Test Your Understanding: Week 6

1. The relation R_1 , from $X=\{\alpha, \beta, \delta\}$ to $Y=\{a, b, c\}$, and relation R_2 from Y to $Z=\{x, y, z\}$ have the matrices below.

$$A_1 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 (with the above ordering of the sets X , Y and

Z).

- (a) Multiply the two matrices A_1 and A_2 together.
- (b) Use this answer to find the matrix of the composite relation $R_2 o R_1$.
- (c) Use this matrix to find $R_2 O R_1$ as a set of ordered pairs.
- 2. Order the following functions with the fastest growing ones first and the slowest growing ones last. They are currently in random order.

$$n^{2} \lg(n), (\lg(n))^{10}, n^{2}, 2^{n}, n!, n*2^{n}, n^{2} (\lg(n))^{2}$$

- 3. The function f and g are known to be $\Theta(n^2)$, $\Theta(n \lg(n))$ respectively.
- (a) Write down what these statements mean in terms of the constants c_1 , c_2 , c_3 , c_4 , n_1 , n_2 , n_3 and n_4 .
- (b) Write down inequalities for f(n)+g(n), and hence show that $f(n)+g(n)=O(n^2)$, $f(n)+g(n)=O(n^2)$.
- (c) Draw the appropriate conclusion about the long term behaviour of f(n)+g(n)
- 4. A sequence of length n is to be split into two, at $\lceil n/2 \rceil$. Draw up a table of n, $\lceil n/2 \rceil$ and the members of the upper portion of the sequence. Count them and try to discover a formula for the number of sequence members from $\lceil n/2 \rceil$ to n.

"Well, here we are, my little chickadee."