
Box-Jenkins Models

John Boland

Abstract Time Series analysis is concerned with data that are not independent, but
serially correlated, and where the relationships between consecutive observations
are of interest. O. E. Anderson, Time Series Analysis and Forecasting

1 Introduction

After we have identified and removed trends and seasonality, we assume that the
residuals thus formed are a stationary time series. We then utilise particular methods
to ascertain whether this residual series is the realisation of a purely random process,
or if it contains serial correlation of some nature. We are going to examine the
Autoregressive Integrated Moving Average Process. Another name for the processes
that we will undertake is the Box-Jenkins (BJ) Methodology, which describes an
iterative process for identifying a model and then using that model for forecasting.
The Box-Jenkins methodology comprises four steps:

• Identification of process;
• Estimation of parameters;
• Verification, and;
• Forecasting.

Note that those four features define the original Box-Jenkins approach. We will
add discussions about probabilistic forecasting and also synthetic generation of data
sets.

We will be using the weather data Mildura Daily Solar Radiation and Mildura
Daily Temperature for illustration, among other data sets. The first file comprises
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twelve years of daily total global solar radiation on a horizontal plane, and the sec-
ond is the same period of daily average temperature. Global solar radiation means
the aggregate of the solar energy hitting a site directly (direct solar radiation) plus
the solar energy reflected to that site off particles in the atmosphere (diffuse solar
radiation).

2 Identification of Processes

There is more than one form of a Box-Jenkins model, and we are going to inves-
tigate the Non-Seasonal Autoregressive Moving Average Model. This model is so
called because it combines both the concept of a moving average model and an au-
toregressive model. To proceed we need some definitions and terminology. Assume
we have a stationary time series Xt , ie. no trend, seasonality, periodicity, and as well
we assume homocedascity (no variation in time of the variance). We will relax this
subsequently and discuss the various ways the variance may change, that is either
systematically or stochastically.

We thus first deal with a series that we can assume is weakly stationary.

2.1 Weak Stationarity

A series is weakly stationary if ∀t,

E[Xt ] = µ

Cov[Xt ,Xt−k] = γk.

2.2 Strong Stationarity

A series is said to be strongly stationary if

(X1,X2, . . . ,Xm) =
d (X1+h,X2+h, . . . ,Xm+h) (1)

Here, =d , means equal in distribution, or all moments are equal, not just mean
and variance as with weak stationarity.

3 Autoregressive Moving Average (ARMA) Models

The general form of these models is
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Xt −α1Xt−1−α2Xt−2− . . .−αpXt−p = Zt +θ1Zt−1 +θ2Zt−2 + . . .+θqZt−q (2)

In this the Xt are identically distributed random variables∼ (0,σ2
X ), and the Zt are

independent and identically distributed random variables or White Noise,∼ (0,σ2
Z).

Note that there is often the misconception that the Zt must be Normally distributed,
but for many applications, they need not be even symmetric. We shall see later when
a lack of Normality is critical.

αp and θq are the coefficients of p and q order polynomials satisfying

α(y) = 1−α1y−α2y2− . . .−αpyp

θ(y) = 1+θ1y+θ2y2 + . . .+θqyq,

and α(y) and θq are the autoregressive and moving average polynomials respec-
tively.

Let B be the backwards shift operator, defined by B jXt = Xt− j, j = 0,±1,±2, . . ..
Then we can write Equation 2 in the form

α(B)Xt = θ(B)Zt , (3)

which is known as an ARMA(p,q) process.
If α(z) = 1, then we have a pure moving average process MA(q),

Xt = θ(B)Zt . (4)

Alternatively, if θ(z) = 1, we have a pure autoregressive process AR(p),

α(B)Xt = Zt . (5)

4 The Sample Autocorrelation and Partial Autocorrelation
Functions

The Autocorrelation and Partial Autocorrelation Functions provide a useful measure
of the degree of dependence between values of a time series at specific interval of
separation and thus play an important role in prediction of future values of a time
series.
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4.1 Digression

To fully understand these processes we need some concepts defined. We will briefly
describe the concept of covariance. Suppose two variables X and Y have means µX
, µY respectively. Then the covariance of X and Y is defined to be

Cov(X ,Y ) = E(X−µX )(Y −µY ). (6)

If X and Y are independent, then

Cov(X ,Y ) = E(X−µX )(Y −µY ) = E(X−µX )E(Y −µY ) = 0. (7)

If X and Y are not independent, then the covariance may be positive or negative,
depending on whether ”high” values of X tend to go with ”high” or ”low” values
of Y . It is usual to standardise the covariance by dividing by the product of their
respective standard deviations to give a quantity called the correlation coefficient.
If X and Y are random variables for the same stochastic process at different times,
then the covariance coefficient is called an autocovariance coefficient, and the corre-
lation coefficient is called an autocorrelation coefficient. If the process is stationary,
the standard deviations of X and Y will be the same and their product will be the
variance of either.

Let Xt be a stationary time series. The autocovariance function (ACVF) of Xt is
given by

γX (h) =Cov(Xt+h,Xt), (8)

and the autocorrelation function (ACF) of Xt is

ρX (h) =
γX (h)
γX (0)

. (9)

4.2 The Sample Functions

The autocovariance and autocorrelation functions can be estimated from observa-
tions of X1,X2, ...,Xn to give the Sample Autocovariance Function (SAF) and the
Sample Autocorrelation Function (SACF), denoted by

rk =
∑

n−k
t=1 (xt − x̄)(xt+k− x̄)

∑
n
t=1(xt − x̄)2 (10)

where k is the lag. Thus, the SACF is a measure of the linear relationship between
time series observations separated by some time period, denoted the lag k. Similar
to the correlation coefficient of linear regression, rk will take a value between +1
and −1, and the closer to ±1 the value is, the stronger the relationship. If the value
is positive then the relationship is positive and vice versa.
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What relationship are we exactly talking about? Let’s consider a lag of 1. A value
close to 1 means that there is a strong correlation between xt and xt−1, xt−1 and xt−2
and so on down to the last observation. Thus, there is a strong correlation between xt
and some xd , where xd is an observation quite a number of time units away from xt .
Although the correlation is strong, it does not represent the individual correlations
between the variables.

The Sample Partial Autocorrelation Function describes the correlation between
observations at some time period, the lag, with the influence of the serial correla-
tion removed. The autocorrelation function gives you the connection or correlation
between the data values a certain number of time steps (lags) apart. However, if the
value at time t is correlated with the value at time t− 1 and the value at time t− 1
is correlated with the value at time t−2, then there will be a significant correlation
between the value at time t and the value at time t− 2 because of the interconnec-
tion. The partial autocorrelation function strips away the interconnection and gives
only ”pure” correlation. We can calculate the PACF coefficients knowing the ACF
ones. This requires use of the Yule-Walker equations which are


1 ρ1 ρ2 . . . ρk−2 ρk−1
ρ1 1 ρ1 . . . ρk−3 ρk−2
. . . . . . . .
. . . . . . . .

ρk−1 ρk−2 ρk−3 . . . ρ1 1




αk1
αk2
.
.

αkk

=


ρ1
ρ2
.
.

ρk



The partial autocorrelation is the αkk term and they are solved progressively using

α11 = ρ1

[
1 ρ1
ρ1 1

][
α21
α22

]
=

[
ρ1
ρ2

]

 1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

α31
α32
α33

=

ρ1
ρ2
ρ3


In fact, a recursive formula due to Durbin is more useful in estimating the coef-

ficients.
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α̂p+1, j = α̂p, j− α̂p+1,p+1α̂p,p− j+1

α̂p+1,p+1 =
rp+1−∑

p
j=1 α̂p, jrp+1− j

1−∑
p
j=1 α̂p, jr j

α̂1,1 = r1

4.3 Examples

1. For an AR(1) process, α11 = α1 = ρ1, or α̂11 = α̂1 = r1.

2. For an AR(2) process,
[

1 ρ1
ρ1 1

][
α21
α22

]
=

[
ρ1
ρ2

]

⇒ α22 = α2 =

∣∣∣∣∣ 1 ρ1
ρ1 ρ2

∣∣∣∣∣∣∣∣∣∣ 1 ρ1
ρ1 1

∣∣∣∣∣
=

ρ2−ρ2
1

1−ρ2
1
.

3. Purely Random Process. A discrete process Xt is called a purely random process
if the Xt are mutually independent, identically distributed random variables and

γk =Cov(Xt ,Xt+k) = 0 (11)

The process is strictly stationary and the ACF is given by

ρk =

{
1, k = 0
0, k =±1,±2, . . . (12)

4. Random Walk
Suppose Zt is white noise with mean µ = 0 and variance σ2

Z . A process Xt is
denoted a random walk if

Xt = Xt−1 +Zt . (13)

The process is customarily started at zero when t = 0 and so

X1 = Z1

Xt =
t

∑
i=1

Zt .

Thus, we find that E(Zt) = tµ and Var(Xt) = tσ2
Z , implying a nonstationary

process. However, if we difference a random walk, we get

Xt −Xt−1 = Zt , (14)

a purely random process.
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Once we have a stationary time series we can use these functions to determine
whether to fit

1. A moving average process or;
2. An autoregressive process or;
3. An autoregressive integrated moving average process

We use (1) when the SACF has spikes at lags 1,2, ,q and the SPACF dies down
gradually.

We use (2) when the SACF dies down gradually and the SPACF has spikes at lags
1,2, , p. If neither occurs then we may be faced with a non-stationary times series or
a requirement to use a combination of both, which is option (3). If we were to refer
to the theoretical sample autocorrelation function (TACF) and theoretical partial
autocorrelation function (TPACF), it could be shown that for the case of the MA(1)
process that the TACF has a non-zero correlation at lag 1 and zero autocorrelations
thereafter (ie., cuts off), while the TPACF dies down in a steady manner which can
be shown to be dominated by damped exponential decay. For the AR(1)process, it
can be shown that the TACF dies down in a damped exponential fashion while the
TPACF has a non zero partial autocorrelation at lag 1, with zeros thereafter, that is,
the TPAC cuts off. The graphs produced from the SACF are known as correlograms.

5 Moving Average Process

A moving average process MA(q)(of order q) has the present value of the series
written as a weighted sum of or regression on past random shocks,

Xt = Zt +θ1Zt−1 +θ2Zt−2 = . . .+θqZt−q, (15)

where Zt ∼ (0,σ2
Z).

We find that

E(Xt) = 0

σ
2
X = σ

2
Z(1+

q

∑
i=1

θ
2
i )

6 Autoregressive Processes

The general form of an autoregressive process of order p, or AR(p), is given by

Xt = α1Xt−1 +α2Xt−2 + . . .+αpXt−p +Zt . (16)
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This is like a multiple regression but Xt is regressed on past values of Xt , not
on other predictor variables, hence the term autoregressive. Remember that another
way to write this process is (using the backward shift operator B):

α(B)Xt = Zt , (17)

where α(B) = 1−α1B−α2B2− . . .−αpB2 is called the AR(p) operator.

7 Simple Time Series Example

We will look at 98 years of the level of Lake Huron, one of the Great Lakes between
Canada and USA. The level in the series is measured once a year on the same time.
See Figure 1 for the series over time. Before performing any ARMA modelling, we
need to remove the trend from the data. In this case, we first tried a linear trend but
that did not seem potentially as suitable as a curvilinear trend. We fit the most simple
curvilinear model, a quadratic. Note that this is still a linear model as the coefficients
to be estimated still appear linearly. When this is done, it is noted that the coefficient
of determination, or R2, the amount of variance explained by the model, increases
from 26.5% to 39.6%. One important point to note that in reality perhaps something
like a decaying exponential might be more appropriate, implying that the level is
decreasing towards an asymptote, rather than rising at the end as in Figure 2.

0

2

4

6

8

10

12

14

1860 1880 1900 1920 1940 1960 1980

La
ke
 L
ev
el
 (m

)

Year

Fig. 1 Lake Huron level in meters
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Fig. 2 Lake Huron level with quadratic fit

7.1 The data with trend removed

If we define the original data as L(t), and the quadratic trend as T (t), the next step
after estimating the trend equation is to subtract it from the original data to form the
residual series R(t) = L(t)−T (t). The question then is whether there is any serial
correlative structure in R(t). We follow the procedure described above for identi-
fication of the type of ARMA process. For this we use the sample autocorrelation
function (SACF) in Figure 3 and sample partial autocorrelation function (SPACF)
in Figure 4.

 

Fig. 3 SACF for the Lake Huron detrended data
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Fig. 4 SPACF for the Lake Huron detrended data

This fits the simplest situation possible with the SACF decreasing gradually with
increasing lags into the past and the SPACF stopping abruptly after two lags. This
would imply that an AR(2) model might well fit the series. The next step is to see
if we can verify this conjecture or if we need to alter it. To do so, we first try over-
fitting, that is, we try to fit an AR(3) model with a constant term included in the
specification. Minitab, or any other statistics package, will give the output shown in
Table 1. How you read this is as a test of the Null Hypothesis for any autoregressive
coefficient or the constant. In the table, the p-value for the first two AR coefficients
is < 0.05, implying that they are significantly different from zero, whereas for the
thrid and the constant, the opposite os true.

H0 : ρ = 0
Ha : ρ 6= 0
α = 0.05

Table 1 Final Estimates of Parameters

Type Coefficient SE Coef T p
AR 1 1.0345 0.1032 10.03 0.000
AR 2 -0.3641 0.1438 -2.53 0.013
AR 3 0.0667 0.1051 0.63 0.527
Constant 0.00744 0.06982 0.11 0.915
Mean 0.0283 0.2656
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Therefore, one then re-estimates the AR(2) coefficients to obtain the model, as in
Eqn 18.

Xt = 1.016Xt−1−0.299Xt−2 +Zt (18)

This completes the first two steps of the Box-Jenkins process, that of Identifica-
tion and Estimation. The third step is to Verify that this is the best model possible.
There are two related aspects to this. One is the Ljung-Box test for residual autocor-
relation between 1 and 12 lags, 13 and 24, and so on. Results of this test are given in
Table 2. Essentially these are hypothesis tests as well and if the p-values in the last
row are all > 0.05, then there is no residual autocorrelation. Aligned with this is the
SACF of the final noise series, the Z(t). One hopes that all the spikes are within the
confidence intervals for non significant correlation. This is shown in Figure 5. It is
readily seen that both criteria are satisfied.

Table 2 Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 5.3 10.3 16.8 25.8
DF 10 22 34 46
P-Value 0.872 0.983 0.994 0.993
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Fig. 5 SACF for the Lake Huron noise series

There is still the question of what characteristics does the noise series Zt pos-
sess. Zt is supposed to be white noise with mean µ = 0 and variance σ2

Z . White
noise means that the series is independent in time, and identically distributed. The
results of the Ljung-Box test and the SACF of the noise series indicate lack of serial



12 John Boland

correlation. We will see in the Chapter on conditional heteroscedasticity (changing
variance) that a series may be serially uncorrelated but still dependent. The variance
may have serial correlation. The squared noise terms are a proxy for the variance,
and one can test the SACF of them to check for changing variance. In this exam-
ple, the SACF of the squared noise terms shows no residual autocorrelation. This
also implies identically distributed, at least in the first two moments. In this instance
let’s examine the distribution of the noise terms, noting that in a perfect situation
we would be able to conclude they are Normally distributed. Figure 6 gives the his-
togram of the noise with a Normal curve overlaid, for the Normal distribution with
the same mean and variance. Once again one could say this is the descriptive statis-
tics version of implying that the noise is normally distributed. However, a Q-Q plot
shows the correspondence or not for a distribution to be Normal - see Figure 7. If the
dots are close the the line, then one can infer Normality. There is also the results of
a test for the Null Hypothesis of Normality and the p-value in the graphic is > 0.05,
and so we can conclude that Z N(0,0.6792).

Note that this example behaves exactly as one might hope and is essentially a
special case, since this concordance is almost never true for real data.
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8 Climate Variables

In this section, we will examine the Box-Jenkins approach for both hourly solar and
wind energy series, and ambient temperature, plus their attributes on a five minute
time scale. The time scales from five minute to one to two hours is the realm of
statistical forecasting models. There is a lot of work in the literature about the use
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Fig. 7 Probability plot for the noise

of Artificial Neural Networks in this arena - see for instance [1] and [2]. I suggest
that this results from an approach that is not necessarily trying to find the most
parsimonious model for the phenomenon, but instead a conservative approach in
that it attempts to take care of any possible influence. The Box-Jenkins approach, if
successful in typifying the characteristics of the series, provides a model that offers
a physical interpretation of the process. Thus I suggest it is a better place to begin. It
is fascinating to examine the differences not only on the time scale, but also between
solar, wind and temperature series.

8.1 Hourly Solar Energy Series

We model the seasonality using Fourier Series. Equation 19 gives the Fourier series:

FSt = α0 +α1 · cos
2πt

8760
+β1 · sin

2πt
8760

+α2 · cos
4πt

8760
+β2 · sin

4πt
8760

+

2

∑
n=1

1

∑
m=−1

(
αnm · cos

2π(356n+m)t
8760

+βnm · sin
2π(365n+m)t

8760

)
(19)

Here, α0 is the mean of the data, α1, β1 are coefficients of the yearly cycle, α2,
β2 of twice yearly and αnm, βnm are coefficients of the daily cycle and its harmonics
and associated beat frequencies. An inspection of the power spectrum would show
that we need to include the harmonics of the daily cycle (n = 1, 2) and also the beat
frequencies (m = -1, 1). Figure 18 shows an illustration of the Fourier series model
of the data.



14 John Boland

0

100

200

300

400

500

600

700

800

900

1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

Time (hours)

Data
Fourier series

Fig. 8 Five days solar radiation and corresponding Fourier series representation

When the Fourier series contribution is subtracted from the data series, the resid-
ual series can be modelled with the coupled autoregressive and dynamical system
approach, details of which are given in [6]. In this instance, we use a simpler but
similarly effective procedure, that of a short lag autoregressive model. This simpli-
fication of the ARMA process is possible since in this instance, the moving average
(MA) contribution is not significant. This will be shown in subsequent analysis,
using the SACF and SPACF.

Let the original series be denoted by St and then the residual series is given by
Xt = S− t−FSt .

The general form of an autoregressive process of order p, or AR(p), is given by

Xt = α1Xt−1 +α2Xt−2 + . . .+αpXt−p +Zt . (20)

This is like a multiple regression but Xt is regressed on past values of Xt , not on
other predictor variables, hence the term autoregressive. In this, Z(t) is white noise
with variance σ2

Z .

8.2 Selection Criteria

We start by examining the sample autocorrelation and partial autocorrelation func-
tions.

Taken together, these diagrams lead us to try and model the solar residual series
using an AR(p) configuration, with p ≤ 5. Note that Minitab restricts p to be five
or less for reasons of parsimony. One could use and ARMA(p,q) but the diagrams
indicate that an purely autoregressive model should suffice. The good thing about
this is that it is easily explainable physically. How do we decide how many lags to
use? We can do it roughly by examining the output from a couple of models. Let’s
start with AR(5). Since the p-values are greater than 0.05 for both the fifth lag and
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Fig. 9 Solar SACF
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Fig. 10 Solar SPACF

the constant, they will not be needed so we can try an AR(4), with zero constant. This
seems appropriate, except of course the Ljung-Box tests fail but we will examine
this further - in most real instances this will happen, but will not detract from the
process. One thing we notice though is that the third lag is also not significant and
the coefficient for the fourth lag is not very arge compared to the first and second.
Perhaps we could get by with only an AR(2) model, and this is what we show next.

The big question is how do we decide if we only need two lags compared to four?
An aid in identifying the appropriate model is the the Akaike Information Criterion
(AIC). It is defined by
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Final Estimates of Parameters 
 
Type         Coef  SE Coef      T      P 
AR   1     0.9328   0.0107  87.28  0.000 
AR   2    -0.0934   0.0146  -6.40  0.000 
AR   3    -0.0005   0.0146  -0.03  0.972 
AR   4    -0.0421   0.0146  -2.88  0.004 
AR   5     0.0093   0.0107   0.87  0.383 
Constant  -0.0047   0.5951  -0.01  0.994 
Mean       -0.024    3.069 
 
 
Number of observations:  8760 
Residuals:    SS =  27160072 (backforecasts excluded) 
              MS =  3103  DF = 8754 
 
 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 
 
Lag            12     24     36     48 
Chi-Square  104.9  518.3  675.6  989.6 
DF              6     18     30     42 
P-Value     0.000  0.000  0.000  0.000 
 
 

 

 

 

 

 

 

Fig. 11 AR(5) with constant

Final Estimates of Parameters 
 
Type       Coef  SE Coef      T      P 
AR   1   0.9325   0.0107  87.30  0.000 
AR   2  -0.0934   0.0146  -6.40  0.000 
AR   3  -0.0014   0.0146  -0.09  0.925 
AR   4  -0.0334   0.0107  -3.13  0.002 
 
 
Number of observations:  8760 
Residuals:    SS =  27162435 (backforecasts excluded) 
              MS =  3102  DF = 8756 
 
 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 
 
Lag            12     24     36     48 
Chi-Square  107.7  522.4  681.5  997.6 
DF              8     20     32     44 
P-Value     0.000  0.000  0.000  0.000 
 
 
 
 

 

 

 

 

 

 

Fig. 12 AR(4) with no constant

AIC(k) =
2
N
[−ln(L)+ k]

= ln(α̃2
k )+2

k
N

(21)

Here, L is the likelihood and k is the number of parameters in the model. α̃2
k is the

maximum likelihood estimate of the residual variance. Note that this form is only



Box-Jenkins Models 17

Final Estimates of Parameters 
 
Type       Coef  SE Coef       T      P 
AR   1   0.9375   0.0106   88.38  0.000 
AR   2  -0.1209   0.0106  -11.40  0.000 
 
 
Number of observations:  8760 
Residuals:    SS =  27221645 (backforecasts excluded) 
              MS =  3108  DF = 8758 
 
 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 
 
Lag            12     24     36     48 
Chi-Square  121.6  507.7  647.9  923.6 
DF             10     22     34     46 
P-Value     0.000  0.000  0.000  0.000 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 13 AR(2) with no constant

valid for near Gaussian errors, but it should be said that since it is relative, that is
comparing one model versus another, it should still be usable.

The goal is to pick the model that minimises the criterion.
The first term measures the goodness of fit of the model and the second term is

called the penalty function of the criterion because it penalises a candidate model by
the number of parameters. This is indicative of the concept of parsimony, the least
complicated model is best. Another common criterion is the (Schwarz) Bayesian
information criterion (BIC), given by

BIC(k) = ln(α̃2
k )+

kln(N)

N
. (22)

Note that the BIC is a harsher penalty, so to add more parameters, it must be a
substantial improvement. Note that in multiple linear regression, there is a similar
criterion, called the partial F test.

For this example of solar radiation, we find that BIC(4)= 8.0439, while BIC(2)=
8.0438. The values are very close and even if the precedence were to be reversed,
one could still argue for using the AR(2) model, where you are getting the same fit
for less work.

Therefore, the final model for the residual series is Rt = 0.938Rt−1−0.121Rt−2+
Zt .

Note for later: it is assumed in the theory that Zt is independent and iden-
tically distributed. However we will see that neither is perfectly true for solar
radiation series.

One final check is to see, even if it does not imply independence, that you have at
least removed most of the autocorrelation. To check this, you plot the SACF of Zt .
Note that there are significant spikes around lags 24,48,72 . . .. This is the effect of
including night in the series. Other than that there is little of any significance. Most
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researchers would stop here, saying we have independent errors, but we have only
shown lack of correlation, which we will see later is not the same as independence.
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Fig. 14 SACF of the error series

9 Error analysis

Error analysis is a very important step for data analysis and forecasting. It is a
tool for distinguishing which model is better. In Hoff et al.’s paper, error analy-
ses are classified into two classes. One class consists of absolute dispersion errors
which are root mean square error (RMSE) and mean absolute error (MAE). The
other class represents relative percentage errors. Relative percentage errors use ab-
solute dispersion error, such as RMSE or MAE divided by the mean of the real
data to produce a normalized value. In this section several of the most commonly
used error value measures will be introduced. These are median absolute percent-
age error (MeAPE), mean bias error (MBE), normalised root mean square error
(NRMSE), normalised mean absolute error (NMAE), and Kolmogorov-Smirnov test
integral (KSI). MeAPE captures the size of the errors and avoids distorting the re-
sults for solar and wind energy forecasting. If one uses mean absolute percentage
error (MAPE), then with the variables under consideration, wind and solar, there
are certain points in time that can produce large errors, and the distribution of er-
rors becomes skewed. So, using MeAPE instead of MAPE for renewable energy
forecasting can provide a more accurate perspective. In turn, MBE is used to deter-
mine whether any particular model is more biased than another. NRMSE measures
overall model quality related to the regression fit. What this means is that is how
far the data deviates from the model. What is more informative is, in essence, how
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far the regression line is from the line Y = X , where the y′s are the predicted values
from the model, and x′s are the data values. Interestingly, Willmott and Matsuura
produce convincing arguments as to why the mean absolute error (MAE) is a supe-
rior error measure to the RMSE. They argue that the RMSE is a function of three
characteristics of a set of errors.

It varies with the variability within the distribution of error magnitudes and with
the square root of the number of errors (n1/2), as well as with the average-error
magnitude (MAE).

KSI is a new model validation measure based on the Kolmogorov-Smirnov (KS)
test which has the advantage of being non-parametric. KS test is a nonparametric
test for the equality of continuous, one dimensional probability distributions. It can
be used to compare a sample with a reference probability distribution, in which case
it is named a one sample KS test, or to compare two samples, when it becomes a
two sample KS test. The KSI measure was proposed in Espinar et al. to assess the
similarity of the cumulative distribution functions (CDFs) of actual and modelled
data over the whole range of observed values.

Definitions of all the measures are as follows:

1. Median Absolute Percentage Error

MeAPE = MEDIAN
(∣∣∣∣ ŷi− yi

yi

∣∣∣∣×100
)

(23)

2. Mean Bias Error

MBE =
1
n

n

∑
i=1

(ŷi− yi) (24)

3. Normalised Root Mean Squared Error

NRMSE =

√
∑

n
i=1(ŷi− yi)

2

n
ȳ

(25)

where ŷi are predicted values, yi are measured values and ȳ is the average of
measured values.
There is an associated measure, called the Skill Score (SS). It is defined as

SS = 1− RMSEForecast

RMSERe f erence
(26)

where RMSERe f erence is the root mean squared error of some reference or bench-
mark model. This is usually one of two formulations, the naive persistence fore-
cast, Xt+1 = Xt , or the so-called smart persistence forecast. This is used when the
variable under consideration has trend or seasonality embedded in it. An example
is the case of hourly solar radiation. In the literature what is usually done is to
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model the seasonality by defining the clear sky index (CSI). A precursor to this
is a clear sky model, a physical model that attempts to give radiation values for a
perfectly clear sky for a particular location, for each hour of the year. The CSI is
then obtained by dividing the global horizontal radiation (GHI) measured for that
hour by the clear sky model for that hour. It is a vexed measure, since Ineichen
(2016), a respected researcher in the field, feels the need to check the validity of
models - in this paper seven models often used are tested, and three suggested as
good. Also, the smart persistence forecast will then include a seasonality model
so the results for the Skill Score could well depend on the model chosen.

4. Normalised Mean Absolute Error

NMAE =
1
n ∑

n
i=1 (|ŷi− yi|)

ȳ
(27)

5. Kolmogorov-Smirnov Integral

KSI(%) = 100×

∫ xmax

xmin

Dndx

αcritical
(28)

where xmax and xmin are the extreme values of the independent variable, and
αcritical is calculated as αcritical = Vc× (xmax− xmin). The critical value Vc de-
pends on population size N and is calculated for a 99% level of confidence as
Vc = 1.63/

√
N,N ≥ 35. The Dn are the differences between the cumulative dis-

tribution functions (CDF) for each interval. The higher the KSI value, the worse
the fit of the model to data.

It is worth noting that in assessing a model against the actual data, NRMSE
measures how close the points are clustered around the regression line for the rela-
tionship between the observed and predicted values, while KSI and MBE assess the
distribution of points around the unit line, ŷ = y. Thus by considering a set of di-
verse measures the aim is to allow for a more complete comparison of the proposed
models. For example, additional information on the CDFs carried by KSI and MBE
can be used to distinguish between models with similar MeAPE or NRMSE values.

Even though these measures are mainly used for comparison of models, we will
report the results for this final model here. Note that this is for the final model,
consisting of the AR(2) part for the deseasoned data plus the seasonal Fourier Series
model, as compared to the original series. This is depicted in Figure 15 and Table 3.

Measure Percentage
NMBE 0.51
NMAD 10.73
NRMSE 15.51

Table 3 Error measures for solar model
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Fig. 15 Solar data and fitted model

9.1 Hourly Temperature Series

We model the seasonality using Fourier Series in the same way.
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Fig. 16 Four days temperature and corresponding Fourier series representation

When the Fourier series contribution is subtracted from the data series, the resid-
ual series can be modelled with the coupled autoregressive and dynamical system
approach, details of which are given in [6]. In this instance, we use a simpler but
similarly effective procedure, that of a short lag ARMA process is possible since
in this instance. This will be shown in subsequent analysis, using the SACF and
SPACF.

Let the original series be denoted by Tt and then the residual series is given by
Xt = T − t−FSt .

The general form of an ARMA process of order (p,q), or AR(p,q), is given by
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Xt = α1Xt−1 +α2Xt−2 + . . .+αpXt−p +Zt +β1Zt−1 +β2Zt−2 + . . .+βqZt−q. (29)

In this, Z(t) is white noise with variance σ2
Z .

9.2 Selection Criteria

We start by examining the sample autocorrelation and partial autocorrelation func-
tions.
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Fig. 17 Temperature SACF

This set of Figures sets the scene for modelling the temperature residuals with an
ARMA(p,q) process. I tried an ARMA(5,2) and ARMA(2,2) model and compared
them. Note that the usual method is to start from below and work up. Interestingly,
even though when adding more predictor variables, one lowers the mean square
error of the residuals, the model in this case actually had a lower error for the final
residuals. One conjectures that this is because the lag two autoregressive coefficient
is not significantly different from zero in the ARMA(5,2) but is predominant in
ARMA(2,2). There are very good error metrics for temperature, Table 4, and the fit
is shown in Figure 19.
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Fig. 18 Temperature SPACF

Measure Percentage
NMBE −5.52−5

NMAD 2.04
NRMSE 2.73

Table 4 Error measures for temperature model
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Fig. 19 Temperature data and fitted model
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