
Mathematics Help Centre

Numerical Solution to Ordinary Differential Equations

We frequently need to solve a differential equation, ie an equation of the form

(,); ; ()dy f x y a x b y a
dx

α= ≤ ≤ = . In other words, we are not given the function

y but its derivative. This derivative may be only a function of x, but it could be
a function of x and y. We are also usually given the value of y at one end of
the domain, ie it is what is called an initial value problem. Fortunately Matlab
provides some extremely powerful routines to solve these problems.

Matlab has several routines, with syntax as below. Note that Matlab assumes
the independent variable is t, or time, not x, but of course the syntax is
unchanged. The ODE should be checked for stiffness first, and if it is stiff,
then another routine should be used.
[TOUT,YOUT] = ode23(ODEFUN,TSPAN,Y0)
[TOUT,YOUT] = ode45(ODEFUN,TSPAN,Y0)

In other words, either of these routines could be used, but generally ode45
will provide better accuracy. Generally, this should be the first solver you try.
There are a number of other solvers that could also be discussed, but we will
concentrate on ode45. The meaning of the parameters in the above call is as
shown in the following table.

Parameter Discussion
TOUT A vector of time values returned by the solver..
YOUT The y values calculated at each time point in the vector TOUT.
ODEFUN The name of the Matlab function file used to calculate the

derivative of y at each time step.
TSPAN The initial and final times, ie the limits of the independent

variable. If the value of the function is needed at specific time
values, then TSPAN should contain all these points.

Y0 The initial conditions.

Note that y may be a vector, meaning that we may in fact be solving a system
of ODE’s. In other words, YOUT, Y0 and the output of ODEFUN must also be
vectors. Our first example will be a single ODE.

Example 1

Solve the ODE
2

2, (0) 16
12

dy yy y
dt

= − − = . This arises in the modelling of a fish

population with overcrowding and harvesting (Borelli, Coleman). Then first

of all we need a function M file that returns the derivative ' dyy
dt

= . Enter the

following code into Matlab and save it with the filename Examp1.M.

G R Lockwood, UniSA, 2005

Mathematics Help Centre

function deriv=Examp1(t,y);
% Note that t is not explicitly used in this ODE,
% but it is still a required parameter.

deriv=y-y.^2/12-2;

Now let us suppose we need to find the population over the period t=0 to 10.
Then we shall first solve the problem without specifying the output values of
t, and then with time values spaced one month apart. Enter the code below
and run it. The figure below results.

% Program to call the example Examp1
tspan=[0 10];
y0=16;
[TOUT,YOUT] = ode45('Examp1',tspan,y0);
plot(TOUT, YOUT)
title('Fish Population, Harvesting & Overcrowding')

Now let us suppose we need to solve a system of ODEs, perhaps the
following, also from Borrelli and Coleman. It is known as the Lotka-Volterra
system, a predator-prey system of ODEs that attempts to model the
population of a single prey species and a single predator, with harvesting.
The prey species is y, the predator species is x. (In the absence of prey, the
predator decreases, shown by the term –x , and in the absence of the predator,
the prey increases, shown by the term y.)

0.2 , (0) 8
10

0.2 , (0) 16
5

dx xyx x x
dt
dy xyy y y
dt

= − + − =

= − − =

1

1 For information on the coefficients and why they take the signs they do, consult Borrelli and
Coleman, Differential Equations A Modeling Perspective

G R Lockwood, UniSA, 2005

Mathematics Help Centre

Again note that there is no explicit dependence on time in this system. We
need to redefine x and y to y1 and y2. Then the system becomes as follows.

1 1 2
1 1 1

2 1 2
2 2 2

0.2 , (0) 8
10

0.2 , (0) 16
5

dy y yy y y
dt
dy y yy y y
dt

= − + − =

= − − =

The Matlab code to calculate this is as follows.

function derivs=Examp2(t,y)
% Matlab code for example 2

y1=-y(1)+y(1)*y(2)/10-0.2*y(1);
y2=y(2)-y(1)*y(2)/5-0.2*y(2);

Output is a column vector. derivs = [y1; y2];

As usual, although t is not explicitly required in the file it is a necessary
parameter. To solve this problem with ODE45, try the following call.

% Program to call the example Examp1
tspan=[0 10];
y0=[8;16];;
[TOUT,YOUT] = ode45('Examp2',tspan,y0);

figure(1)
plot(YOUT(:,1), YOUT(:,2))
title('Predator-Prey interaction');
xlabel('Predator Population');
ylabel('Prey Population');

figure(2)
plot(TOUT,YOUT(:,1));
title('Predator Population Over Time');
xlabel('Time');
ylabel('Population');

figure(3)
plot(TOUT,YOUT(:,2));
title('Prey Population Over Time');
xlabel('Time');
ylabel('Population');

This code generates three graphs, the first being the predator and prey
populations being plotted on the same axes, and the second two being the
individual populations plotted against time. One of them is shown below.

G R Lockwood, UniSA, 2005

Mathematics Help Centre

The next section, which will be added when time permits, will show a simple
example with t explicitly appearing on the right hand side, and more
complicated examples that do not have a simple formula for the derivatives.

G R Lockwood, UniSA, 2005

	Example 1

