 7 % 1 and s # 1.
Symbolically, if n is an integer that is greater than 1, then
nisprime < VY positive integers r and s, ifn =r - s
then's' = llorsi=1.

n is composite < 3 positive integers r and s such thatn = r - s
andr # lands # 1,

Example 3.1.2 Prime and Composite Numbers
a. Is I prime?
b. Is it true that every integer greater than | is either prime or composite?
c¢. Write the first six prime numbers.
d. Write the first six composite numbers.
Solution
a. No. A prime number is required to be greater than |.
b. Yes. For any integer greater than |, the two definitions are negations of each other.
e::'2,38, 5,7, 11,13
d 4,6,8.9.10,12 n

Proving Existential Statements
According to the definition given in Section 2.1, a statement in the form
dx € D such that Q(x)
is true if, and only if.
Q(x) is true for at least one x in D.
One way to prove this is to find an x in D that makes Q(x) true. Another way is to give
a set of directions for finding such an x. Both of these methods are called constructive
proofs of existence.
Example 3.1.3 Constructive Proofs of Existence

a. Prove the following: 3 an even integer n that can be written in two ways as a sum of
two prime numbers.

b. Suppose that r and s are integers. Prove the following: 3 an integer k such that
22r 4 18s = 2k.

Solution
a. Letn = 10. Then 10 =5+ 5 =3 + 7 and 3, 5, and 7 are all prime numbers.

b. Letk = 11r + 9s. Then k is an integer because it is a sum of products of integers; and
by substitution, 2k = 2(11r + 9s), which equals 22r + 18s by the distributive law of
algebra. =
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A nonconstructive proof of existence involves showing either (a) that the existence
l of a value of x that makes Q(x) true is guaranteed by an axiom or a previously proved
theorem or (b) that the assumption that there is no such x leads to a contradiction. The
disadvantage of a nonconstructive proof is that it may give virtually no clue about where
or how x may be found. The widespread use of digital computers in recent years has led to
some dissatisfaction with this aspect of nonconstructive proofs and to increased efforts to
produce constructive proofs containing directions for computer calculation of the quantity
in question.

Disproving Universal Statements by Counterexample

To disprove a statement means to show that it is false. Consider the question of disproving
a statement of the form

Vx in D, if P(x) then Q(x).

Showing that this statement is false is equivalent to showing that its negation is true. The
negation of the statement is existential:

Jx in D such that P(x) and not Q(x).

But to show that an existential statement is true, we generally give an example, and because
the example is used to show that the original statement is false, we call it a counterexample.
Thus the method of disproof by counterexample can be written as follows:

Disproof by Counterexample

To disprove a statement of the form “Vx € D, if P(x) then Q(x),” find a value of x in
D for which P(x) is true and Q(x) is false. Such an x is called a counterexample.

Example 3.1.4 Disproof by Counterexample
Disprove the following statement by finding a counterexample:
V real numbers a and b, if a® = b* thena = b.

Solution  Todisprove this statement, you need to find real numbers a and b such that a’ = b?
and a # b. The fact that both positive and negative integers have positive squares helps
in the search. If you flip through some possibilities in your mind, you will quickly see
that 1 and —1 will work (or 2 and —2, or 0.5 and —0.5, and so forth).

‘ Statement: ¥ real numbers a and b, if a® = b?, then a = b.

Counterexample: Leta = 1 and b = —1. Thena’ = 1> = l and b* = (—1)* = 1,
‘ and so a®> = b®. Buta # b since 1 # —1.

It is a sign of intelligence to make generalizations. Frequently, after observing a
property to hold in a large number of cases, you may guess that it holds in all cases. You
may. however, run into difficulty when you try to prove your guess. Perhaps you just
have not figured out the key to the proof. But perhaps your guess is false. Consequently,

and when you are having serious difficulty proving a general statement, you should interrupt
= ol your efforts to look for a counterexample. Analyzing the kinds of problems you are
E encountering in your proof efforts may help in the search. It may even happen that if
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you find a counterexample and therefore prove the statement false, your understanding
may be sufficiently clarified that you can formulate a more limited but true version of the
statement. For instance, Example 3.1.4 shows that it is not always true that if the squares
of two numbers are equal, then the numbers are equal. However, it is true that if the
squares of two positive numbers are equal, then the numbers are equal.

Proving Universal Statements

The vast majority of mathematical statements to be proved are universal. In discussing
how to prove such statements, it is helpful to imagine them in a standard form:

Vx € D, if P(x)then Q(x).

In Section 2.1 we showed that any universal statement can be written in this form and
that when D is finite, such a statement can be proved by the method of exhaustion. This
method can also be used when there are only a finite number of elements that satisfy the
condition P(x).

Example 3.1.5 The Method of Exhaustion

Use the method of exhaustion to prove the following statement:

Vn e Z.ifniseven and 4 < n < 30, then n can be written as a sum
of two prime numbers.

Solution 4=2+2 6=3+3 8§=3+5 10=5+S5

12=5+7 4=114+3 16=5+11 18=7+1I
20=7+13 22=5+17 24=5419 26=7+19
28=114+17 30=11+19 |

Il

In most cases in mathematics, however, the method of exhaustion cannot be used. For
instance, can you prove by exhaustion that every even integer greater than 2 can be written
as a sum of two prime numbers? No. To do that you would have to check every even
integer, and because there are infinitely many such numbers, this is an impossible task.

Even when the domain is finite, it may be infeasible to use the method of exhaustion.
Imagine, for example, trying to check by exhaustion that the multiplication circuitry of a
particular computer gives the correct result for every pair of numbers in the computer’s
range. Since a typical computer would require thousands of years just to compute all
possible products of all numbers in its range (not to mention the time it would take to
check the accuracy of the answers), checking correctness by the method of exhaustion is
obviously impractical.

The most powerful technique for proving a universal statement is one that works
regardless of the size of the domain over which the statement is quantified. It is called
the method of generalizing from the generic particular. Here is the idea underlying the
method:

Method of Generalizing from the Generic Particular

To show that every element of a domain satisfies a certain property, suppose x is a
particular but arbitrarily chosen element of the domain, and show that x satisfies the

\ property.
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derstanding Example 3.1.6 Generalizing from the Generic Particular
rsion of the

e igidres At some time you may have been shown a “mathematical trick™ like the following. You
b >

ask a person to pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract

- that if the . . . .
twice the original number. Then you astound the person by announcing that their final
result was 7. How does this “trick™ work? Let x stand for the number the person picks.
Here is what happens when the person follows your directions:

discussing Step Result

i Pick a number. X

Add 5. x+5

Il_\ forrn and Mulliply b)‘ 4, (x + SJ 4 =4x 420

istion. This | Subtract 6. (dx +20) —6=4x+ 14

t satisfy the 4y + 14

Divide by 2. - > =2x+7
Subtract twice the original number. | 2x+7—2x=17

Thus no matter what number the person starts with, the result will always be 7. Note that
the x in the analysis above is particular (because it represents a single quantity), but it

h is also arbitrarily chosen or generic (because it can represent any number whatsoever).
This illustrates the process of drawing a general conclusion from a particular but generic
object. |

The point of having x be arbitrarily chosen (or generic) is to make a proof that can be

generalized to all elements of the domain. By choosing x arbitrarily. you are making no

u special assumptions about x that are not also true of all other elements of the domain. The
word generic means “sharing all the common characteristics of a group or class.” Thus

e used.. For everything you deduce about a generic element x of the domain is equally true of any

n be written other element of the domain.

SVRLYeYER When the method of generalizing from the generic particular is applied to a property

S'h}]:" tas.k. of the form “If P(x) then Q(x),” the result is the method of direct proof. Recall that the

exhaustion.

only way “If P(x) then Q(x)” can be false is for P(x) to be true and Q(x) to be false.
Thus to show that “If P(x) then Q(x)" is true, suppose P(x) is true and show that Q(x)
must also be true. It follows by the method of generalizing from the generic particular
that to prove a statement of the form “Vx € D. if P(x) then Q(x).” you suppose x is a
particular but arbitrarily chosen element of D that satisfies P (x), and then you show that
x satisfies Q(x).
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derlying the

1. Express the statement to be proved in the form “Vx € D, if P(x) then Q(x).”
(This step is often done mentally.)

2. Start the proof by supposing x is a particular but arbitrarily chosen element of D
for which the hypothesis P(x) is true. (This step is often abbreviated “Suppose

DSe X is a X € D al‘ld P(I]."j
tisfies the 3. Show that the conclusion Q(x) is true by using definitions, previously established

results, and the rules for logical inference.
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Example 3.1.7 A Direct Proof of a Theorem

Prove that the sum of any two even integers is even.

c Caution! The word two in this statement does not necessarily refer to two
distinct integers. If a choice of integers is made arbitrarily, the integers are
very likely to be distinct, but they might be the same.

Solution  Whenever you are presented with a statement to be proved, it is a good idea to ask
yourself whether you believe it to be true. In this case you might imagine some pairs of
even integers, say 2 +4, 6 + 10, 12 + 12, 28 + 54, and mentally check that their sums are
even. However, since you cannot possibly check all pairs of even numbers, you cannot
know for sure that the statement is true in general by checking its truth in these particular
instances. Many properties hold for a large number of examples and yet fail to be true in
general.

To prove this statement in general. you need to show that no matter what even integers
are given, their sum is even. But given any two even integers, it is possible to represent
them as 2r and 2s for some integers r and s. And by the distributive law of algebra
2r + 25 = 2(r + 5), which is even. Thus the statement is true in general.

Suppose the statement to be proved were much more complicated than this. What is
the statement method you could use to derive a proof?

Formal Restatement: ¥ integers m and n, if m and n are even then m + n is even.

This statement is universally quantified over an infinite domain. Thus to prove it in general.
you need to show that no matter what two integers you might be given, if both of them
are even then their sum will also be even.

Next ask yourself. “Where am [ starting from?” or “What am I supposing?” The
answer to such a question gives you the starting point, or first sentence, of the proof.
Starting Point: Suppose m and n are particular but arbitrarily chosen integers that are

even.

Or, in abbreviated form:

Suppose m and n are any even integers.
Then ask yourself, “What conclusion do I need to show in order to complete the proof?”
To Show: m + n is even.

At this point you need to ask yourself, “How do I get from the starting point to the
conclusion?” Since both involve the term even integer, you must use the definition of this
term—and thus you must know what it means for an integer to be even. It follows from
the definition that since m and n are even,

m = 2r, for some integer r and n = 2s, for some integer s.

(The reason you have to use two different letters r and s is that m and n are arbitrarily
chosen—they could be any pair of even integers whatsoever. If you had set m = 2r and
= 2r. then m would equal n, which need not be the case.)

Now what you want to show is that m + n is even. In other words, you want to show
something about the expression m + n. Having just found alternate representations for m
(as 2r) and n (as 2s), it seems reasonable to substitute these representations in place of m
and n:

m-+n=2r-+2s.
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Your goal is to show that m + n is even. By definition of even, this means that m + n can
be written in the form

2 . (some integer).

This analysis narrows the gap between the starting point and what is to be shown to
showing that

2r 4+ 25 = 2 - (some integer).
Why is this true? First, because of the distributive law from algebra, which says that
2r +2s =2(r + 5),

and. second. because the sum of any two integers is an integer. which implies that » + s
is an integer.

This discussion is summarized by rewriting the statement as a theorem and giving a
formal proof of it. (In mathematics, the word theorem refers to a statement that is known
to be true because it has been proved.) The formal proof, as well as many others in this
text. includes explanatory notes to make its logical flow apparent. Such comments are
purely a convenience for the reader and could be omitted entirely. For this reason they
are italicized and enclosed in square brackets: [ ].

Donald Knuth, one of the pioneers of the science of computing, has compared con-
structing a computer program from a set of specifications to writing a mathematical proof
based on a set of axioms.* In keeping with this analogy, the bracketed comments can
be thought of as similar to the explanatory documentation provided by a good program-
mer. Documentation is not necessary for a program to run, but it helps a human reader
understand what is going on.

Theorem 3.1.1

The sum of any two even integers is even.

Proof:

Suppose m and n are [particular but arbitrarily chosen) even integers. [We must show
that m + n is even.] By definition of even, m = 2r and n = 2s for some integers r
and s. Then

m-+n=2r-+2s by substitution
= 2(r +5) by factoring out a 2.

Let k = r + 5. Note that k is an integer because it is a sum of integers. Hence

m +n =2k where k is an integer.
It follows by definition of even that m + n is even. [This is what we needed to show.]’ J

Most theorems. like the one above, can be analyzed to a point where you realize that
as soon as a certain thing is shown, the theorem will be proved. When that thing has been

“Donald E. Knuth, The Art of Computer Programming, 2nd ed.. Vol. I (Reading, MA: Addison-
Wesley. 1973), p. ix.

fSee page 113 for a discussion of the role of universal modus ponens in this proof.
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shown, it is natural to end the proof with the words “this is what we needed to show.”™ The
Latin words for this are quod erat demonstrandum, or Q.E.D. for short. Proofs in older
mathematics books end with these initials.

Note that both the if and the only if parts of the definition of even were used in the
proof of Theorem 3.1.1. Since m and n were known to be even. the only if (=) part of
the definition was used to deduce that m and n had a certain general form. Then, after
some algebraic substitution and manipulation, the if (=) part of the definition was used
to deduce that m + n was even.

Directions for Writing Proofs of Universal Statements

Think of a proof as a way to communicate a convincing argument for the truth of 2
mathematical statement. When you write a proof, imagine that you will be sending it to
a capable classmate who has had to miss the last week or two of your course. Try to be
clear and complete. Keep in mind that your classmate will see only what you actually
write down, not any unexpressed thoughts behind it.

Over the years, the following rules of style have become fairly standard for writing
the final versions of proofs:

I. Copy the statement of the theorem to be proved on your paper.

(2]

. Clearly mark the beginning of your proof with the word Proof.

3. Make your proof self-contained.

This means that you should identify each variable used in your proof in the body of
the proof. Thus you will begin proofs by introducing the initial variables and stating
what kind of objects they are. The first sentence of your proof would be something like
“Suppose m and n are integers” or “Let x be a real number that is greater than 2.” This
is similar to declaring variables and their data types at the beginning of a computer
program.

At a later point in your proof, you may introduce a new variable to represent z
quantity that is known to exist. For example, if you know that a particular integer n
is even, then you know that n equals 2 times some integer. It is usually convenient to
give this integer a name so that you can work with it concretely later in the proof. Thus
if you decide to call the integer, say. 5. you would write, “Since n is even. n = 2s for
some integer 5.

4. Write your proof in complete sentences.
This does not mean that you should avoid using symbols and shorthand abbrevia-
tions, just that you should incorporate them into sentences. For example, the proof of
Theorem 3.1.1 contains the sentence

Thenm +n = 2r + 2s
=2(r +s).

To read this as a sentence, read the first equals sign as “equals™ and each subsequent
equals sign as “which equals.”

5. Give a reason for each assertion you make in your proof,

Each assertion in a proof should come directly from the hypothesis of the theorem.
or follow from the definition of one of the terms in the theorem, or be a result obtained
earlier in the proof, or be a mathematical result that has previously been established or
is agreed to be assumed. Indicate the reason for each step of your proof using phrases
such as by hypothesis, by definition of . . .. and by theorem . . . .
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6. Include the “little words™ that make the logic of your arguments clear.

When writing a mathematical argument, especially a proof, indicate how each
sentence is related to the previous one. Does it follow from the previous sentence or
from a combination of the previous sentence and earlier ones? If so, start the sentence
by stating the reason why it follows or by writing Then, or Thus, or So, or Hence, or
Therefore, or It follows that, and include the reason at the end of the sentence. For
instance, in the proof of Theorem 3.1.1, once you know that m is even, you can write:
“By definition of even, m = 2k for some integer k,” or you can write, “Then m = 2k
for some integer k by definition of even.”

If a sentence expresses a new thought or fact that does not follow as an immedi-
ate consequence of the preceding statement but is needed for a later part of a proof,
introduce it by writing Observe that, or Note that, or But, or Now.

Sometimes in a proof it is desirable to define a new variable in terms of previous
variables. In such a case, introduce the new variable with the word Let. For instance,
in the proof of Theorem 3.1.1, once it is known that m +n = 2(r + 5), where r and s
are integers, a new variable £ is introduced to represent » -+ 5. The proof goes on to
say, “Let k = r + 5. Then k is an integer because it is a sum of two integers.”

Variations among Proofs

It is rare that two proofs of a given statement, written by two different people, are identical.
Even when the basic mathematical steps are the same, the two people may use different
notation or may give differing amounts of explanation for their steps. or may choose
different words to link the steps together into paragraph form. An important question
is how detailed to make the explanations for the steps of a proof. This must ultimately
be worked out between the writer of a proof and the intended reader, whether they be
student and teacher, teacher and student, student and fellow student, or mathematician and
colleague. Your teacher may provide explicit guidelines for you to use in your course. Or
you may follow the example of the proofs in this book (which are generally explained rather
fully in order to be understood by students at various stages of mathematical development).
Remember that the phrases written inside brackets [ | are intended to elucidate the logical
flow or underlying assumptions of the proof and need not be written down at all. It is
entirely your decision whether to include such phrases in your own proofs.

Common Mistakes

The following are some of the most common mistakes people make when writing math-
ematical proofs.

1. Arguing from examples.

Looking at examples is one of the most helpful practices a problem solver can
engage in and is encouraged by all good mathematics teachers. However, it is a
mistake to think that a general statement can be proved by showing it to be true for
some special cases. A universal statement may be true in many instances without being
true in general.

Here is an example of this mistake. It is an incorrect “proof™ of the fact that the
sum of any two even integers is even. (Theorem 3.1.1).

This is true because if m = 14 and n = 6. which are both even,

then m + n = 20, which is also even.
Some people find this kind of argument convincing because it does, after all, consist
of evidence in support of a true conclusion. But remember that when we discussed
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I~

valid arguments, we pointed out that an argument may be invalid and yet have a true
conclusion. In the same way, an argument from examples may be mistakenly used to
“prove” a true statement. In the example above, it is not sufficient to show that the
conclusion “m + n is even™ is true for m = 14 and n = 6. You must give an argument
to show that the conclusion is true for any even integers m and n.

. Using the same letter to mean two different things.

Some beginning theorem provers give a new variable quantity the same letter name
as a previously introduced variable. Consider the following “proof™ fragment:

Suppose m and n are odd integers. Then by definition of odd,
m =2k + | and n = 2k + 1 for some integer k.

This isincorrect. Using the same symbol, k, in the expressions for both m and n implies
that m = 2k + 1 = n. It follows that the rest of the proof applies only to integers m
and n that equal each other. This is inconsistent with the supposition that m and n are
arbitrarily chosen odd integers. For instance, the proof would not show that the surm
of 3 and 5 is even.

. Jumping to a conclusion.

To jump to a conclusion means to allege the truth of something without giving an
adequate reason. Consider the following “proof™ that the sum of any two even integers
is even,.

Suppose m and n are any even integers. By definition of even, m = 2r and
n = 2s for some integers r and s. Then m + n = 2r + 2s. So m + n is even.

The problem with this “proof™ is that the crucial calculation
2r +2s =2(r +5)

is missing. The author of the “proof™ has jumped prematurely to a conclusion.

. Begging the question.

To beg the question means to assume what is to be proved: it is a variation of
Jumping to a conclusion. As an example, consider the following “proof™ of the fact
that the product of any two odd integers is odd:

Suppose m and n are any odd integers. When any odd integers are
multiplied, their product is odd. Hence mn is odd.

Here is another, more subtle example of the same mistake.

Suppose m and n are odd integers. If mn is odd, then mn = 2k + 1 for
some integer k. Also by definition of odd, m = 2a + 1 and n = 2b + 1 for
some integers ¢ and b. Then mn = (2a + 1)(2b + 1) = 2k + 1. which

is odd by definition of odd. This is what was to be shown.

The problem with this “proof™ is that the author first states what it means for the
conclusion to be true (that m - n can be expressed as 2k + 1 for some integer k) and
later just assumes it to be true (by setting (2a + 1) - (2b + 1) equal to 2k + 1). Thus
the author of the “proof™ begs the question.

. Misuse of the word if.

Another common error is not serious in itself, but it reflects imprecise thinking thz
sometimes leads to problems later in a proof. This error involves using the word
when the word because is really meant. Consider the following proof fragment:
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Suppose p is a prime number. If p is prime, then p cannot be
written as a product of two smaller positive integers.

The use of the word if in the second sentence is inappropriate. It suggests that the
primeness of p is in doubt. But p is known to be prime by the first sentence. It cannot
be written as a product of two smaller positive integers because it is prime. Here is a
correct version of the fragment:

Suppose p is a prime number. Because p is prime, p cannot be
written as a product of two smaller positive integers.

Getting Proofs Started

Believe it or not, once you understand the idea of generalizing from the generic particular
and the method of direct proof, you can write the beginnings of proofs even for theorems
you do not understand. The reason is that the starting point and what is to be shown in a
proof depend only on the linguistic form of the statement to be proved. not on the content
of the statement.

Example 3.1.8 Identifying the “Starting Point” and the “Conclusion to Be Shown”

Write the first sentence of a proof of the following statement (the “starting point™) and the
last sentence of a proof (the “conclusion to be shown™):

Every complete, bipartite graph is connected.  You are not expected to
understand this statement.

Solution It is helpful to rewrite the statement formally using a quantifier and a variable:

domain hypothesis conclusion
; .

Formal Restatement: ¥ graphs G, if G is complete and bipartite, then G is connected.

The first sentence, or starting point, of a proof supposes the existence of an object (in
this case G) in the domain (in this case the set of all graphs) that satisfies the hypothesis
of the if-then part of the statement (in this case that G is complete and bipartite). The
conclusion to be shown is just the conclusion of the if-then part of the statement (in this
case that G is connected).

Starting Point: Suppose G is a [ particular but arbitrarily chosen] graph such that G
is complete and bipartite.

Conclusion to Be Shown: G is connected.
Thus the proof has the following first and last sentences:

First sentence of proof: Suppose G is a [particular but arbitrarily chosen] graph such
that G is complete and bipartite.

Last sentence of proof: Therefore G is connected.

Of course, to reach the last sentence of the proof, the definitions of the terms will have to
be used. N

Showing That an Existential Statement Is False

Recall that the negation of an existential statement is universal. It follows that to prove an
existential statement is false, you must prove a universal statement (its negation) is true.
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Example 3.1.9 Disproving an Existential Statement

Pierre de Fermat
(160]1-1665)

Andrew Wiles
(born 1953)

Show that the following statement is false:

There is a positive integer n such that n* + 3n + 2 is prime.

Solution  Proving that the given statement is false is equivalent to proving its negation is

true. The negation is
For all positive integers n, n* + 3n + 2 is not prime.

Because the negation is universal, it is proved by generalizing from the generic particular.

Claim: The statement “There is a positive integer n such that n% + 3n + 2 is prime” is
false.

Proof:

Suppose n is any [particular but arbitrarily chosen) positive integer. [We will show
that n® +3n + 2 is not prime.] We can factor n> +3n +2 to obtain n2 +3n +2 =
(n +1)(n + 2). We also note that n + 1 and n + 2 are integers (because they are sums of
integers) and that bothn + 1 > I andn +2 > 1 (because n > 1). Thus n2 +3n + 2 isa
product of two integers each greater than 1, and so n? + 3n + 2 is not prime. E

Conjecture, Proof, and Disproof

CORBIS

Andrew Wiles/Princeton University

More than 350 years ago, the French mathematician Pierre de Fermat claimed that it is
impossible to find positive integers x, y, and z with x” + y" = 2" if n is an integer that
is at least 3. (For n = 2, the equation has many integer solutions, such as 3% + 42 = 5°
and 5% 4 12% = 13%) Fermat wrote his claim in the margin of a book, along with the
comment “T have discovered a truly remarkable proof of this theorem which this margin
is too small to contain.” No proof, however, was found among his papers. and over the
years some of the greatest mathematical minds tried and failed to discover a proof or a
counterexample, for what came to be known as Fermat’s last theorem.

In 1986 Kenneth Ribet of the University of California at Berkeley showed that if a
certain other statement, the Taniyama—Shimura conjecture, could be proved, then Fermat s
theorem would follow. Andrew Wiles, an English mathematician and faculty member at
Princeton University, had become intrigued by Fermat's claim while still a child and, as
an adult, had come to work in the branch of mathematics to which the Taniyama-Shimura
conjecture belonged. As soon as he heard of Ribet’s result, Wiles immediately set to work
to prove the conjecture. In June of 1993, after 7 years of concentrated effort, he presented
a proof to worldwide acclaim.

During the summer of 1993, however, while every part of the proof was being carefully
checked to prepare for formal publication, Wiles found that he could not justify one step
and that that step might actually be wrong. He worked unceasingly for another year to
resolve the problem, finally realizing that the gap in the proof was a genuine error but
that an approach he had worked on years earlier and abandoned provided a way around
the difficulty. By the end of 1994, the revised proof had been thoroughly checked and
pronounced correct in every detail by experts in the field. It was published in the Annals
of Mathematics in 1995. Several books and an excellent documentary television show
have been produced that convey the drama and excitement of Wiles’s discovery.*

*“The Proof,” produced in 1997, for the series Nova on the Public Broadcasting System: Fermat's
Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem, by Simon Singh and
John Lynch (New York: Bantam Books, 1998); Fermat's Last Theorem: Unlocking the Secret of
an Ancient Mathematical Problem by Amir D. Aczel (New York: Delacorte Press, 1997).
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One of the oldest problems in mathematics that remain unsolved is the Goldbach
conjecture. In Example 3.1.5 it was shown that every even integer from 4 to 30 can be
represented as asum of two prime numbers. More than 250 years ago. Christian Goldbach
(1690-1764) conjectured that every even integer greater than 2 can be so represented.
Explicit computer-aided calculations have shown the conjecture to be true up to at least
10'6. But there is a huge chasm between 106 and infinity. As pointed out by James Gleick
of the New York Times, many other plausible conjectures in number theory have proved
false. Leonhard Euler (1707-1783), for example, proposed in the eighteenth century that
4* + b* + ¢* = d* had no nontrivial whole number solutions. In other words, no three
perfect fourth powers add up to another perfect fourth power. For small numbers, Euler’s
conjecture looked good. But in 1987 a Harvard mathematician, Noam Elkies, proved it
wrong. One counterexample, found by Roger Frye of Thinking Machines Corporation in
a long computer search, is 05.800% + 217.519% + 414,560" = 422,481%

In May 2000, “to celebrate mathematics in the new millennium,” the Clay Mathematics
Institute of Cambridge. Massachusetts, announced that it would award prizes of $1 million
each for the solutions to seven longstanding, classical mathematical questions. One of
them. “P vs. NP,” asks whether problems belonging to a certain class can be solved on a
computer using more efficient methods than the very inefficient methods that are presently
known to work for them. This question is discussed briefly at the end of Chapter 9.

Exercise Set 3.1'

- 1-3. use the definitions of even, odd, prime, and composite
justify each of your answers.
1. Assume that k is a particular integer.
a. Is —17 an odd integer? b. Is 0 an even integer?
c. Is 2k — 1 0dd?
3. Assume that m and n are particular integers.

a. Is 6m + 8n even? b. Is 10mn + 7 odd?
c. Ifm > n > 0, ism® —n* composite?

3 Assume that r and s are particular integers.
a. Is 4rs even? b, Is 6 + 457 + 3 odd?
¢c. If r and s are both positive, is r2 + 2rs 4+ 5* composite?
Prove the statements in 4-10.
4, There are integers m and n such that m = 1 and n > 1 and

1. .
— 4+ — 1s an integer.
m n

N

_ There are distinct integers m and n such that L —+ ]— 1s an
integer. 7
. There are real numbers a and b such that
\-"’m = \.-";f_f + \ﬁ?.
7. There is an integer n > 5 such that 2" — 1 is prime.

4. There is a real number x such that.x > | and 2% > x'%.

Definition: An integer n is called a perfect square if, and
only if, n = k2 for some integer k.

9. There is a perfect square that can be written as a sum of two
other perfect squares.

10. There is an integer n such that 2n® — 5n + 2 is prime.
Disprove the statements in 11-1 3 by giving a counterexample.

11. For all real numbers a and b, if a < b then al < b

. " e % n—1,
12. For all integers n, if n is odd then ——— 18 odd.

13. For all integers m and n, if 2m +n is odd then m and n are
both odd.

[n 14-16. determine whether the property is true for all integers.
true for no integers, or true for some integers and false for other
integers. Justify your answers.
4. (a+bP=a+P 15. 3n® —4n + | is prime.
16. The average of any two odd integers is odd.

Prove the statements in 17 and 18 by the method of exhaustion.

17. Every positive even integer less than 26 can be expressed
as a sum of three or fewer perfect squares. (For instance,
10=1>+43%and 16 = 4%)

‘James Gleick, “Fermat’s Last Theorem Still Has Zero Solutions,” New York Times, 17 April 1988.

For exercises with blue numbers, solutions are given in Appendix B. The sy mbol H indicates that only a hint or partial solution is

siven. The symbol * signals that an exercise is more challenging than usual.
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I8. Foreach integer n with | S0 —n4 11 a prime
number,

19. a4, Rewrite the following theorem in the foomv____ ir

— then .
b. Fill in the blanks in the proof,

Theorem: The sumofany even integer and any odd integer

1s odd.

Proof: Suppose m is any even integer and j; i A8 By
definition of even, m = 2r for some _(b) and by definition
of odd, n = 25 4 | for some integer s, By substitution anqd
algebra, m + , — L) R P ¥)+ 1. Since r and g are

both integers, so is their sum » + g, Hence m + » hag the

form 2 . (some integer) + 1, and so (d) by definition of

odd.

Each of the statements in 20-23 i true. For each, (a) rewrite the
Statement using a variable or variables and the foomv_____
if then____ ang (b) write the firs Sentence of a proof
(the “starting point™) and the last sentence of a proof (the “con-
clusion to be shown™), Note that you do noy need to understand
the statements in order to be able to do these exercises,

1 1
20. Forall integers m, if yy ~ | then) < — |
m

21. For all real numbers v, if v - | then x° ~ .

22. For al] integers m and 5. if Mi=1then m =y = o
m=n=_1,

23. For all regl numbers v, if () < ; - | then x? < 4.

Prove the statemens in 24-30, Follow the directiong given in
this section for writing proofs of universal statements.

24. The negative of any even integer is even,

25

The difference of any even integer minys any odd integer is
odd.

26. The difference of any odd integer minus any even integer is
odd. (Note: The “proof™ shown in exericse 35 contains an
error. Can you spot j1?)

27. The sum of any two odd integers is even.

28. For all integers n, if n is odd then n? is odd.

29 Ifpis any even integer, then (— )" — l.

30. Ifnis any odd integer, then (=1 ==1_

Prove that the Statements in 31-33 gre false,

31. There exists an integer m > 3 such that m? — | jg prime,
32. There exists an integer i such (hat 6n® 4 27 is prime,

33. There exists an integer k such that & =>4and 2k° — 54 4 5
is prime,

Find the mistakes in the “proofs™ shown in 3438

fa
<

L7%]
&

Theorem: For g integers k, if k > () then K542k 41 s
composite.

“Proof: For f — 2 2 t2%k+1=2212.2 +1=9 By
9=3-3 andso9js composite. Hence the theorem is trye.

s
i

Theorem: The difference between any odd integer and any
even integer is odd.

“Proof: Suppose n is any odd integer, and m is any even
integer, By definition of odd. n = 24 4 | Where £ is ap
integer, and by definition of €ven. m = 2k where k is an
integer. Then » — m=2k+1)-2k — 1. But 1 is odd
Therefore, the difference between any odd integer and any
even integer is odd.”

Theorem: For q) integers &, if k - ( then &% + 2k 4 | ;.
composite,

“Proof: Suppose f is any integer such that 4 0. If & +
2k+1is composite, then k2 + 24 + 1 =15 for some in-
tegersr and s such that | < "< (k*+ 2% + Dand | < -
(k% + 2k + 1), Since k2 2% | = "+ s and both » and |
are strictly between land k* 4 2 + 1, then k2 + 24 + 1 1s
Not prime. Hence 42 + 2+ 1 s composite as was 1o he
shown,”

37. Theorem: The product of an even integer and an odd integer
is even,
“Proof: Suppose m is an even integer and # s an odd ine-
ger Ifm - n is even, then by definition of even there existe
an integer r such that m-n=2r. Also since m is even
there exists an integer p such that " =2p. and since i
0dd there exists an integer ¢ such that , — 2g + 1. Thus

MeR=(2p)-(2g+1) =2
where r is an integer. By definition of evep, then, m -y i«
€ven, as was to be shown_ "
38. Theorem: The sum of any two even integers equals 44 for
some integer k.

“Proof: Suppose and n are any two even integers, By def-
inition of even, ;m — 2k for some integer & and y — 2k for
some integer k. By substitution. mA+n =2k 4 2% = 4
This is what was to be shown,”

In39-56 determine whether the statement js true or false. Justi fx

your answer with g proof or a counterexample, as appropriate.
39. The product of any two odd integers is odd.
40. The negative of any odd integer is odd.

41. The difference of any two odd integers is odd.

42. The product of any even integer and any integer is even.

43. If a sum of 1wo integers is even, then one of the summands

is even. (In the expression ¢ + b, g and p are called sum-
mands, )
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— The difference of any two even integers is even.

The difference of any two odd integers is even.

For all integers n and m, if n — m is even then n* —m* is
even.

For all integers n, if n is prime then (—1)" = —1.

For all integers m, if m > 2 then m> — 4 is composite.

For all integers n, n* — n + 11 is a prime number,

For all integers n. 4(n® +n + 1) — 3n” is a perfect square.

Every positive integer can be expressed as a sum of three or
fewer perfect squares.

[wointegers are consecutive if, and only if, one is one more
than the other.) Any product of four consecutive integers is
me less than a perfect square.

o and n are positive integers and mn is a perfect square,
then m and n are perfect squares.

The difference of the squares of any two consecutive inte-
sers is odd.

; — -
For all nonnegative real numbers a and b, vab = Jav/b.
Note that if x is a nonnegative real number. then there is a

mique nonnegative real number v, denoted /x. such that
> =x)

For all nonnegative real numbers a and b.

va+b= \-"E o v’%.

32

o
-1

H * 58.
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It m and n are perfect squares, thenm + n + 2/mn is also
a perfect square. Why?

If p is a prime number, must 2” — | also be prime? Prove
or give a counterexample.

If n is a nonnegative integer, must 2= + | be prime? Prove
or give a counterexample.

. When expressions of the form (x —r)(x — ) are multi-

plied out, a quadratic polynomial is obtained. For instance,
(x = = (=7 =(x =2)(x +7) = x* +5x — 14,

H a. What can be said about the coefficients of the polyno-

* 61,

mial obtained by multiplying out (x — r)(x — 5) when
both r and s are odd integers? when both r and s are
even integers? when one of r and s is even and the other
is odd?

b. It follows from part (a) that x* — 1253x + 255 cannot
be written as a product of two polynomials with integer
coefficients. Explain why this is so.

Observe that (x — r)(x —s)(x —1)

=x'—(r+s+0x>+ (rs +rt +s1)x —rst.

a. Derive a result for cubic polynomials similar to the result
in part (a) of exercise 60 for quadratic polynomials.

b. Can 15x% 4 7x* — 8x — 27 be written as a product of
three polynomials with integer coefficients? Explain.

3.2 Direct Proof and Counterexample II:

Rational Numbers

Such, then, is the whole art of convincing. It is contained in two principles: to define all

notations used, and 1o prove everything by replacing mentally the defined terms by their
definitions. — Blaise Pascal, 1623-1662

Sums, differences, and products of integers are integers. But most quotients of integers
are not integers. Quotients of integers are, however, important: they are known as rational

numbers.

A real number r is rational if, and only if, it can be expressed as a quotient of two
integers with a nonzero denominator. A real number that is not rational is irrational.

More formally, if » is a real number. then

risrational < 3integers a and b such that r = b and b # 0.

|
|
|
a |
|
|

The word rational contains the word ratio, which is another word for quotient. A rational
number is a fraction or ratio of integers.
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Example 3.2.1 Determining Whether Numbers Are Rational or Irrational

d.

b.

Is 10/3 a rational number?

Is —(5/39) a rational number?
Is 0.281 a rational number?

Is 7 a rational number?

Is O a rational number?

f. Is 2/0 a rational number?

g. Is 2/0 an irrational number?

h. 1s0.12121212. .. arational number (where the digits 12 are assumed to repeat forever)

i. If m and n are integers and neither m nor n is zero, is (m + n)/mn a rational number’
Solution

a. Yes, 10/3 is a quotient of the integers 10 and 3 and hence is rational.

. Yes, —(5/39) = —5/39, which is a quotient of the integers —5 and 39 and hence i

rational.

. Yes, 0.281 = 281/1000. Note that the real numbers represented on a typical calculator

display are all finite decimals. An explanation similar to the one in this example shows
that any such number is rational. It follows that a calculator with such a display can
represent only rational numbers,

Yes, 7=17/1.
. Yes,0=0/1.
. No, 2/0 is not a number (division by 0 is not allowed).

. No, because every irrational number is a number, and 2/0 is not a number. We discuss

additional techniques for determining whether numbers are irrational in Sections 3.6.
3.7,and 7.4.

. Yes. Letx = 0.12121212.... Then 100x = 12.12121212.... Hence

100x —x =12.12121212... - 0.12121212... = 12,
But also
100x —x = 99x by basic algebra

Hence

99x = 12,
and so

12

xi= 99"

Therefore, 0.12121212... = 12/99. which is a ratio of two nonzero integers and thus

is a rational number.
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Note that you can use an argument similar to this one to show that any repeating
decimal is a rational number. In Section 7.3 we show that any rational number can be
written as a repeating or terminating decimal.

i, Yes. since m and n are integers, so are m +n and mn (because sums and products of
integers are integers). Also mn = 0 by the zero product property. (One version of
this property says that if neither of two real numbers is 0, then their product is also not
0. See exercise 8 at the end of this section.) It follows that (m + n)/mn is a quotient
of two integers with a nonzero denominator and hence is a rational number. =

More on Generalizing from the Generic Particular

[EVET . . > n L. = !
Some people like to think of the method of generalizing from the generic particular as

umber a challenge process. If you claim a property holds for all elements in a domain, then
someone can challenge your claim by picking any element in the domain whatsoever and
asking you to prove that that element satisfies the property. To prove your claim. you
must be able to meet all such challenges. That is, you must have a way to convince the
challenger that the property is true for an arbitrarily chosen element in the domain.

1ence A . : ; 5+
For example, suppose “A” claims that every nteger 15 a rational number. “B” chal-
lenges this claim by asking “A” to prove it forn = 7. “A” observes that
lculatos
e shows T == which is 1 quetient of integers and hence rational
play ca=
“B” accepts this explanation but challenges again with n = —12. “A” responds that
—12 = ——  which is a quotient of integers and hence rational
Next “B” tries to trip up “A” by challenging with n = 0, but “A” answers that
e discuss
Gons 3.8 0=- which is a quotient ol integers and hence rational.
ons 2.
As you can see. “A” is able to respond effectively to all “B”'s challenges because “A” has a
general procedure for putting integers into the form of rational numbers: “A” just divides
whatever integer “B” gives by 1. That is, no matter what integer n “B” gives “A”, "A”
writes
n
n=-—- which is a quotient of integers and hence rational
This discussion proves the following theorem.
Theorem 3.2.1 '
Every integer is a rational number.
rs and thus In exercise 11 ¢ el BT : : : s
n exercise 11 at the end of this section you are asked to condense the above discussion

into a formal proof.
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Proving Properties of Rational Numbers

The next example shows how to use the method of generalizing from the generic particular
to prove a property of rational numbers.

Example 3.2.2 A Sum of Rationals Is Rational
Prove that the sum of any two rational numbers is rational.
Solution Begin by mentally or explicitly rewriting the statement to be proved in the form
oy if _ then_____.7
Formal Restatement: ¥ real numbers r and s. if r and s are rational then r + s is rational

Next ask yourself, “Where am | starting from?” or “What am I supposing?” The answer
gives you the starting point, or first sentence, of the proof.

Starting Point: Suppose r and s are particular but arbitrarily chosen real numbers such
that r and s are rational; or, more simply.

Suppose r and s are rational numbers.

Then ask yourself, “What must I show to complete the proof?”
To Show: r + s is rational.

Finally you ask, “How do I get from the starting point to the conclusion?” or “Why must
r -+ s be rational if both r and s are rational?” The answer depends in an essential way on
the definition of rational.

Rational numbers are quotients of integers, so to say that r and s are rational means
that

P s and s = £ for some integers a, b, c. and d
b d  whereb #0andd # 0.

It follows by substitution that

n a n {4
r § == —=a
b d
Hence you must show that the right-hand sum can be written as a single fraction or ratic
of two integers with a nonzero denominator. But

a ¢ ad  Dbc  rewriting the fraction with a common

E i J - Q L E denominator

ad + be adding fractions with a common
hd denominator.

s this fraction a ratio of integers? Yes. Because products and sums of integers are integers.
ad -+ be and bd are both integers. Is the denominator bd # 0? Yes, by the zero product
property (since b # 0 andd # 0). Thus r + s is a rational number.

This discussion is summarized as follows:
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Theorem 3.2.2

_— The sum of any two rational numbers is rational. ‘

Proof:

Suppose r and s are rational numbers. [We must show that r -+ 5 is rational.] Then, ‘
by definition of rational, r = a/b and s = ¢/d for some integers a, b, ¢, and d with
b # 0andd # 0. Thus ‘

] ] a c )
- r+s= 1?? -+ J by substitution
nSweEr ad + be _
= T by basic algebra.

Let p = ad + bcand g = bd. Then p and q are integers because products and sums
of integers are integers and because a, b, ¢, and d are all integers. Also ¢ # 0 by the
| zero product property. Thus

b= £ where p and g are integers and qg #0.
q

i Therefore. r + s is rational by definition of a rational number. [This is what was to

vay on : be shown. ] I

Deriving New Mathematics from Old

Section 3.1 focused on establishing truth and falsity of mathematical theorems using only
the basic algebra normally taught in secondary school: the fact that the integers are closed
under addition, subtraction, and multiplication; and the definitions of the terms in the
theorems themselves. In the future, when we ask you to prove something directly from
the definitions, we will mean that you should restrict yourself to this approach. However,
once a collection of statements has been proved directly from the definitions, another

r rat method of proof becomes possible. The statements in the collection can be used to derive
additional results.

Example 3.2.3 Deriving Additional Results about Even and Odd Integers
Suppose that you have already proved the following properties of even and odd integers:

I. The sum, product, and difference of any two even integers are even.
[=]

%]

The sum and difference of any two odd integers are even.

[

|

¥
ad

- The product of any two odd integers is odd.

a5

- The product of any even integer and any odd integer is even.

Lh

. The sum of any odd integer and any even integer is odd.

6. The difference of any odd integer minus any even integer is odd.

7. The difference of any even integer minus any odd integer is odd.

Use the properties listed above to prove that if a is any odd integer and b is any given

. a’+ b4 ; ;
integer, then —5— is an integer.
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Solution

Suppose a is any odd integer and b is any even integer. By property 3, b? is odd.

and by property 1, a® is even. Then by property 5, a* + b? is odd, and because 1 is alse
odd, the sum (a* + b*) + 1 = a*> + b*> + 1 is even by property 2. Hence, by definitios
of even, there exists an integer k such that a® 4+ b? + 1 = 2k. Dividing both sides by 2

. ar4br+1
gives ———

shown].

= k, which is an integer. Thus

a*+b*+ 1. ; .
——— is an integer [as was to be

A corollary is a statement whose truth can be immediately deduced from a theorem

that has already been proved.

Example 3.2.4 The Double of a Rational Number

Derive the following as a corollary of Theorem 3.2.2.

Corollary 3.2.3
|

| The double of a rational number is rational.

Solution

The double of a number is just its sum with itself. But since the sum of any twe

rational numbers is rational (Theorem 3.2.2), the sum of a rational number with itself
rational. Hence the double of a rational number is rational. Here is a formal version of

this argument:

Proof:

Suppose r is any rational number. Then 2r = r 4 r is a sum of two rational numbers. Sc
by Theorem 3.2.2, 2r is rational.

Exercise Set 3.2

The numbers in 1-7 are all rational. Write each number as a ratio

of two integers.

9.

10.

35

— 2. 4.6037 3.
6

| =
L=l B

. 0.37373737...

. 0.56565656. ..

. 320.5492492492 . ..

. 52.4672167216721. ..

. The zero product property says that if a product of two real

numbers is 0, then one of the numbers must be 0.

a. Write this property formally using quantifiers and vari-
ables.

b. Write the contrapositive of your answer to part (a).

¢. Write an informal version (without quantifier symbols or
variables) for your answer to part (b).

Assume that @ and b are both integers and that @ # 0 and
b # 0. Explain why (b — a)/(ab®) must be a rational num-
ber.

Assume that m and n are both integers and that n # 0. Ex-
plain why (5m + 12n)/(4n) must be a rational number.

. Prove that every integer is a rational number.

. Fill in the blanks in the following proof that the square of

any rational number is rational:

Proof: Suppose that r is @ By definition of ratic-
nal, » = a/b for some ) with b # 0. By substitutior.
12 =& — 42/b?. Since a and b are both integers, so are
the products a® and (@) Also b? # 0 by the ®)  Hence
r* is a ratio of two integers with a nonzero denominator, an<

so () by definition of rational.

Determine which of the statements in 13-19 are true and whics

are false. Prove each true statement directly from the defini-
tions, and give a counterexample for each false statement. Iz
case the statement is false. determine whether a small changs

would make it true. If so. make the change and prove the ne

statement.

13. The product of any two rational numbers is a rational num-

H 14.

ber.

The quotient of any two rational numbers is a rational num-

ber.

. The difference of any two rational numbers is a rationz

number.

g
{

I

i
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If 1s
n of

So.

. a
= 18, For all real numbers a and b. if ¢ < b thena <

16. Given any rational number r, —r is also a rational number,

= 17. If r and s are any two rational numbers with r < s, then

r4s; ;
1§ rational.

+ b

= b

(You may use the properties of inequalities in T16-T25 of

Appendix A.)

19. Given any two rational numbers r and s with r < s, there
is another rational number between » and s. (Hint: Use the
results of exercises 17 and 18.)

Use the properties of even and odd integers that are listed in
Example 3.2.3 to do exercises 20-22. Indicate which properties
uuse to justify your reasoning,

20. True or false? If m is any even integer and n is any odd
integer, then m? + 3n is odd. Explain.

21. True or false? If a is any odd integer, then a® + a is even.
Explain.

22. True or false? If k is any even integer and m is any odd
integer, then (k +2)* — (m — 1) is even. Explain.

Derive the statements in 23-25 as corollaries of Theorems 3.2.1.
*.2.2. and the results of exercises 12, 13, 15, and 16.

23. For any rational numbers r and 8, 2r + 35 is rational.
4. If r is any rational number, then 372 — 2r + 4 is rational.
=3. For any rational number s, 55° + 8s% — 7 is rational.
26. Itis a fact that if n is any nonnegative integer, then
PRV B SR S o)
2 22 » 2n 1 —1(1/2)

(A more general form of this statement is proved in Section
4.2). Is a number of this form rational? If S0, express it as
a ratio of two integers.

Z7. Supposea, b, ¢, and d are integers and a # ¢. Suppose also
that x is a real number that satisfies the equation
ax + b

=1
cx +d

Must x be rational? If so, express v as aratio of two integers,

-%. Suppose a, b, and c are integers and x, v, and 7 are nonzero

real numbers that satisfy the following equations:

Xy Xz yz
— =a and —— =pH and - —.
xX+y x4z y+z

Is x rational? If so, express it as a ratio of two integers.

=9. Prove that if one solution for a quadratic equation of the
form x* + bx 4 ¢ = 0 is rational (where b and ¢ are ra.
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tional), then the other solution is also rational. (Use the
fact that if the solutions of the equation are » and s. then
by +e=(x—r)(x —s))

30. Prove that if a real number c satisfies a polynomial equation
of the form

5
rax’ + rRx*+rnx+rn=0,

where rg, ry, r5, and r; are rational numbers, then ¢ satisfies
an equation of the form

)
n3x® + npx? + mx+ny=0,

where ng, ny, n,, and n; are integers.

Definition: A number ¢ is called a root of a polynomial p(x)
if, and only if, p(c) = 0.

31. Prove that forall real numbers ¢, if ¢ is a root of a polynomial
with rational coefficients, then ¢ is a root of a polynomial
with integer coefficients.

In 32-36 find the mistakes in the “proofs™ that the sum of any
two rational numbers is a rational number.

32. “Proof: Let rational numbers r = 1 and s = ! be given.

Thenr +s = % +1= } which is a rational number, This
is what was to be shown.”

33. “Proof: Any two rational numbers produce a rational num-
ber when added together. So if r and s are particular but
arbitrarily chosen rational numbers, then r - s is rational.”

34. “Proof: Suppose r and s are rational numbers. By defi-
nition of rational, » = a/b for some integers a and b with
b +#0,and s = a/b for some integers a and b with b # 0.
Then r+s=a/b+a/b = 2a/b. Let p =2a. Then p
is an integer since it is a product of integers. Hence
r+s = p/b. where p and b are integers and b # 0. Thus
7+ s is a rational number by definition of rational. This is
what was to be shown.”

35. “Proof: Suppose r and s are rational numbers. Then
r=a/band s = c¢/d for some integers a, b, ¢, and d with
b # 0 and d # 0 (by definition of rational). Then r + 5 =
a/b+c/d. But this is a sum of two fractions. which is
a fraction. So r 4 s is a rational number since a rational
number is a fraction.”

36. “Proof: Suppose r and s are rational numbers, If r + 5 is
rational, then by definition of rational r + 5 — a/b for some
integers a and b with b £ 0. Also since r and s are ratio-
nal, r = i/j and s = m/n for some integers i, j, m, and n
with j # Oandn # 0. Itfollows that 7 + 5 — ifj+m/n=
a/b, which is a quotient of two integers with a nonzero de-
nominator. Hence it is a rational number. This is what was
to be shown.”




Chapter 3 Elementary Number Theory and Methods of Proof

3.3 Direct Proof and Counterexample IlI:
Divisibility

The essential quality of a proof is to compel belief. — Pierre de Fermat

When you were first introduced to the concept of division in elementary school, you were
probably taught that 12 divided by 3 is 4 because if you separate 12 objects into groups
of 3. you get 4 groups with nothing left over.

|xxx| [xxx| [xxx]| |[xxx]|

You may also have been taught to describe this fact by saying that *12 is evenly divisible

by 3" or 3 divides 12 evenly.” Ex
The notion of divisibility is the central concept of one of the most beautiful subjects

in advanced mathematics: number theory, the study of properties of integers.

= Definition

If n and d are integers, then
n is divisible by d if, and only if, n = dk for some integer k.
Alternatively. we say that

n is a multiple of d, or E
d is a factor of n, or

d is a divisor of n, or

d divides n.

The notation d | n is read “d divides n.” Symbolically, if n and d are integers and
d #0,

d|n < 3Janintegerk such thatn = dk.

Example 3.3.1 Divisibility

Solution

a. Is 21 divisible by 3? b. Does 5 divide 40? c. Does 7427
d. Is 32 a multiple of —16? e. Is 6 a factor of 547 f. Is 7 a factor of —77
a: Yes; 2L =3-7. b. Yes,40=5-8. c. Yes, 42=17:6.

d. Yes, 32 = (—16) - (—2). e. Yes,54 =6-09, f. Yes, =7=7-(—1). i

Example 3.3.2 Divisors of Zero

If k is any integer. does k divide 0?

Solution  Yes, because 0 = & - 0. n

Example 3.3.3 The Positive Divisors of a Positive Number

Suppose @ and b are positive integers and a | b. Isa < b?
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3.3 Direct Proof and Counterexample I11: Divisibility 149

Solution  Yes. To say that a | b means that b = ka for some integer k. Now k must be a
positive integer because both a and b are positive. It follows that
Il <k
because every positive integer is greater than or equal to 1. Multiplying both sides by a

agives

a<k-a=bh

(since multiplying both sides of an inequality by a positive number preserves the
inequality—property T19 of Appendix A). =

Example 3.3.4 Divisors of 1

Which integers divide 17

Solution By Example 3.3.3 any positive integer that divides 1 is less than or equal to 1.
Since 1 = 1.1, 1 divides 1, and there are no positive integers that are less than 1. So the
only positive divisor of 1 is 1.

On the other hand. if d is a negative integer that divides 1, then 1 = dk. and so

1 = |d] - |[k|. Hence |d| is a positive integer that divides 1. Thus |d| = |, andsod = —1.
It follows that the only divisors of | are 1 and —1. =]

Example 3.3.5 Divisibility of Algebraic Expressions
a. If a and b are integers, is 3a + 3b divisible by 3?
b. If k and m are integers. is 10km divisible by 5?
Solution

a. Yes. By the distributive law of algebra, 3a + 3b = 3(a + b) and a + b is an integer
because it is a sum of two integers.

b. Yes. By the associative law of algebra, 10km = 5 - (2km) and 2km is an integer
because it is a product of three integers. ]

When the definition of divides is rewritten formally using the existential quantifier,
the result is

d|n < 3Janinteger k such thatn = dk.

Since the negation of an existential statement is universal, it follows that ¢ does not divide

n (denoted d [ n)if. and only if, ¥ integers k. n # dk. or, in other words. the quotient i /d
is not an integer.

s : n. .
Forall integersnandd, d fn < 7 is not an integer.
4

Example 3.3.6 Checking Nondivisibility
Does 4| 157

Solution  No, '4—‘ = 3.75, which is not an integer. 9}
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& Caution! Be careful to distinguish between the notation a | b and the notation

a/b. The notation a | b stands for the sentence “g divides b,” which means
that there is an integer k such that b = ¢ - k. Dividing both sides by a gives
b/a =k, an integer. Thus, when d # 0,a | bif, and only if, b/a is an integer.
On the other hand, the notation a/b stands for the fractional number a /b (the
inverse fraction!), which may or may not be an integer.

Example 3.3.7 Prime Numbers and Divisibility

An alternative way to define a prime number is to say that an integer n > 1 is prime if.
and only if, its only positive integer divisors are 1 and itself. 8

Proving Properties of Divisibility

One of the most useful properties of divisibility is that it is transitive. If one number
divides a second and the second number divides a third, then the first number divides the
third.

Example 3.3.8 Transitivity of Divisibility

Prove that for all integers a, b, and ¢, if a |band b|c, thena|c.

Solution  Since the statement to be proved is already written formally, you can immediately

pick out the starting point, or first sentence of the proof, and the conclusion that must be
shown.

Starting Point: Suppose a, b, and ¢ are particular but arbitrarily chosen integers such that
albandb|c.

To Show: a | c.
You need to show that a | ¢. or, in other words, that
¢ = a - (some integer).
But since a | b,
b =ar for some integer r. 33
And since b | ¢,
¢ =bs for some integer s. 3.32

Equation 3.3.2 expresses ¢ in terms of b, and equation 3.3.1 expresses b in terms of a.
Thus if you substitute 3.3.1 into 3.3.2. you will have an equation that expresses ¢ in terms
of a.

¢ =bs by equation 3.3.2

= (ar)s by equation 3.3.1.
But (ar)s = a(rs) by the associative law for multiplication. Hence
c=al(rs).

Now you are almost finished. You have expressed ¢ as a- (something). It remains only to

verify that that something is an integer. But of course it is, because it is a product of two
integers.
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This discussion is summarized as follows:

|| Theorem 3.3.1 Transitivity of Divisibility |

| For all integers a, b, and ¢, if a divides b and b divides ¢, then a divides c. |

| Proof:

Supposea, b, and c are [ particular but arbitrarily chosen] integers such that a divides
b and b divides c. [We must show that a divides ¢.] By definition of divisibility,

| b—=ar and c=bs forsome integersr ands.
| By substitution
| c=bs
| = (ar)s
=a(rs) by basic algebra.
Let k = rs. Then k is an integer since it is a product of integers, and therefore

¢ = ak wherekis an integer.

e

|

|

|

|

|

|

|

| Thus a divides ¢ by definition of divisibility. [This is what was to be shown.] |
|

It would appear from the definition of prime that to show that an integer is prime you
would need to show that it is not divisible by any integer greater than 1 and less than
itself. In fact, you need only check divisibility by prime numbers. This follows from
Theorem 3.3.1, Example 3.3.3, and the following theorem, which says that any integer
greater than | is divisible by a prime number. The idea of the proof is quite simple. You
start with a positive integer. If it is prime, you are done: if not, it is a product of two
smaller positive factors. If one of these is prime, you are done: if not, you can pick one
of the factors and write it as a product of still smaller positive factors. You can continue
in this way, factoring the factors of the number you started with, until one of them turns
out to be prime. This must happen eventually because all the factors can be chosen to be
positive and each is smaller than the preceding one.

; -
| Theorem 3.3.2 Divisibility by a Prime

| Any integern > 1 is divisible by a prime number. '

e iR

| roof: |

| Suppose n is a [ particular but arbitrarily chosen) integer that is greater than 1. [We |
must show that there is a prime number that divides n.) 1f n is prime, then n is |
divisible by a prime number (namely itself). and we are done. If n is not prime. then, |

| as discussed in Example 3.1.2b, |
| n=roso Wwherergand sp are integers and
| l <rg<nandl < s <n. |

| It follows by definition of divisibility that ro | n.

|
| continued on page 152 'I
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If ro is prime, then ry is a prime number that divides n, and we are done. If r is not
prime, then

ro = rys where r; and s, are integers and
l<r<rpand 1 < s, < ry.

It follows by the definition of divisibility that r| | rg. But we already know that ry | n.
Consequently, by transitivity of divisibility, r; | n.

If ry is prime, then ry is a prime number that divides n, and we are done. If r; is
not prime, then

ry =r252  where r; and s, are integers and
l<rm<randl <5 <ry.

It follows by definition of divisibility that r» | r;. But we already know that ry | n.
Consequently, by transitivity of divisibility, »; | n.

If ry is prime, then r; is a prime number that divides », and we are done. If r» is
not prime, then we may repeat the above process by factoring r» as r3s3.

We may continue in this way. factoring successive factors of n until we find a
prime factor. We must succeed in a finite number of steps because each new factor
is both less than the previous one (which is less than ) and greater than 1, and there
are fewer than » integers strictly between | and n.* Thus we obtain a sequence

i TR B 5 e Tk,
wherek =20, 1 <rp<r_y<---<ry<r <rg<n.andr; |n foreachi =0, 1.
By k. The condition for termination is that r; should be prime. Hence r; is a

prime number that divides n. [This is what we were to show.]

Counterexamples and Divisibility

To show that a proposed divisibility property is not universally true, you need to find some
integers for which it is false.

Example 3.3.9 Checking a Proposed Divisibility Property
Is it true or false that for all integers @ and b. if a | b and b | a then a = b?

Solution  This proposed property is false. Can you think of a counterexample just by con-
centrating for a minute or so?
The following discussion describes a mental process that may take just a few seconds.
It is helpful to be able to use it consciously, however, to solve more difficult problems.
To discover the truth or falsity of a statement such as the one given above, start off
much as you would if you were trying to prove it.
Starting Point: Suppose a and b are integers such thata | b and b | a.

Ask yourself, “Must it follow that @ = b, or could it happen that a # b for some a and 67"
Focus on the supposition. What does it mean? By definition of divisibility, the conditions
a | b and b | a mean that

b=ka and a=1I[b forsome integers k and /.

*Strictly speaking. this statement is justified by an axiom for the integers called the well-ordering
principle, which is discussed in Section 4.4. Theorem 3.3.2 can also be proved using strong math-
ematical induction, as shown in Example 4.4.1.
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Must it follow that @ = b, or can you find integers a and b that satisfy these equations for
which a # b? The equations imply that
b = ka = k(Ib) = (kl)b.

Since b |a, b # 0, and so you can cancel b from the extreme left and right sides to obtain

it rg | 7 | = kl.
I 5 is In other words, k and [ are divisors of 1. But the only divisors of 1 are 1 and -1
l (see Example 3.3.4). Thus k and [ are both 1 or —1. Ifk=1=1, then b =a. But
ifk=1=—1.then b =—a and so a # b. This analysis suggests that you can find a
counterexample by taking b = —a. Here is a formal answer:
i |7Statement: For all integers a and b. if a | b and b|athena = b.
o' Counterexample: Leta =2 and b = —2. Then
a | b since 2| (—2) and b | a since (=2)|2.buta # b since 2 # -2.
/e find a -
it ‘ Therefore. the proposed divisibility property 1s false.
w factor L o
ind there w
nce
The search for a proof will frequently help you discover a counterexample (provided
the statement you are trying to prove is, in fact. false). Conversely, in trying to find a
=0.1 counterexample for a statement, you may come to realize the reason why it is true (if it is,
e r is a in fact, true). The important thing is to keep an open mind until you are convinced by the

evidence of your own careful reasoning.

The Unique Factorization Theorem

The most comprehensive statement about divisibility of integers is contained in a theorem
known as the unique factorization theorem for the integers. Because of its importance,
this theorem is also called the fundamental theorem of arithmetic. Although Euclid, who
lived about 300 B.C., seems to have been acquainted with the theorem, it was first stated
precisely by the great German mathematician Carl Friedrich Gauss (thymes with house)
in 1801.

The unique factorization theorem says that any integer greater than 1 either is prime
or can be written as a product of prime numbers in a way that is unique except. perhaps,
for the order in which the primes are written. For example,

to find some

just by con-
few seconds ?2=2<2-2-3‘3=2-3<3v2‘2:3-2A2-3-2
. problems.

] and so forth. The three 2’s and two 3’s may be written in any order, butany factorization of
ove, start off

72 as a product of primes must contain exactly three 2's and two 3’s—no other collection
of prime numbers besides three 2°s and two 3’s multiplies out to 72.

[ Theorem 3.3.3 Unique Factorization Theorem for the Integers |
‘ (Fundamental Theorem of Arithmetic) ‘

mea and b7
he conditions

Given any integer n > 1, there exist a positive integer k, distinct prime numbers
Dl P2 i P, and positive integers ey, €2, .. .. e, such that

& &y €3 €k
‘ n=p'pyps .- P
¢ well-orderinz

et P ‘ and any other expression of n as a product of prime numbers is identical to this except,
ng s matn-

perhaps, for the order in which the factors are written. ‘
=
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The proof of the unique factorization theorem is included in Section 10.4.
Because of the unique factorization theorem, any integer n > 1 can be put into =

standard factored form in which the prime factors are written in ascending order from le=
to right.

. Given any integer n > 1, the standard factored form of  is an expression of the
‘ form

=9 L3 Gy - Y - } {73
| =Py PaPy =7 P

where k is a positive integer; py, p., ..., p; are prime numbers; ey, es, .. . ey are
positive integers; and p; < py < --- < py.

Example 3.3.10 Writing Integers in Standard Factored Form
Write 3.300 in standard factored form.

Solution  First find all the factors of 3,300. Then write them in ascending order:
3,300=100-33=4-25-3.11
=2:2-5:5.3.11=22.3". 5 .11%. i

Example 3.3.11 Using Unique Factorization to Solve a Problem
Suppose m is an integer such that

8:7:6:-5-4-3.2.m=17-16-15-14-13-12-11-10.

Does 17 |m?
Solution  Since 17 is one of the prime factors of the right-hand side of the equation, it is alst
a prime factor of the left-hand side (by the unique factorization theorem). But 17 does
not equal any prime factor of 8, 7, 6, 5. 4. 3, or 2 (because it is too large). Hence 17 mus:
occur as one of the prime factors of m, and so 17 | m. 1]

Exercise Set 3.3

Give a reason for your answer in each of 1-13. Assume that all

I4. Fill in the blanks in the following proof that for all integers
variables represent integers.

aand b, ifa|bthena|(—b).
Fia . P Proof: Suppose a and b are any integers such that _4/_
I. Is 52 divisible by 13? 2. Is 54 divisible by 18? 2
; WSS ° e By definition of divisibility, b = ®) for some (&) . By

substitution, —b = (@)= 4. (—k). But —k = (=1) -k is
y . an integer since — I and k are integers. Hence, by definitior
v Ts (3% L (3 it 9

Is (3k + 1)(3k + 2)(3k 4 3) divisible by 37 of divisibility, (8 wevumsno beshowi,

3. Does 5|07
4

n

5 L A9
~ Is 6m(2m + 10) divisible by 47 Prove statements 15 and 16 directly from the definition of divis-
. Is 29 a multiple of 3? 7. Is —3 a factor of 66? ibility.

:xL

. Is 6a(a + b) a multiple of 3a? I5. Forall integers a, b, and e, if a |band a | c thena | (b + ¢)

9. Is 4 a factor of 2a - 347 16. For all integers a, b, and ¢, ifa|banda|cthena| (b —c)

10. Does 7347 11. Does 13|73?

For each statement in 17-28, determine whether the statement
is true or false. Prove the statement directly from the definitions
g — AL . L 2 __19 e Gt B =
12. If n = 4k + 1, does 8 divide n I if 1t 1s true, and give a counterexample if it is false.
13. If n = 4k + 3, does 8 divide n* — 1?2
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- The sum of any three consecutive integers is divisible by

3. (Two integers are consecutive if, and only if, one is one
more than the other.)

The product of any two even integers is a multiple of 4.

9. A necessary condition for an integer to be divisible by 6 is

that it be divisible by 2.

A sufficient condition for an integer to be divisible by 8 is
that it be divisible by 16.

I. Forallintegersa, b,andc,ifa |hbanda | cthena | (2b — 3c¢).
- Forall integers @, b, and ¢, if ab | c then a | c and b | c.

- For all integers a, b, and ¢, if @ is a factor of ¢ then ab is a

factor of c.

. Forall integers a, b, and ¢, ifa | (b +¢) thena |bora|c.

For all integers a, b, and ¢, if a | be thena | b or a | c.
For all integers a and b, if a | b then a” | b*.
For all integers a and n, if a |n* and @ < n then a | n.

For all integers @ and b, if @ | 10b then a | 10 or a | b.

. Afast-food chain has a contest in which a card with numbers

on it is given to each customer who makes a purchase. If
some of the numbers on the card add up to 100, then the
customer wins $100. A certain customer receives a card
containing the numbers

72,21, 15,36,69,81,9,27,42, and 63.
Will the customer win $100? Why or why not?

Is it possible to have a combination of nickels, dimes, and
quarters that add up to $4.72? Explain.

Is it possible to have 50 coins, made up of pennies, dimes,
and quarters, that add up to $3? Explain.

Two athletes run a circular track at a steady pace so that the
first completes one round in 8 minutes and the second in 10
minutes. If they both start from the same spot at 4 PM., when
will be the first time they return to the start together?

[t can be shown (see exercises 41-45) that an integer is di-
visible by 3 if, and only if, the sum of its digits is divisible
by 3. An integer is divisible by 9 if, and only if, the sum
of its digits is divisible by 9. An integer is divisible by 5 if,
and only if, its right-most digit is a 5 or a 0. And an integer
is divisible by 4 if, and only if, the number formed by its
right-most two digits is divisible by 4. Check the following
integers for divisibility by 3, 4, 5 and 9.

a. 637,425.403,705,125 b. 12,858,306,120,312

. 517,924.440,926,512 d. 14,328,083,360,232

Use the unique factorization theorem to write the following
integers in standard factored form.
a. 1176 b. 5377 c. 3675
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35. Suppose that in standard factored form a = p{' p5* - -+ pi*,
where & is a positive integer; py, pa, ..., Py are prime num-
bers:and e;. e, ..., e, are positive integers.

a. What is the standard factored form for a*?

b. Find the least positive integer n such that 2°.3.5%.7%.n is
a perfect square. Write the resulting product as a perfect
square.

c. Find the least positive integer m such that 22.35.7-11.m is
a perfect square. Write the resulting product as a perfect
square.

36. Suppose that in standard factored form a = p{' p5* - -- p*,
where k is a positive integer; py, pa, . ... Py are prime num-
bers; and ¢,. e,. . ... ¢ are positive integers.

a. What is the standard factored form for a*?

b. Find the least positive integer k such that 2*.3%.7. 112k is
a perfect cube (i.e., equals an integer to the third power).
Write the resulting product as a perfect cube.

37. a. If a and b are integers and 12a = 25b, does 12| b? does
25 | a? Explain.
b. If x and y are integers and 10x = 9y, does 10| v? does
9| x? Explain.

38. How many zeros are at the end of 45* - 88%? Explain how
you can answer this question without actually computing
the number. (Hinr: 10=2.5.)

39. If n is an integer and n > 1, then n! is the product of » and
every other positive integer that is less than n. For example,
5'!=5-4-3.2.1.

a. Write 6! in standard factored form.

b. Write 20! in standard factored form.

¢. Without computing the value of (20!)? determine how
many zeros are at the end of this number when it is writ-
ten in decimal form. Justify your answer.

X*40. In a certain town 2/3 of the adult men are married to 3/5
of the adult women. Assume that all marriages are monog-
amous (no one is married to more than one other person).
Also assume that there are at least 100 adult men in the town.
What is the least possible number of adult men in the town?
of adult women in the town?

Definition: Given any nonnegative integer n, the decimal
representation of n is an expression of the form

d;-cﬁ-_] LB dgdldu.

where k is a nonnegative integer; dy, d,, d>, . .., d; (called
the decimal digits of n) are integers from 0 to 9 inclusive;
dy # Ounlessn = 0and k = 0; and

n= dk-][)" + (&._,-IO‘-_] + LR +d2|02 + di‘l(} + d{;.
(For example, 2,503 = 2.10° +5-10* + 0-10 + 3.)

41. Prove that if n is any nonnegative integer whose decimal
representation ends in 0, then 5 |n. (Hint: If the decimal
representation of a nonnegative integer n ends in dy, then
n = 10m + d, for some integer m.)
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42,

43.

H > 44,

Prove that if n is any nonnegative integer whose decimal
representation ends in 5, then 5 | n.
Prove that if the decimal representation of a nonnegative
integer n ends in dydy and if 4] (10d, + dy). then 4\n.
(Hini: 1f the decimal representation of a nonnegative in-
teger n ends in d,dy, then there is an integer s such that
n=100s + 10d, + dy.)
Observe that
7524 =7-1000 + 5-100 + 2-10 + 4

=799+ 1)+ 599+ 1) +2(9+ 1) +4
(7999 +7) + (599 +5) + (29 + 2) + 4
(7999 + 599 +2.9) + (T+5+2 +4)
(71945119429 + (7T+5+2+4)
(7111 +51142)94+(7+5+2+4)

I

Il

= (an integer divisible by 9)

+ (the sum of the digits of 7524),

X 45.

X* 46,

Since the sum of the digits of 7524 is divisible by 9, 7524
can be written as a sum of two integers each of which is
divisible by 9. It follows from exercise 15 that 7524 is di-
visible by 9.

Generalize the argument given in this example to any
nonnegative integer n. In other words, prove that for any
nonnegative integer a1, if the sum of the digits of i is divisible
by 9, then n is divisible by 9,

Prove that for any nonnegative integer n, if the sum of the
digits of 1 is divisible by 3. then # is divisible by 3.

Given a positive integer i written in decimal form, the alter-
nating sum of the digits of n is obtained by starting with the
right-most digit, subtracting the digit immediately to its left,
adding the next digit to the left, subtracting the next digit.
and so forth. For example, the alternating sum of the digits
of 180928is8—-24+9—-04+8—1=22. Justify the fact
that for any nonnegative integer n. if the alternating sum of
the digits of n is divisible by 11, then  is divisible by 1.

3.4 Direct Proof and Counterexample IV: Division
into Cases and the Quotient-Remainder Theorem

Be especially critical of any statement following the word “obviously. ™

— Anna Pell Wheeler 1883-1966

When you divide 11 by 4, you get a quotient of 2 and a remainder of 3.

2 -« quotient
4] 11

8

3+ remainder

Another way to say this is that 11 equals 2 groups of 4 with 3 left over:

Or.

[xxxx| [xxxx |

-

-

groups of 4

groups of 4

XXX

1 T

3 left over

11=2-443,

1 1

3 left over

Of course, the number left over (3) is less than the size of the groups (4) because if more
than 4 were left over, another group of 4 could be separated off,

The quotient-remainder theorem says that when any integer n is divided by any positive
integer d, the result is a quotient ¢ and a nonnegative remainder r that is smaller than «.
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Theorem 3.4.1 The Quotient-Remainder Theorem |

Given any integer n and positive integer d. there exist unique integers g and r such ‘
that

n=dg+r and 0=<r< d.

We give a proof of the quotient-remainder theorem in Section 4.4.
- If n is positive, the quotient-remainder theorem can be illustrated on the number line
as follows:
ol v ov0 d 2 3+ - -+ - cqdn
. = -— A — —t >
_‘j I"—;-'“
=5

If n is negative, the picture changes. Since n = dq + r. where r is nonnegative, d must
= be multiplied by a negative integer ¢ 10 g0 below 1. Then the nonnegative integer r is
T added to come back up to n. This is illustrated as follows:

gd n -+ - -+ =3d -2 -d 0 -

| 1 ! L L >
p— T T

T T T T

[

r

Example 3.4.1 The Quotient-Remainder Theorem

For each of the following values of n and d, find integers ¢ and r such that n = dg +r
and 0 < r < d.

a.n=>5,d=4 b.n=-54.d=4 c. n=>54,d=170
Solution

2. 54=4.13+2; hence g = 13andr =2.

b, —54 = (—14) -4 +2; hence ¢ = —14andr = 2.

c. 54 =70-0+ 54; hence ¢ =0 and r = 54. |

div and mod

A number of computer languages have built-in functions that enable you to compute many
values of ¢ and r for the quotient-remainder theorem. These functions are called div and
mod in Pascal. are called / and % in C and C++, are called / and % in Java, and are called
/ (or\) and mod in .NET. The functions give the values that satisfy the quotient-remainder
theorem when a nonnegative integer n is divided by a positive integer d and the result
is assigned to an integer variable. However, they do not give the values that satisfy the
quotient-remainder theorem when a negative integer n is divided by a positive integer d
(see exercise 16 at the end of this section). So we restrict our definitions for div (short
for “divided by™) and mod (short for “modulo™) to division of a nonnegative integer. The
modulo concept is discussed in greater detail in Sections 10.3 and 10.4.
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e Definition

| Given a nonnegative integer » and a positive integer d,

n div d = the integer quotient obtained
/ when # is divided by d, and

n mod d = the integer remainder obtained
when 7 is divided by d.

‘ Symbolically, if n and d are positive integers, then
! ndivd=q and n modd=r & p— dg +r

‘ where ¢ and r are integers and 0 < r < 4.

Note that it follows from the quotient-remainder theorem that n mod d equals one of
the integers from () through d — 1 (since the remainder of the division of n by ¢ must be
one of these integers). Note also that a necessary and sufficient condition for an integer
n to be divisible by an integer d is that n mod d = (). You are asked to prove this in the
exercises at the end of this section.

You can also use a calculator to compute values of div and mod. To compute n div d
for a nonnegative integer n and a positive integer d, you just divide by d and ignore the
fractional part of the answer. To find n mod d, you can use the fact that if n = dg +r,
then r = n — dg. Thus since n = d - (ndivd)+ n mod d, we have that

nmodd=n—d - (ndiv d).

So you can compute n div d. multiply by d, and subtract the result from n, to obtain
nmod d.

Example 3.4.2 div and mod

Compute 32 div 9 and 32 mod 9.

Solution

— 32 div 9

o
rt\.) L
=1 oL

— 32 mod 9

Thus 32 div 9 = 3 and 32 mod 9 — 5. 7]

Example 3.4.3 Computing the Day of the Week

Suppose today is Tuesday, and neither this year nor next year is a leap year, What day of
the week will it be 1 year from today?

Solution  There are 365 days in a year that is not a leap year, and each week has 7 days.

Now
365div7 =52 and 365mod7 = |

because 365 = 52.7 + 1. Thus 52 weeks, or 364 days, from today will be a Tuesday.
and so 365 days from today will be 1 day later, namely Wednesday.
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- More generally, if DayT is the day of the week today and DayN is the day of the week
in N days, then

DayN = (DayT + N) mod 7, 34.1

where Sunday = 0, Monday = 1. .. .. Saturday = 6. I

Representations of Integers

In Section 3.1 we defined an even integer to have the form 2k for some integer k. At that
time we could have defined an odd integer to be one that was not even. Instead, because
it was more useful for proving theorems, we specified that an odd integer has the form
2k + 1 for some integer k. The quotient-remainder theorem brings these two ways of
=S describing odd integers together by guaranteeing that any integer is either even or odd.
To see why, let n be any integer, and consider what happens when n is divided by 2. By

1ls one o the quotient-remainder theorem (with d = 2), there exist integers ¢ and r such that

4 must be n=2¢q+r and 0<r<2.

an integes

this in the But the only integers that satisfy 0 < r < 2arer = Oand r = 1. It follows that given any
integer n, there exists an integer ¢ with

1.13?1:.;:.-._ n=2q+0 or n=2q+1.

ignore e

— dg ~r In the case that n = 2¢g + 0 = 2q, n is even. In the case that n = 2¢ + 1, n is odd. Hence

n is either even or odd.
The parity of an integer refers to whether the integer is even or odd. For instance, 5
has odd parity and 28 has even parity. We call the fact that any integer is either even or
1o obt=mm odd the parity property.

Example 3.4.4 Consecutive Integers Have Opposite Parity
Prove that given any two consecutive integers, one is even and the other is odd.

Solution  Two integers are called consecutive if, and only if, one is one more than the other.
So if one integer is m, the next consecutive integer is m + 1.
To prove the given statement, start by supposing that you have two particular but
arbitrarily chosen consecutive integers. If the smaller is m, then the larger will be m + 1.
How do you know for sure that one of these is even and the other is odd? You might
imagine some examples: 4, 5; 12, 13; 1,073, 1,074. In the first two examples, the smaller
" of the two integers is even and the larger is odd: in the last example, it is the reverse.
These observations suggest dividing the analysis into two cases.

Case 1; The smaller of the two integers is even.

Vhat day of Case 2: The smaller of the two integers is odd.

In the first case, when m is even, it appears that the next consecutive integer is odd.

Sioc T atl Is this always true? If an integer m is even, must m + 1 necessarily be odd? Of course
1 the answer is yes. Because if m is even, then m = 2k for some integer k, and som + | =
2k + 1, which is odd.

In the second case, when m is odd, it appears that the next consecutive integer is even.
Is this always true? If an integer m is odd, must m + 1 necessarily be even? Again,
the answer is yes. For if m is odd, then m = 2k + 1 for some integer k, and som + 1 =
2k + 1)+ 1 =2k +2 = 2(k + 1), which is even.

This discussion is summarized as follows.

 a Tuesdas
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Theorem 3.4.2

Any two consecutive integers have opposite parity.

Proof:

Suppose that two [ particular but arbitrarily chosen] consecutive integers are given;
call them m and m + 1. [We must show that one of mand m + | is even and that the
other is odd.] By the parity property, either m is even or m is odd. [We break the
proof into two cases depending on whether m is even or odd. ]

Case I (m is even): In this case, m = 2k for some integer k. andsom + 1 =2k + 1,
which is odd [by definition of odd). Hence in this case, one of m and m + 1 is even
and the other is odd.

Case 2 (m is odd): In this case, m = 2k + 1 for some integer k, and so m + | =
(2k+ 1)+ 1=2k+2=2(k+1). Butk+1isan integer because it is a sum of
two integers. Therefore, m + 1 equals twice some integer, and thus m + 1 is even.
Hence in this case also. one of m and m + | is even and the other is odd.

It follows that regardless of which case actually occurs for the particular m and m + 1
that are chosen, one of m and m + 1 is even and the other is odd. [This is what was
to be shown.|

The division into cases in a proof is like the transfer of control for an if-then-else
statement in a computer program. If m is even, control transfers to case 1: if not. control
transfers to case 2. For any given integer, only one of the cases will apply. You must
consider both cases, however, to obtain a proof that is valid for an arbitrarily given integer
whether even or not.

There are times when division into more than two cases is called for. Suppose that at
some stage of developing a proof, you know that a statement of the form

AjorAsorAsor...orA,

is true, and suppose you want to deduce a conclusion C. By definition of or; you know
that at least one of the statements A; is true (although you may not know which). In this
situation, you should use the method of division into cases. First assume A is true and
deduce C: next assume A, is true and deduce C; and so forth until you have assumed A,
is true and deduced C. At that point, you can conclude that regardless of which statement
A; happens to be true, the truth of C follows. In symbols,

Given that A} or A; or Az or --- or A, to show that
(AyorAsor Asor--- or A,) — C, show all the implications
A= C,

A; — C,
Ay — C,

A, — C.

Note that this form of argument is a generalization of the one given in Example 1.3.8. Its
validity was proved in exercise 21 of Section 1.3.

The procedure used to derive the parity property can be applied with other values of
d to obtain a variety of alternative representations of integers.
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Example 3.4.5 Representations of Integers Modulo -
Show that any integer can be written in one of the four forms
n=4g or n=4g+1 or n=4g+2 or n=4q9+3

for some integer ¢q.

Solution Given any integer n. apply the quotient-remainder theorem to n with d = 4. This
implies that there exist an integer quotient ¢ and a remainder r such that

n=4g+r and 0<r <4
But the only nonnegative remainders r that are less than 4 are 0. 1.2, and 3. Hence
n=4g or n=4g+1 or n=4g+2 or n=4dqg+3
for some integer q. &

The next example illustrates how alternative representations for integers can help
establish results in number theory. The solution is broken into two parts: a discussion
and a formal proof. These correspond to the stages of actual proof development. Very
few people, when asked to prove an unfamiliar theorem, immediately write down the kind
of formal proof you find in a mathematics text. Most need to experiment with several
possible approaches before they find one that works. A formal proof is much like the
ending of a mystery story—the part in which the action of the story is systematically
reviewed and all the loose ends are carefully tied together.

Example 3.4.6 The Square of an Odd Integer
Prove that the square of any odd integer has the form 8m + 1 for some integer m.

Solution  Begin by asking yourself, “Where am I starting from?” and “What do I need to
show?” To help answer these questions, introduce variables to represent the quantities in
the statement to be proved.

Formal Restatement: ¥ odd integers n, 3 an integer m such that n®=8m+ 1.

From this, you can immediately identify the starting point and what is to be shown.
Starting Point: Suppose n is a particular but arbitrarily chosen odd integer.

To Show: 3 an integer m such that n*> = 8m + 1.

This looks tough. Why should there be an integer m with the property that n? =
8m + 1? Thatwould say that (n> — 1)/8 isaninteger, orthat 8 dividesn? — 1. Perhaps you
could make use of the fact that n> — 1 = (n — 1)(n + 1). Does 8 divide (n — )(n + 1)?
Since n is odd, both (n — 1) and (n + 1) are even. That means that their product is divisi-
ble by 4. But that’s not enough. You need to show that the product is divisible by 8. This
seems to be a blind alley.

You could try another tack. Since n is odd, you could represent n as 2¢ + 1 for some
integer ¢. Then n? = (2q + 1)> = 4¢> +4q + 1 = 4(¢* + ¢) + 1. It is clear from this
analysis that n? can be written in the form 4m + 1, but it may not be clear that it can be
written as 8m -+ 1. This also seems to be a blind alley.”

Yet another possibility is to use the result of Example 3.4.5. That example showed
that any integer can be written in one of the four forms 4¢,4q + 1.4¢ + 2, or 4q + 3.
Two of these. 4g + 1 and 4¢ + 3, are odd. Thus any odd integer can be written in the

*See exercise 25 for a different perspective.
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form 4g + 1 or 49 + 3 for some integer ¢. You could try breaking into cases based on
these two different forms.*

It turns out that this last possibility works! In each of the two cases, the conclusion
follows readily by direct calculation. The details are shown in the following formal proof:

Theorem 3.4.3

‘ The square of any odd integer has the form 8m + 1 for some integer m.

‘ Proof;

Suppose n is a [particular but arbitrarily chosen] odd integer. By the quotient-
‘ remainder theorem, 1 can be written in one of the forms

4g or 4g+1 or 4g+2 or 49 +3

for some integer ¢. In fact, since n is odd and 4g and 4g + 2 are even, n must have
one of the forms

4g+1 or 4dq+3.

Case I (n =4q + 1 for some integer q): [We must find an integer m such tha
n*=8m+ 1.] Since n = dq + 1,
n’ = (4g + 1) by substitution
=(4g + 1)(4g + 1) by definition of square
= 16¢> + 8q + 1
‘ = 8(2(;2 +q)+ 1 by the laws of algebra.

Let m =2¢® +q. Then m is an integer since 2 and ¢ are integers and sums and
products of integers are integers. Thus, substituting,

2 . .
‘ n-=8m+1 wherem is an integer.

Case 2 (n = 4q + 3 for some integer q): [We must find an integer m such that
2

n”= = 8m + L.] Since n = 4q + 3,
e S (49 + 3)2 by substitution
‘ = (49 +3)(4g +3) by definition of square
' = 169 +24¢ +9
‘ = 16¢° +24q + (8 + 1)
=829 +3¢g+1)+1 by the laws of algebra.
[The motivation for the choice of algebra steps was the desire to write the expression

in the form 8 - (some integer) + 1.]

Let m =2¢? + 3¢ + 1. Then m is an integer since 1, 2, 3, and ¢ are integers and
sums and products of integers are integers. Thus, substituting,

2 . .
n® =8m+1 wherem is an integer.

Cases 1 and 2 show that given any odd integer, whether of the form 4 + 1 or
i_-'lq + 3.1 = 8m + 1 for some integer m. [This is what we needed to show.)

“Desperation can spur creativity. When you have tried all the obvious approaches without success
and you really care about solving a problem, you reach into the odd corners of your memory for
anything that may help.
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Note that the result of Theorem 3.4.3 can also be written, “For any odd integer n,

n>mod8 =1."

Exercise Set 3.4

ach of the values of n and d given in 1-6, find integers ¢
suchthatn =dg +rand0<r <d.

n=70,d =9 2.n=62,d=7
n=36,d=40 4. .n=3;d= 11
n=—45,d =11 6. n=-27,.d =

sate the expressions in 7—10,

43 div9 b. 43 mod 9

a

a S0div7 b. 50 mod 7
a. 28div 5 b. 28 mod 5
a. 30div2 b. 30 mod 2

Check the correctness of formula (3.4.1) given in Example
3.4.3 for the following values of DayT and N.

a. DayT = 6 (Saturday) and N = 15

b. DayT'= 0 (Sunday) and N = 7

¢. DayT = 4 (Thursday) and N = 12

Justify formula (3.4.1) for general values of DayT and N.

. On a Monday a friend says he will meet you again in 30

20.

days. What day of the week will that be?

- If today is Tuesday, what day of the week will it be 1,000

days from today?

January 1, 2000 was a Saturday, and 2000 was a leap year.
What day of the week will January 1, 2050 be?

. The/and % functions in Java operate as follows: If g and r

are the integers obtained from the quotient-remainder theo-
rem when a negative integer n is divided by a positive inte-
gerd, then n/d is ¢ + 1 and n%d is r — d, provided that
these values are assigned to an integer variable. Show that
n/d and n%d satisfy one of the conclusions of the quotient-
remainder theorem but not the other. To be specific, show
that the equation n = d - n/d + n%@ is true but the condi-
tion 0 < n%d < d is false. (The functions div and mod in
Pascal, / and % in C and C++, and / (or \ ) and mod in
NET operate similarly to/and % in Java.)

- When an integer a is divided by 7, the remainder is 4. What

is the remainder when 5a is divided by 77

When aninteger b is divided by 12, the remainderis 5. What
is the remainder when 856 is divided by 127

When an integer c is divided by 15, the remainder is 3. What
is the remainder when 10c is divided by 157

Suppose d is a positive integer and 7 is any integer. If d | n,
what is the remainder obtained when the quotient-remainder
theorem is applied to n with divisor d?

H 21.

Prove that a necessary and sufficient condition for a non-
negative integer n to be divisible by a positive integer d is
that n mod d = 0.

22. A matrix M has 3 rows and 4 columns.

23

28.

H 29,

30.

aypy dp dpy dg
dz A d;n aun
iy 3 iz €y

The 12 entries in the matrix are to be stored in row major

form in locations 7,609 to 7,620 in a computer’s memory.

This means that the entries in the first row (reading left to

right) are stored first, then the entries in the second row, and

finally the entries in the third row.

a. Which location will a,; be stored in?

b. Write a formula (in / and j) that gives the integer n so
that a;; is stored in location 7,609 + n.

c. Find formulas (in n) for r and s so that a,, is stored in
location 7,609 + n.

Let M be a matrix with m rows and n columns, and
suppose that the entries of M are stored in a computer’s
memory in row major form (see exercise 22) in locations
NN+ N2 e N + mn — 1. Find formulas in k for
r and s so that a,, is stored in location N + k.

. Prove that the product of any two consecutive integers is

even.

- The result of exercise 24 suggests that the second apparent

blind alley in the discussion of Example 3.4.6 might not be
a blind alley after all. Write a new proof of Theorem 3.4.3
based on this observation.

. Prove that for all integers n, n* — n + 3 is odd.

« Show that any integer n can be written in one of the three

forms

n=3¢ or n=3¢g+1 or n=3¢+2

for some integer g.

a. Use the quotient-remainder theorem with d = 3 to prove
that the product of any three consecutive integers is di-
visible by 3.

b. Use the mod notation to rewrite the result of part (a).

Use the quotient-remainder theorem with d = 3 to prove
that the square of any integer has the form 3k or 3k + 1 for
some integer k.

Use the quotient-remainder theorem with d = 3 to prove
that the product of any two consecutive integers has the
form 3k or 3k + 2 for some integer k.
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31. a. Prove that for al] integers m and n, m + n and m — n
are either both odd or both even.
b. Find all solutions to the equation m> — n? — 56 for
which both m and n are positive integers.
¢. Find all solutions to the equation m® — n? = 88 for
which both m and n are positive integers.

32. Given any integers a, b, and ¢. if a — b is evenand b — ¢
is even, what can you say about the parity of 2a — (b 4 ¢)?
Prove your answer. You may use the properties listed in
Example 3.2.3,

(5]
sl

- Given any integers a. b, and c. if a — b is odd and b — ¢ is
even, what can you say about the parity of @ — ¢? Prove
your answer,

H 34. Given any integer n. if n > 3. could non+ 2 andn + 4
all be prime? Prove or give a counterexample.

o
n

- The fourth power of any integer has the form 8m or 8m —+ |
for some integer m.

Prove each of the statements in 36-43.

H 36. The product of any four consecutive integers is divisible
by 8.

37. The square of any integer has the form 4k or 4k + | for some
integer k.

H 38. Foranyintegern > 1.1 + 1 has the form4k + lordk + 2
for some integer k.

H 39. The sum of any four consecutive integers has the form
4k + 2 for some integer k.

40. For any integer n. n(n® — 1)(n +2) is divisible by 4.

41. For all integers m, m? = 5k, or m® = 5k + 1. or m? =
5k + 4 for some integer k.

H 42. Every prime number except 2 and 3 has the form 6g + 1 or
6g + 5 for some integer ¢,

43. If n is an odd integer, then n* mod 16 = |

X 44, Ifm,n, and d are integers and m mod d = n mod d. does it
necessarily follow that m = n? That m — n is divisible by
d? Prove your answers,

Xk 45.

Ifm. n. and d are integers and o | (m — n), what is the rela-
tion between m mod d and n mod d? Prove your answer.

X46. If m.n,a, b, and d are integers and m mod d = ¢ and »
modd=>b,is (m+n) mod d = a+p? Is (m + n) moa

d = (a+b) mod d? Prove your answers.

*47. Iftm, n,a. b, and d are integers and m mod d = a and n mod
d=b,is (mn) modd = ab? ls (mn) mod d = ab mod d

Prove your answers,

48. Prove that if m,d, and k are integers and o # 0, then
(m +dk) mod d = m mod d.

Use the following definition to prove each statement in 49-53

Definition: For any real number x. the absolute value of X,
denoted |x|, is defined as follows:
x if
lx| = .
—x if

49. For all real numbers x, [—x| = |x]|.

50. For all real numbers x and yolx| -yl = |xyl.

tn

1

For all real numbers x. —1%| =x:=£ |x);

Lh
2

If ¢ is a positive real number and x is any real number, then
—c=x =cif.and only if, [x| < ¢. (To prove a statement
of the form “A if. and only if, B.” you must prove “if A then
B and “if B then A.")

L
ld-'

For all real numbers v and Y. ¥+ ¥ < |x| + |y|. This re-
sult is called the triangle inequality. (Hint: Use 51 and 52
above.)

3.5 Direct Proof and Counterexample V-

Floor and Ceiling

Proof serves many purposes simultaneously. In being exposed to the scrutiny and
Judgment of a new audience, [a 1 proof is subject to a constant process of criticism and
revalidation. Errors, ambiguities, and misunderstandings are cleared up by constant
exposure. Proof is respectability. Proof iy the seal of authoriry.

Proof, in its best instances, increases understanding by revealing the heart of the
matter. Proof suggests new mathematics. The novice who studies proofs gets closer to
the creation of new mathematics. Proof is mathematical power, the electric voltage of
the subject which vitalizes the static assertions of the theorems.

Finally, proof is ritual, and a celebration of the power of pure reason.
— Philip J. Davis and Reuben Hersh, The Mathematical Experience, 1981
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Imagine a real number sitting on a number line. The floor and ceiling of the number are
the integers to the immediate left and to the immediate right of the number (unless the
number is, itself, an integer, in which case its floor and ceiling both equal the number
itself). Many computer languages have built-in functions that compute floor and ceiling
automatically. These functions are very convenient to use when writing certain kinds
of computer programs. In addition. the concepts of floor and ceiling are important in
analyzing the efficiency of many computer algorithms.

TR * Definition
o Given any real number x, the floor of x, denoted | x|, is defined as follows:
rod & |x| = that unique integer n such thatn < x <n + 1.
Symbolically, if x is a real number and » is an integer, then
) £ 0. See
(e =N e =t =
X
} ; -
alue of x. n n+1
A
|
floor of x = |.x/

= Definition

Given any real number x, the ceiling of x, denoted [x], is defined as follows:
[x] = that unique integer n such thatn — 1 < x <n.

Symbolically, if x is a real number and n is an integer. then
jumber, thes
A stateme |'_1"| =iy &oon— 1l <x <n.

ve "if A them

. This = T T T
: = n—1 n
se 51 and 32 A
|
ceiling of x = [ x|

Example 3.5.1 Computing Floors and Ceilings
Compute | x| and [x] for each of the following values of x:
a. 25/4 b. 0.999 ¢ =201
Solution
a. 25/4 =6.25and 6 < 6.25 < 7: hence |25/4] =6 and [25/4] =T.
b. 0 < 0.999 < 1: hence [0.999] = 0 and [0.999] = 1.

¢. =3 < —2.01 < —2: hence |—2.01] = —3 and [-2.01] = -2.

Note that on some calculators |x | is denoted INT (x). -]
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Example 3.5.2 An Application

The 1,370 soldiers at a military base are given the opportunity to take buses into town for
an evening out. Each bus holds a maximum of 40 passengers.

a. For reasons of economy, the base commander will send only full buses. What is the
maximum number of buses the base commander will send?

b. If the base commander is willing to send a partially filled bus, how many buses will
the commander need to allow all the soldiers to take the trip?

Solution
a. [1370/40] = [34.25] =34 b. [1370/40] = [34.25] = 35 =

Example 3.5.3 Some General Values of Floor
If k is an integer, what are |k and |k + 1/2)? Why?
Solution  Suppose k is an integer. Then

Lk| = k because k is an integerand k < k < k + 1,

and

1 1
|_k+3J=kbecausekisanintegerandk§k+;<k+l. |

Example 3.5.4 Disproving an Alleged Property of Floor
Is the following statement true or false?
For all real numbers x and y, [x + y| = [x]| + |y].

Solution  The statement is false. As a counterexample, take x = y = % Then

[x] + ly] = EJ - BJ =04+0=0,

Lx—l—_\‘J:ll—i-%J:L[J:]‘

whereas

2

Hence |x + y| # |x] + |v].

To arrive at this counterexample, you could have reasoned as follows: Suppose x and
v are real numbers. Must it necessarily be the case that [x + v] = |x] + Lv], or could
X and y be such that [x + y| # |x] + [y]? Imagine values that the various quantities
could take. For instance, if both x and y are positive, then [x] and |y| are the integer
parts of |.x] and | y] respectively; just as

3 3
2-=2+4—
d A 5
,/ K
// N,
y \
integer part fractional part
S0 18
x = |x| 4+ fractional part of x
and

v = |v] + fractional part of y.
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Thus if x and y are positive,
x 4+ v = |x] 4+ |v] + the sum of the fractional parts of x and y.
But also
x +y = |x + y] + the fractional part of (x + y).

These equations show that if there exist numbers x and y such that the sum of the fractional
parts of x and y is at least 1, then a counterexample can be found. But there do exist such
x and y; for instance, x = 1 and y = % as before. |

I The analysis of Example 3.5.4 indicates that if x and y are positive and the sum of their
fractional parts is less than I, then [x + v| = [x] + [v]. In particular, if x is positive
and m is a positive integer, then |x +m] = [x] + [m] = |x] + m. (The fractional part
of m is 0: hence the sum of the fractional parts of x and m equals the fractional part of x,
which is less than 1.) It turns out that you can use the definition of floor to show that this
equation holds for all real numbers x and for all integers m.

Example 3.5.5 Proving a Property of Floor
Prove that for all real numbers x and for all integers m. |x +m| = [ x| + .

" Solution  Begin by supposing that x is a particular but arbitrarily chosen real number and that
m is a particular but arbitrarily chosen integer. You must show that [x +m] = [x]| + m.
Since this is an equation involving [x] and [x 4 m ], it is reasonable to give one of these
quantities a name: Let n = | x|. By definition of floor,

nisaninteger and n <x <n+1.

This double inequality enables you to compute the value of [x + m] in terms of n by
adding m to all sides:

n+m=x+m-<n+m-++1.
Thus the left-hand side of the equation to be shown is
lx4+m|]=n+m.
On the other hand, since n = [ x], the right-hand side of the equation to be shown is
lx|4+m=n+m

] also. Thus [x +m| = [x] + m. This discussion is summarized as follows:

antie Theorem 3.5.1

For all real numbers x and all integers m, [x +m| = [x]| + m.

Proof:

Suppose a real number x and an integer m are given. [We must show that [x +m | =
[x] +m.] Let n = [x]. By definition of floor, n is an integer and

n<x-<n-++l1.
Add m to all sides to obtain

n+m=x+m<n-+m-+1

continued on page 168
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sort algorithms, requires that you know the value of [n/2], where n is an integer. The

[since adding a number to both sides of an inequality does not change the direction
of the inequality].

Now n + m is an integer [since n and m are integers and a sum of integers is an
integer,] and so, by definition of floor, the left-hand side of the equation to be shown
is

lx+m|] =n+m.
But n = [x|. Hence, by substitution,
n+m=|x]+m,

which is the right-hand side of the equation to be shown. Thus [x +m] = |x] +m
[as was to be shown].

The analysis of a number of computer algorithms, such as the binary search and merz=

formula for computing this value depends on whether n is even or odd.,

Theorem 3.5.2 The Floor of n/2

For any integer n,
if n is even

if n is odd

Proof:

Suppose n is a [ particular but arbitrarily chosen) integer. By the quotient-remainder
theorem, # is odd or n is even.

Case I (n is odd): In this case, n = 2k + 1 for some integer k. [We must show tha
[n/2] = (n — 1)/2.] But the left-hand side of the equation to be shown is

522 4] s+

2 2 "3 k+3
because k is an integer and k <k +1/2 < k+ 1. And the right-hand side of the
equation to be shown is

n
5

n—1
2

_@k+D-1 2%

2 7 =k

also. So since both the left-hand and right-hand sides equal k, they are equal to each

. n n—1
other. That is, i‘EJ B [as was to be shown).

Case 2 (n is even): In this case, n = 2k for some integer k. [We must show thar

[n/2] = n/2]. The rest of the proof of this case is left as an exercise.




e direction

egers is an

) be shown

h and merge
integer. The

emainder

show thar

de of the

1 to each

how that

3.5 Direct Proof and Counterexample V: Floor and Ceiling 169

Given a nonnegative integer n and a positive integer d, the quotient-remainder theorem
guarantees the existence of unique integers ¢ and r such that
n=dg+r and 0<r <d.

The following theorem states that the floor notation can be used to describe g and r as

follows:
n n
—_— — b d o — —_ — z
q L{J ind r=n—d LfJ

Thus if, on a calculator or in a computer language, floor is built in but div and mod are
not, div and mod can be defined as follows: For a nonnegative integer n and a positive
integer d,

n n
ndivd = | — and nmodd =n—d|-|. 35
‘ d d J

Note that d divides n if, and only if, n mod d = 0, or, in other words. n = d [n/d]. You
are asked to prove this in exercise 13.

'_'l‘heorem 353

If n is a nonnegative integer and d is a positive integer, and if ¢ = [n/d] and r =
n—d|n/d], then

n=dg+r and 0<r <d.

Proof:

Suppose n is a nonnegative integer, d is a positive integer, ¢ = |n/d|, and r =
n—dn/d]. [We must show that n = dq +rand 0 < r < d.] By substitution,

n n
dg+r=d|—|+(n—-d| - ):n.
d d

So it remains only to show that 0 < r < d. But q = |n/d]. Thus, by definition of
floor,

n
g<-<g+1.
d

Then

dg<n<dq+d multiplying all parts by d
and so

0<n-— ({'q <d by subtracting dg from all parts.
But

r=n-—d {EJ =n-—dgq.
d

Hence

0 <r<d by substitution.

[This is what was to be shown.)




170 Chapter 3 Elementary Number Theory and Methods of Proof

Example 3.5.6 Computing div and mod

Use the floor notation to compute 3850 div 17 and 3850 mod 17.

Solution By formula (3.5.1),

3850 div 17 = [3850/17] = [226.47] = 226
3850 mod 17 = 3850 — 17 - |3850/17]

Exercise Set 3.5

Compute |.v] and [x] for each of the values of x in 1-4.

« 37999 2
. —14.00001

. If 0 = Sunday, 1 = Monday, 2 = Tuesday, . ..

17/4
4. —32/5

. Use the floor notation to express 259 div 11 and

259 mod 11.

. If k is an integer, what is [k]? Why?
. If k is an integer, what is [k + ]? Why?

. Seven pounds of raw material are needed to manufacture

each unit of a certain product. Express the number of units
that can be produced from n pounds of raw material using
either the floor or the ceiling notation. Which notation is
more appropriate?

. Boxes, each capable of holding 36 units, are used to ship

a product from the manufacturer to a wholesaler. Express
the number of boxes that would be required to ship n units
of the product using either the floor or the ceiling notation.
Which notation is more appropriate?

, 6 = Satur-
day, then January | of year n occurs on the day of the week
given by the following formula:

el [Jmea?

a. Use this formula to find January 1 of
i. 2050 . 2100 iii. the year of your birth.

H b. Interpret the different components of this formula.

1.

12.
13.

State a necessary and sufficient condition for the floor of a
real number to equal that number.

Prove that if n is any even integer, then |n/2] =n/2.

Suppose n and d are integers and d # 0. Prove each of the

following.

a. Ifd|n,thenn = |n/d]-d.

b. Ifn = |n/d] - d, thend | n.

¢. Use the floor notation to state a necessary and sufficient
condition for an integer n to be divisible by an integer d.

H 19. For all real numbers x, [x + 17 = [x] + L.

= 3850 — 17 - 226
= 3850 — 3842 = 8.

Some of the statements in 14-22 are true and some are
Prove each true statement and find a counterexample for =
false statement.

14. For all real numbers x and y, |x —y] = [x] — [v].
15. For all real numbers x, [x — 1] = [x] — L.
16. For all real numbers x, |x*] = [x ]2

17. For all integers n,

n/3 itnmod3 =0
In/3]=3(n—=1)/3 ifnmoed3=1 .
n—2)/3 ifnmod3=2

18. For all real numbers x and v, [x + v] = [x] + [¥]

20. For all real numbers x and y, [xy] = [x7 - [¥].
21. For all odd integers n, [n/2] = (n 4+ 1)/2.

22. For all real numbers x and v, [xy] = [x] - [v].
Prove each of the statements in 23-29.

23. For any real number x, if x is not an integer. &
lx] + l—x] =—1.

24, For any integer m and any real number x, if x is no
integer, then |x] 4 [m — x| =m — 1.

(]
tn

. For all real numbers x, | [x/2]/2] = [x/4].

26. For all real numbers x, if x — [x] < 1/2 then

|2x) =2[x].

27. For all real numbers x, if x — |x]| = 1/2 then
[2x] =2|x] + 1.

28. For any odd integer n,

5]-(5) (5):




For any odd integer n,

(TN
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“Proof: Suppose n is any odd integer. Thenn = 2k + | for
some integer k. Consequently,

n? n*+3
{I 4 [2k+IJ 2k+1—1 2k '
2 gl 2
% Find the mistake in the following “proof™ that |n/2] = - - -
= — 1)/2if n is an odd integer. But n =2k + 1. Solving for k gives k = (n — 1)/2.

Hence, by substitution, [n/2| = (n — 1)/2.”

3.6 Indirect Argument: Contradiction
and Contraposition

Reductio ad absurdum is one of a mathematician’s finest weapons. It is a far finer

gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even
a piece, but the mathematician offers the game. — G. H. Hardy, 1877-1947

In a direct proof you start with the hypothesis of a statement and make one deduction after
another until you reach the conclusion. Indirect proofs are more roundabout. One kind
of indirect proof, argument by contradiction, is based on the fact that either a statement
is true or it is false but not both. Suppose you can show that the assumption that a given
statement is not true leads logically to a contradiction, impossibility, or absurdity. Then
that assumption must be false; hence, the given statement must be true. This method of
proof is also known as reductio ad impossible or reductio ad absurdum because it relies
on reducing a given assumption to an impossibility or absurdity.

Argument by contradiction occurs in many different settings. For example, if a man
accused of holding up a bank can prove that he was some place else at the time the crime
was committed, he will certainly be acquitted. The logic of his defense is as follows:

Suppose I did commit the crime. Then at the time of the crime, I would have had to be
at the scene of the crime. In fact, at the time of the crime I was in a meeting with 20
people far from the crime scene. as they will testify. This contradicts the assumption
that T committed the crime, since it is impossible to be in two places at one time. Hence
that assumption is false.

Another example occurs in debate. One technique of debate is to say, “Suppose for
a moment that what my opponent says is correct.” Starting from this supposition, the
debater then deduces one statement after another until finally arriving at a statement that
is completely ridiculous and unacceptable to the audience. By this means the debater
shows the opponent’s statement to be false.

The point of departure for a proof by contradiction is the supposition that the statement
to be proved is false. The goal is to reason to a contradiction. Thus proof by contradiction
has the following outline:

Method of Proof by Contradiction

L. Suppose the statement to be proved is false. That is, suppose that the negation of
the statement is true. (Be very careful when writing the negation!)

]

Show that this supposition leads logically to a contradiction.

3. Conclude that the statement to be proved is true. J
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There are no clear-cut rules for when to try a direct proof and when to try a proof

by contradiction. There are some general guidelines, however. Proof by contradiction is
indicated if you want to show that there is no object with a certain property. or if you want
to show that a certain object does not have a certain property. The next two examples
illustrate these situations.

Example 3.6.1 There Is No Greatest Integer
Use proof by contradiction to show that there is no greatest integer.

Solution  Most small children believe there is a greatest integer—they often call it a “zillion.”
But with age and experience. they change their belief. At some point they realize that if
there were a greatest integer, they could add 1 to it to obtain an integer that was greater
still. Since that is a contradiction, no greatest integer can exist. This line of reasoning is
the heart of the formal proof.

For the proof, the certain property is the property of being the greatest integer. To
prove that there is no object with this property, begin by supposing the negation: that there
is an object with the property.

Starting Point: Suppose not. Suppose there is a greatest integer; call it N.
This means that N > »n for all integers n.

To Show: This supposition leads logically to a contradiction.

| Theorem 3.6.1

There is no greatest integer.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is a greatest integer N. [We must deduce a contradiction.] Then
N = n for every integer n. Let M = N + 1. Now M is an integer since it is a sum
of integers. Also M > N since M = N + .

Thus M is an integer that is greater than N. So N is the greatest integer and N is
not the greatest integer, which is a contradiction. [This contradiction shows that the
supposition is false and, hence, that the theorem is true.)

After a contradiction has been reached. the logic of the argument is always the same
“This is a contradiction. Hence the supposition is false and the theorem is true.” Because
of this, most mathematics texts end proofs by contradiction at the point at which the
contradiction has been obtained.

The contradiction in the next example is based on the fact that 1/2 is not an integer.

Example 3.6.2 No Integer Can Be Both Even and Odd

Is it possible for an integer to be both even and odd? The intuitive answer is “Of course
not.” What justifies this certainty? A proof by contradiction!
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Theorem 3.6.2

There is no integer that is both even and odd.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is an integer n that is both even and odd. [We must deduce a
contradiction.] By definition of even, n = 2a for some integer a, and by definition
of odd, n = 2b + 1 for some integer ». Consequently,

2a =2b+1 by equating the two expressions for n
and so
2a —2b =1
2a—b) =1

(@a—b)=1/2 by algebra.

Now since a and b are integers, the difference ¢« — b must also be an integer. But
a—b=1/2,and 1/2is not an integer. Thus a — b is an integer and @ — b is not an
integer, which is a contradiction. [This contradiction shows that the supposition is
false and, hence, that the theorem is true.]

The next example asks you to show that the sum of any rational number and any
irrational number is irrational. One way to think of this is in terms of a certain object
(the sum of a rational and an irrational) not having a certain property (the property of
being rational). This suggests trying a proof by contradiction: suppose the object has the
property and deduce a contradiction.

Example 3.6.3 The Sum of a Rational Number and an Irrational Number

Use proof by contradiction to show that the sum of any rational number and any irrational
number is irrational.

Solution  Begin by supposing the negation of what you are to prove. Be very careful when
writing down what this means. If you take the negation incorrectly, the entire rest of the
proof will be flawed. In this example, the statement to be proved can be written formally as

¥ real numbers » and s, if r is rational and
s 1s irrational, then r + s is irrational.

From this you can see that the negation is

3 a rational number r and an irrational
number s such that r + s is rational.

‘ c ‘ Caution! The negation of “The sum of any irrational number and any rational
number is irrational” is NOT “The sum of any irrational number and any
| rational number is rational.”
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[t follows that the starting point and what is to be shown are as follows:

Starting Point: Suppose not. That is, suppose there is a rational number » and an irrational
number s such that » + s is rational.

To Show: This supposition leads to a contradiction,

To derive a contradiction, you need to understand what you are supposing: There are
numbers r and s such that r is rational, s is irrational, and r + s is rational. By definition
of rational and irrational, this means that 5 cannot be written as a quotient of any two
integers but that r and r + s can:

a

= 3 for some integers a and b with b # 0, and 36
24
rtog= ;— for some integers ¢ and d with d # 0. 3.6.2

If you substitute (3.6.1) into (3.6.2), vou obtain

a+‘_('
b J‘_d'

Subtracting a /b from both sides gives

c a

d b

be  ad B . _ . -
= @ = E by rewriting ¢/d and a/b as equivalent fractions
. bc — ad by the rule for subtracting fractions
= bd with the same denominator,

But both bc — ad and bd are integers because products and differences of integers are
integers, and bd # 0 by the zero product property. Hence s can be expressed as a quotient
of two integers with a nonzero denominator, and so s is rational. which contradicts the
supposition that it is irrational.

This discussion is summarized in a formal proof.

Theorem 3.6.3

The sum of any rational number and any irrational number is irrational.

Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is a rational number r and an irrational number s such that » + s is
rational. [We must deduce a contradiction.| By definition of rational, r = a/b and
r +s = c/d for some integers a, b, ¢, and d with b # 0 and d # 0. By substitution,

a 4 C
— 4+ 5 ==,
b d
and so
C d ) . )
§=—-—= by subtracting a /b from both sides
d b
be — ad _
= — by the laws of algebra.

bd
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Now bc — ad and bd are both integers [since a, b, ¢, and d are, and since products
and differences of integers are integers|. and bd # 0 [by the zero product property].
Hence s is a quotient of the two integers be — ad and bd with bd # 0. Thus, by def-
inition of rational, s is rational, which contradicts the supposition that s is irrational.
[Hence the supposition is false and the theorem is true.|

Argument by Contraposition

A second form of indirect argument. argument by contraposition, is based on the logical
equivalence between a statement and its contrapositive. To prove a statement by con-
traposition, you take the contrapositive of the statement, prove the contrapositive by a
direct proof, and conclude that the original statement is true. The underlying reasoning
is that since a conditional statement is logically equivalent to its contrapositive, if the
contrapositive is true then the statement must also be true.

Method of Proof by Contraposition
1. Express the statement to be proved in the form
V¥x in D, if P(x) then O(x).

(This step may be done mentally.)

2. Rewrite this statement in the contrapositive form
Vx in D, if Q(x) is false then P(x) is false.

(This step may also be done mentally.)

3. Prove the contrapositive by a direct proof.

a. Suppose x is a (particular but arbitrarily chosen) element of D such that Q(x)
is false.

b. Show that P(x) is false.

Example 3.6.4 If the Square of an Integer Is Even, Then the Integer Is Even
Prove that for all integers n, if n” is even then n is even.
Solution First form the contrapositive of the statement to be proved.
Contrapositive: For all integers n, if n is not even then n” is not even.

By the quotient-remainder theorem with ¢ = 2, any integer is even or odd, so any integer
that is not even is odd. Also by Theorem 3.6.2, no integer can be both even and odd. So
if an integer is odd, then it is not even. Thus the contrapositive can be restated as follows:

Contrapositive: For all integers n. if n is odd then n~ is odd.
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A straightforward computation is the heart of a direct proof for this statement, as showr
below.

Proposition 3.6.4

For all integers n. if n? is even then n is even.

Proof (by contraposition):

Suppose n is any odd integer. [We must show that n® is odd.] By definition of
odd. n = 2k + 1 for some integer k. By substitution and algebra, n* = (2k + iz
4k2 + 4k + 1 = 2(2k*> + 2k) + 1. But 2k* + 2k is an integer because products and
sums of integers are integers. So n> = 2 - (an integer) + 1, and thus, by definition of
odd, n? is odd [as was to be shown).

We used the word proposition here rather than theorem because although the word the-
orem can refer to any statement that has been proved, mathematicians often restrict i
to especially important statements that have many and varied consequences. Then they
use the word proposition to refer to a statement that is somewhat less consequential bu
nonetheless worth writing down. We will use Proposition 3.6.4 in Section 3.7 to prove
that +/2 is irrational. R

Relation between Proof by Contradiction
and Proof by Contraposition

Observe that any proof by contraposition can be recast in the language of proof by con-
tradiction. In a proof by contraposition, the statement

V¥x in D, if P(x) then Q(x)
is proved by giving a direct proof of the equivalent statement
Vxin D,if ~Q(x) then ~P(x).

To do this, you suppose you are given an arbitrary element x of D such that ~Q(x). You
then show that ~P (x). This is illustrated in Figure 3.6.1.

Suppose x is an arbitrary sequence of steps
y _ sequence Of Sleps |

element of D such that ~Q(x). ~P(x)

Figure 3.6.1 Proof by Contraposition

Exactly the same sequence of steps can be used as the heart of a proof by contradictios
for the given statement. The only thing that changes is the context in which the steps ars
written down.

To rewrite the proof as a proof by contradiction, you suppose there is an x in D such tha:
P(x) and ~Q(x). You then follow the steps of the proof by contraposition to deduce the
statement ~P(x). But ~P(x) is a contradiction to the supposition that P(x) and ~Q/(x
(Because to contradict a conjunction of statement, it is only necessary to contradict one
component.) This process is illustrated in Figure 3.6.2.

Suppose Jx in D such same sequence of steps Contradiction:
that P(x) and ~Q(x). P(x) and ~P(x)

Figure 3.6.2 Proof by Contradiction
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As an example, here is a proof by contradiction of Proposition 3.6.4, namely that for
any integer n, if n” is even then n is even.

Proposition 3.6.4

For all integers n, if n” is even then n is even.

Proof (by contradiction):

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is. suppose there is an integer n such that n? is even and n is not even. [We must
deduce a contradiction.] By the quotient-remainder theorem with d = 2, any integer
is even or odd. Hence, since n is not even it is odd, and thus, by definition of
odd, n = 2k + 1 for some integer k. By substitution and algebra: n*> = (2k + 1)> =
4k + 4k + 1 = 2(2k*> + 2k) + 1. But 2k? + 2k is an integer because products and
sums of integers are integers. So n” = 2 - (an integer) + 1, and so, by definition of
odd, n* is odd. Therefore, n* is both even and odd. This contradicts Theorem 3.6.2,
which states that no integer can be both even and odd. [This coniradiction shows that
the supposition is false and, hence, that the proposition is true.]

Note that when you use proof by contraposition. you know exactly what conclusion
you need to show, namely the negation of the hypothesis: whereas in proof by contradic-
tion, it may be difficult to know what contradiction to head for. On the other hand, when
you use proof by contradiction, once you have deduced any contradiction whatsoever, you
are done. The main advantage of contraposition over contradiction is that you avoid having
to take (possibly incorrectly) the negation of a complicated statement. The disadvantage
of contraposition as compared with contradiction is that you can use contraposition only
for a specific class of statements—those that are universal and conditional. The discus-
sion above shows that any statement that can be proved by contraposition can be proved
by contradiction. But the converse is not true. Statements such as “y/2 is irrational”
(discussed in the next section) can be proved by contradiction but not by contraposition.

Proof as a Problem-Solving Tool

Direct proof, disproof by counterexample, proof by contradiction, and proof by contra-
position are all tools that may be used to help determine whether statements are true or
false. Given a statement of the form

For all elements in a domain, if (hypothesis) then (conclusion),

imagine elements in the domain that satisfy the hypothesis. Ask yourself: Must they
satisfy the conclusion? If you can see that the answer is “yes™ in all cases, then the
statement is true and your insight will form the basis for a direct proof. If after some
thought it is not clear that the answer is “yes,” try to think whether there are elements of
the domain that satisfy the hypothesis and not the conclusion. If you are successful in
finding some, then the statement is false and you have a counterexample. On the other
hand. if you are not successful in finding such elements. perhaps none exist. Perhaps you
can show that assuming the existence of elements in the domain that satisfy the hypothesis
and not the conclusion leads logically to a contradiction. If so, then the given statement is
true and you have the basis for a proof by contradiction. Alternatively, you could imagine
elements of the domain for which the conclusion is false and ask whether such elements
also fail to satisfy the hypothesis. If the answer in all cases is “yes.” then you have a basis
for a proof by contraposition.
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Exercise Set 3.6

1. Fillin the blanks in the following proof that there is no least

positive real number.

Elernentary Number Theory and Methods of Proof

Solving problems, especially difficult problems, is rarely a straightforward process.
At any stage of following the guidelines above, you might want to try the method of a
previous stage again. If, for example, you fail to find a counterexample for a certain
statement, your experience in trying to find it might help you decide to reattempt a direct
argument rather than trying an indirect one. Psychologists who have studied problem
solving have found that the most successful problem solvers are those who are flexible
and willing to use a variety of approaches without getting stuck in any one of them for
very long. Mathematicians sometimes work for months (or longer) on difficult problems.
Don’t be discouraged if some problems in this book take you quite a while to solve.

Learning the skills of proof and disproof is much like learning other skills, such as
those used in swimming. tennis, or playing a musical instrument. When you first stan
out. you may feel bewildered by all the rules, and you may not feel confident as you
attempt new things. But with practice the rules become internalized and you can use
them in conjunction with all your other powers—of balance, coordination, judgment.
aesthetic sense—to concentrate on winning a meet, winning a match, or playing a concert
successfully.

Now that you have worked through the first six sections of this chapter, return to the
idea that, above all, a proof or disproof should be a convincing argument. You need tc
know how direct and indirect proofs and counterexamples are structured. But to use this
knowledge effectively, you must use it in conjunction with your imaginative powers, your
intuition, and especially your common sense.

b. Prove by contradiction that the difference of any rationa
number and any irrational numbr is irrational.

Proof: [We rake the negation of the statement and suppose
it to be true.] Suppose not, That is, suppose that there is a

i il a) : C
real number x such that v is positive and (@) for all posi- ).
tive real numbers v. [We must deduce (b) .] Consider the
number x /2. Then _¢)_ because x is positive, and x /2 < x 10.
because 4} Hence _{€)_, which is a contradiction. [Thus
the supposition is false, and so there is no least positive real
number: | 1

S e :

2. Is 5 an irrational number? Explain. H12
3. Use proof by contradiction to show that for all integers n, H13.
3n + 2 is not divisible by 3. H 14

4. Use proof by contradiction to show that for all integers m.
Tm + 4 is not divisible by 7. H*15

Carefully formulate the negations of each of the statements in
5-8. Then prove each statement by contradiction. 16

5. There is no greatest even integer.

6. There is no greatest negative real number.

7. There is no least positive rational number.

8. a. When asked to prove that the difference of any rational

number and any irrational number is irrational, a student
begins, “Suppose not. Suppose the difference of any
rational number and any irrational number is rational.”
Comment.

Prove each statement in 9—15 by contradiction.

For all real numbers x and v, if x is irrational and y is rationz
then x — v is irrational.

The product of any nonzero rational number and any irra
tional number is irrational.

. If @ and b are rational numbers, b # 0, and r is an irrationz

number, then a + br is irrational.
For any integer n, n* — 2 is not divisible by 4.
For all prime numbers a, b, and ¢, a* + b* # ¢*.

Ifa. b, and ¢ are integers and a® + b* = ¢?, then at least onz
of a and b is even.

For all odd integers a, b, and ¢, if z is a solution o
ax® + bx + ¢ = 0 then z is irrational.

Fill in the blanks in the following proof by contrapositios
that for all integers n, if 5 J n* then 5 } n.

Proof (by contraposition): [The contrapositive is: For a
n*.] Suppose n is any integer

integers n, if 5|n then 5
such that (&), | We must show that (b) .| By definitios
(c)

of divisibility, n = for some integer k. By substir

tion, n* = (@) — 5(5k%). But 5k is an integer because =
is a product of integers. Hence n* = 5 - (an integer), and s

@) 1as was to be shown].

. If a productc

at least

Fy
|
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= the statements in 17 and 18 by contraposition.

= 2 product of two positive real numbers is greater than 100,
“en at least one of the numbers is greater than 10.

2 sum of two real numbers is less than 50, then at least
e of the numbers is less than 25,

“onsider the statement “For all integers n, if n? is odd then

= 1s odd.”

= Write what you would suppose and what you would need
to show to prove this statement by contradiction.

= Write what you would suppose and what you would need

1o show to prove this statement by contraposition.

msider the statement “For all real numbers r, if r is irra-

conal then r is irrational.™

= Write what you would suppose and what you would need
to show to prove this statement by contradiction.

= Write what you would suppose and what you would need
to show to prove this statement by contraposition.

= each of the statements in 21-26 in two ways: (a) by con-

<ition and (b) by contradiction.

The negative of any irrational number is irrational.

The reciprocal of any irrational number is irrational. (The
reciprocal of a nonzero real number x is [ /x.)

For all integers n, if n? is odd then n is odd.

-« Forall integers a, b, and ¢, if @ f be then a f b. (Recall that

e symbol f means “does not divide.”)

For all integers m and n, if m + n is even then m and n are
soth even or m and n are both odd.

Forallintegersa, b, and ¢, ifa | banda [ ¢, thena } (b + c).
Hint: To prove p — g V r, it suffices to prove either
oA ~g —ror p A~ — q. See exercise 14 in Section
1.2.)

The following “proof™ that every integer is rational is incor-
rect. Find the mistake.

“Proof (by contradiction): Suppose not. Suppose every
mteger is irrational. Then the integer 1 is irrational. But

28.

30.

H * 32,
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I = 1/1, which is rational. This is a contradiction. [Hence
the supposition is false and the theorem is true.]”

a. Use the properties of inequalities in Appendix A to prove
that for all integers r. s, and n. if r > /n and s > /n
then rs > n.

b. Use proof by contraposition and the result of part (a) to
show that for all integers n > 1, if n is not divisible by
any positive integer that is greater than 1 and less than or
equal to /n, then n is prime.

c. Use proof by contraposition and the result of part (b) to
show that for all integers n > 1, if n is not divisible by
any prime number less than or equal to /i, then n is
prime.

. Use the result of exercise 28 to determine whether the fol-

lowing numbers are prime.

a. 667 b. 557 c. 527 d. 613

The sieve of Eratosthenes, named after its inventor, the
Greek scholar Eratosthenes (276194 B.c.). provides a way
to find all prime numbers less than or equal to some fixed
number n. To construct it, write out all the integers from
2 to n. Cross out all multiples of 2 except 2 itself, then all
multiples of 3 except 3 itself, then all multiples of 5 except
5 itself, and so forth. Continue crossing out the multiples
of each successive prime number up to \/n. The numbers
that are not crossed out are all the prime numbers from 2 to
n. Here is a sieve of Eratosthenes that includes the numbers
from 2 to 27, The multiples of 2 are crossed out with a /,
the multiples of 3 with a \, and the multiples of 5 with a —.

2 345 K7 48 948111213 4
¥ 16 17 P8 19 26 N 2Z 23 24 25 26

Use the sieve of Eratosthenes to find all prime numbers less
than 100.

. Use the results of exercises 28 and 30 to determine whether

the following numbers are prime.

a. 9,269 bh. 9,103 c. 8,623 d. 7917

Use proof by contradiction to show that every integer greater
than 11 is a sum of two composite numbers.

3.7 Two Classical Theorems

How flat and dead would be a mind that saw nothing in a negation but an opague

barrier! A live mind can see a window onto a world of possibilities.

— Douglas Hofstadter, Gédel, Escher, Bach, 1979

This section contains proofs of two of the most famous theorems in mathematics: that +/2
is irrational and that there are infinitely many prime numbers. Both proofs are examples
of indirect arguments and were well known more than 2,000 years ago, but they remain
exemplary models of mathematical argument to this day.
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The Irrationality of /2

When mathematics flourished at the time of the ancient Greeks, mathematicians believed
that given any two line segments, say A: ——— and B: ———, two integers, say a
and b. could be found so that the ratio of the lengths of A and B would be in the same
proportion as the ratio of @ and b. Symbolically:

length A«
length B b

Now it is easy to find a line segment of length +/2; just take the diagonal of the unit square

By the Pythagorean theorem, ¢® = 1° 4 17 = 2, and so ¢ = +/2. If the belief of the ancient
Greeks were correct, there would be integers a and b such that

length (diagonal) «
length (side) b

And this would imply that

But then v/2 would be a ratio of two integers, or, in other words, v/2 would be rational.

In the fourth or fifth century B.C.. the followers of the Greek mathematician and
philosopher Pythagoras discovered that +/2 was not rational. This discovery was vers
upsetting to them. for it undermined their deep. quasi-religious belief in the power of
whole numbers to describe phenomena.

The following proof of the irrationality of +/2 was known to Aristotle and is similar t
that in the tenth book of Euclid’s Elements of Geometry. The Greek mathematician Euclid
is best known as a geometer. In fact, knowledge of the geometry in the first six books o
his Elements has been considered an essential part of a liberal education for more thar
2,000 years. Books 7—10 of his Elements, however, contain much that we would now ca!

_ £ number theory.
Euclid The proof begins by supposing the negation: +/2 is rational. This means that thers
. . 7= . g -
(fl. 300 B.c.) exist integers m and n such that /2 = m/n. Now if m and n have any common tactors Ex:

these may be factored out to obtain a new fraction, equal to m/n, in which the numerator
and denominator have no common factors. (For example, 18/12 = (6-3)/(6-2) = 3/2
which is a fraction whose numerator and denominator have no common factors.) Thus
without loss of generality, we may assume that m and n had no common factors in ths
first place.® We will then derive the contradiction that m and n do have a common factor
of 2. The argument makes use of Proposition 3.6.4: If the square of an integer is even
then that integer is even.

“Strictly speaking, this deduction is a consequence of an axiom called the “well-ordering principle.”
which is discussed in Section 4.4,
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Theorem 3.7.1 Irrationality of +/2

V2 is irrational.

Proof:

|We take the negation and suppose it to be true.] Suppose not. That is. suppose V2
is rational. Then there are integers m and n with no common factors such that

m

= — 37.1
n

2]

v

[by dividing m and n by any common factors if necessary). |[We must derive a
contradiction.] Squaring both sides of equation (3.7.1) gives

m?
Jie) ==
2 —,
1%
Or, equivalently,
e 2
m°=2n". 3.7.2

Note that equation (3.7.2) implies that m? is even (by definition of even). It follows
that m is even (by Proposition 3.6.4). We file this fact away for future reference and
also deduce (by definition of even) that

m = 2k for some integer k. 3.7.3
Substituting equation (3.7.3) into equation (3.7.2), we see that
m? = (2k)? = 4k = 2n°.
Dividing both sides of the right-most equation by 2 gives
5

:
n- = 2k-.

Consequently, n? is even, and so n is even (by Proposition 3.6.4). But we also know
that m is even. [This is the fact we filed away.] Hence both m and n have a common
factor of 2. But this contradicts the supposition that m and n have no common factors.
[Hence the supposition is false and so the theorem is true.]

Now that you have seen the proof that +/2 is irrational. you can easily derive the
irrationality of certain other real numbers.

Example 3.7.1 Irrationality of 1 + 3/2

Prove by contradiction that 1 4+ 3+/2 is irrational.

The essence of the argument is the observation that if 1 + 3+/2 could be written
as a fraction, then so could v/2. But by Theorem 3.7.1, we know that to be impossible.
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Proposition 3.7.2
1 + 3+/2 is irrational.

Proof:
Suppose not. Suppose 1 + 3+/2 is rational. [We must derive a contradiction.] Then
by definition of rational,

a . ;
1432 = 5 for some integers a and b with b #= 0.
7

It follows that

a
3\/5 =—-=1 by subtracting | from both sides

b
_a b o
— B = B by substitution
- 8= b by the rule for subtracting fractions
- b with a common denominator.

Hence

a—>b
V2 ="—— by dividing both sides by 3
3b i
Buta — b and 3b are integers (since ¢ and b are integers and differences and products
of integers are integers), and 3b # 0 by the zero product property. Hence v/2 is
a quotient of the two integers @ — b and 3b with 3b # 0, and so V2 is rational
| (by definition of rational.) This contradicts the fact that +/2 is irrational. [This
‘ contradiction shows that the supposition is false.] Hence 1 + 3+/2 is irrational.

The Infinitude of the Set of Prime Numbers

You know that a prime number is a positive integer that cannot be factored as a product oz
two smaller positive integers. Is the set of all such numbers infinite, or is there a larges:
prime number? The answer was known to Euclid, and a proof that the set of all prime
numbers is infinite appears in Book 9 of his Elements of Geometry.

Euclid’s proof requires one additional fact we have not yet established: If a prime
number divides an integer a, then it does not divide a + 1.

Proposition 3.7.3

For any integer a and any prime number p, if p |a then p f (a + 1).

Proof:

Suppose not. That is, suppose there exists an integer a and a prime number p such
that p |@ and p | (@ + 1). Then, by definition of divisibility, there exist integers r and
ssuchthata = pranda+ 1 = ps. It followsthat ] = (@ +1)—a=ps — pr=
p(s —r), and so (since s — r is an integer) p | 1. But the only integer divisors of
1 are | and —1 (see Example 3.3.4), and since p is prime, p > 1. Thus p < 1 and
p > 1. which is a contradiction. [Hence the supposition is false, and the proposition
is true.]
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- The idea of Euclid’s proof is this: Suppose the set of prime numbers were finite. Then
you could take the product of all the prime numbers and add one. By Theorem 3.3.2 this
number must be divisible by some prime number. But by Proposition 3.7.3. this number is
not divisible by any of the prime numbers in the set. Hence there must be a prime number
that is not in the set of all prime numbers. which is impossible.

The following formal proof fills in the details of this outline.

on.] Then
Theorem 3.7.4 Infinitude of the Primes
The set of prime numbers is infinite.
Proof (by contradiction):
Suppose not. Suppose the set of prime numbers is finite. [We must deduce a
contradiction.] Then all the prime numbers can be listed, say. in ascending order:
pr=2p=3,ps=5.ps=T.ps=11,..., o
Consider the integer
N=pipps---py+ L.
Then N > 1. and so, by Theorem 3.3.2. N is divisible by some prime number p.
Also, since p is prime, p must equal one of the prime numbers pj. pa, p3.....
pu- Thus p | (p1paps--- py). By Proposition 3.7.3, p [ (p1pap3 -+ py + 1), and so
p ¥ N. Hence p | N and p f N. which is a contradiction. [Hence the supposition is
false and the theorem is true.|
d products
nce +/2 is
is rational The proof of Theorem 3.7.4 shows that if you form the product of all prime numbers
nal. [This up to a certain point and add one, the result, N, is divisible by a prime number not on the
ional. list. The proof does not show that N is, itself, prime. In the exercises at the end of this

section you are asked to find an example of an integer N constructed in this way that is
not prime.

When to Use Indirect Proof

s a product o

here a largess The examples in this section and Section 3.6 have not provided a definitive answer to the
t of all prime question of when to prove a statement directly and when to prove it indirectly. Many

theorems can be proved either way. Usually, however, when both types of proof are
d: If a prime possible, indirect proof is clumsier than direct proof. In the absence of obvious clues

suggesting indirect argument, try first to prove a statement directly. Then, if that does not
succeed. look for a counterexample. If the search for a counterexample is unsuccessful,
look for a proof by contradiction or contraposition.

Open Questions in Number Theory

In this section we proved that there are infinitely many prime numbers. There is no known
formula for obtaining primes, but a few formulas have been found to be more successful at
producing them than other formulas. One such is due to Marin Mersenne, a French monk
who lived from 1588-1648. Mersenne primes have the form 27 — 1, where p is prime.

iber p such
egers r and

s — pr = eid : . . . = .
!divisof's of Not all numbers of this form are prime, but because of the greater likelihood of finding
] .and primes among them, those seeking large prime numbers often test these for primality. As
J —_—

a result. many of the largest known prime numbers are Mersenne primes.

proposition
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An interesting question is whether there are infinitely many Mersenne primes. As
of the date of publication of this book, the answer is not known, but new mathematica
discoveries are being made every day and by the time you read this someone may have
discovered the answer. Another formula that seems to produce a relatively large number
of prime numbers is due to Fermat. Fermat primes are prime numbers of the form 2% + 1.
where n is a positive integer. Are there infinitely many Fermat primes? Again, as of now.
no one knows. Similarly unknown are whether there are infinitely many primes of the
form n? + 1, where n is a positive integer. and whether there is always a prime number
between integers n” and (n + 1)2.

Another famous open question involving primes is the rwin primes conjecture, which
states that there are infinitely many pairs of prime numbers of the form p and p + 2. As
with other well-known problems in number theory, this conjecture has withstood computer
testing up to extremely large numbers. But compared with infinity, any number, no matter
how large, is less than a drop in the ocean.

In 1844, the Belgian mathematician Eugéne Catalan conjectured that the only solutions
to the equation x" — y" = 1, where x, v, n. and m are all integers greater than 1, is
3% — 23 = 1. This conjecture also remains unresolved to this day.

In 1993, while trying to prove Fermat's last theorem, an amateur number theorist.
Andrew Beal, became intrigued by the equation x” 4 y" = z*, where no two of x, y, or
z have any common factor other than +1. When diligent effort, first by hand and then
by computer, failed to reveal any solutions, Beal conjectured that no solutions exist. His
conjecture has become known as Beal’s conjecture, and he has offered a prize of $100,00¢
to anyone who can either prove or disprove it.

These are just a few of a large number of open questions in number theory. Many
people believe that mathematics is a fixed subject that changes very little from one centurs
to the next. In fact, more mathematical questions are being raised and more results are
being discovered now than ever before in history.

Exercise Set 3.7

1.

A calculator display shows that +/2 = 1.414213562, and 11. The sum of any two positive irrational numbers is irrational
1414213562 .

1.414213562 = —————_ This suggests that +/2 is a 12, The product of any two irrational numbers is irrational.
1000000000 et ? }

rational number, which contradicts Theorem 3.7.1. Explain 4 13. If an integer greater than 1 is a perfect square. then its cube

the discrepancy.

. Example 3.2.1(h)illustrates a technique for showing thatany

repeating decimal number is rational. A calculator display
shows the result of a certain calculation as 40.72727272727.
Can you be sure that the result of the calculation is a rational
number? Explain.

Determine which statements in 3—13 are true and which are false.
Prove those that are true and disprove those that are false.

3.

n

7.

8.

9.
10.

6 — 7+/2 is irrational. 4. 32 — 7 is irrational.

V4 is irrational. 6. +/2/6 is rational.
The sum of any two irrational numbers is irrational.
The difference of any two irrational numbers is irrational.

The square root of an irrational number is irrational.

If r is any rational number and s is any irrational number,
then r/s is irrational.

16.

17.

root is irrational.

. Consider the following sentence: If x is rational then /X i

irrational. Is this sentence always true, sometimes true and
sometimes false. or always false? Justify your answer.

. a. Prove that for all integers a, if a® is even then a is even

b. Prove that /2 is irrational.

a. Use proof" by contradiction to show that for any inte-
ger n, it is impossible for n to equal both 3¢, + r| and
3> + ra, where gy, g2, ry, and r», are integers, 0 < r| <
3.0=r <3 andr, #r.

b. Use proof by contradiction, the quotient-remainder the-
orem, division into cases, and the result of part (a)
prove that for all integers n, if n” is divisible by 3 then »
is divisible by 3.

c¢. Prove that +/3 is irrational.

Give an example to show that if d is not prime and n? is
divisible by d. then n need not be divisible by d.
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& & The quotient-remainder theorem says not only that there ex-

ist quotients and remainders but also that the quotient and
remainder of a division are unique. Prove the uniqueness.
That is, prove that if @ and d are integers with d > 0 and if
41,71, q2, and r are integers such that

a=dg +r, where0=<r <d
and

a=dg,+r, whereO<r, <d.
then

qi=¢» and ry =ra.

¥ 19. Prove that +/3 is irrational.

#

2. Prove that for any integera. 9 f (a® = 3).

21. a. Use the unique factorization theorem to answer the fol-

lowing question: If the prime factorization of an integer
n contains k occurrences of a prime number p, how many
occurrences of p are contained in the prime factorization
of n??

b. An alternative proof of the irrationality of /2 counts the
number of 2's on the two sides of the equation 2n* = m*
and deduces a contradiction. Write a proof that uses this
approach.

Use the proof technique illustrated in exercise 21(b) to prove
that if # is any integer that is not a perfect square, then Jn
is irrational.

23. Prove that /2 + /3 is irrational.
24, Prove that logs(2) is irrational.

23, Let N =2-3-5-7+ 1. What remainder is obtained when

N is divided by 27 3? 57 77 Is N prime? Justify your
answer.

26. Suppose a is an integer and p is a prime number such that

plaand p|(a + 3). What can you deduce about p? Why?

27. Let py, pa, ps, - - - bealistof all prime numbers in ascending

order. Here is a table of the first six:

rm

P2 P3 Pa Ps Ps
5 7 11 13

fad

H a. For each i =1.2.3.4,5.6, let N, =pyp2---pi + 1.
Calculate N,. Na, Na, Ny, Ns, and N,
b. Foreachi = 1.2.3.4,5, 6, find the smallest prime num-
ber ¢; such that g; divides N;.

28.

H *29.

H * 30.

H 31.
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An alternative proof of the infinitude of the prime numbers

begins as follows:

Proof: Suppose there are only finitely many prime num-
bers. Then one is the largest. Callit p. Let M = p!+ L.
We will show that there is a prime number g such thatg > p.

Complete this proof.

Prove that if py. pa. ... and p, are distinct prime numbers
with p; = 2andn > 1, then p;py - -+ p, + L canbe written
in the form 4k + 3 for some integer k.

Prove that for all integers n. if n > 2 then there is a prime
number p such thatn < p < nl.

n'l=nn—-1)---3-2:1)

a. Fermat’s last theorem says that for all integers n > 2,
the equation x" + y" = " has no positive integer solu-
tion (solution for which x. v, and z are positive integers).
Prove the following: If for all prime numbers p > 2.
xP 4 yP = z” has no positive integer solution, then for
any integer n > 2 that is not a power of 2, x" 4 y" = 2"
has no positive integer solution.

b. Fermat proved that there are no integers x, y, and z such
that x* + y* = z*. Use this result to remove the restric-
tion in part (a) that n not be a power of 2. That is, prove
that if n is a power of 2 and n > 4, then x" + " ="

has no positive integer solution.

For exercises 32-35 note that to show there is a unique object
with a certain property, show that (1) there is an object with
the property and (2) if objects A and B have the property, then
A=B.

32.

34.

(e}
h

Prove that there exists a unique prime number of the form
n* — 1. where n is an integer that is greater than or equal
to 2.

. Prove that there exists a unique prime number of the form

n? 4 2n — 3, where n is a positive integer.

Prove that there is at most one real number a with the prop-
erty that @ + » = r for all real numbers ». (Such a number
is called an additive identity.)

. Prove that there is at most one real number b with the prop-

erty that br = r for all real numbers r. (Such a number is
called a multiplicative identity.)






