Solution to Tute 2, Section 6.2, Question 51

The barrel is obtained by rotating the curve $y = f(x) = R - kx^2$, $\frac{-h}{2} \le x \le \frac{h}{2}$ about the x axis. At the ends of the barrel, the radius of the barrel will be equal to the height of the function,

$$f\left(\frac{h}{2}\right) = R - k\left(\frac{h}{2}\right)^2 = R - \frac{kh^2}{4}.$$

Of course, if $\delta = \frac{kh^2}{4}$, then the end radius is $R - \delta$.

Now we find the volume for $0 \le x \le \frac{h}{2}$ and double it. As usual, if we rotate a thin vertical sliver around the x axis, we obtain (roughly) a thin disk. So an elemental volume is given by $dV_i = \pi r_i^2 dx = \pi (R - kx_i^2) dx.$ Note that $\delta = kh^2/4$.

So, forming a Riemann sum, we obtain $V \approx \sum_{i=1}^n dV_i = \sum_{i=1}^n \pi \left(R - kx_i^2\right)^2 dx$, and in the limit this becomes

$$V = \int_0^{\frac{h}{2}} \pi \left(R - kx^2 \right)^2 dx$$

$$= \int_0^{\frac{h}{2}} \pi \left(R^2 - 2kRx^2 + k^2x^4 \right) dx$$

$$= \pi \left[R^2 x - \frac{2}{3} kRx^3 + \frac{1}{5} k^2 x^5 \right]_0^{\frac{h}{2}}$$

$$= \pi \left[R^2 \frac{h}{2} - \frac{2}{3} kR \frac{h^3}{8} + \frac{1}{5} k^2 \frac{h^5}{32} \right] - \pi \left[0 \right]$$

$$= \pi h \left[\frac{R^2}{2} - \frac{kRh^2}{12} + \frac{k^2 h^4}{160} \right]$$

Hence the full volume will be double this.

Mathematical Methods For Engineers 2 (MATH 1064)

$$V_{T} = \pi h \left[R^{2} - \frac{kRh^{2}}{6} + \frac{k^{2}h^{4}}{80} \right]$$

$$= \pi h \left[R^{2} - \frac{2R}{3} \frac{kh^{2}}{4} + \frac{1}{80} k^{2}h^{4} \right]$$

$$= \pi h \left[R^{2} - \frac{2R}{3} \delta + \frac{1}{80} *16\delta^{2} \right]$$

$$= \frac{\pi h}{3} \left[3R^{2} - 2R\delta + \frac{3}{5} \delta^{2} \right]$$

$$= \frac{\pi h}{3} \left[2R^{2} + R^{2} - 2R\delta + \frac{3}{5} \delta^{2} \right]$$

Note that $-2R\delta$ is a term from $(R-\delta)^2=r^2$.

And if $r = R - \delta$, $r^2 = R^2 - 2R\delta + \delta^2$.

So
$$V_T = \frac{\pi h}{3} \left[2R^2 + R^2 - 2R\delta + \delta^2 - \delta^2 + \frac{3}{5}\delta \right]$$

= $\frac{\pi h}{3} \left[2R^2 + r^2 - \frac{2}{5}\delta^2 \right]$

Voila!