
Stream ciphers
Dr. Yee Wei Law ⟨yeewei.law@unisa.edu.au⟩

2023-09-04

Contents

1 Introduction 1

2 Definition and classification 2

3 References 6

List of acronyms

IETF Internet Engineering Task Force . 2
LFSR linear feedback shift register . 4
NESSIE New European Schemes for Signatures, Integrity and Encryption 1
PPT probabilistic polynomial-time . 3
TLS Transport-Layer Security . 2

1 Introduction

Provable security is a reductionist approach to proving the security properties of
computational security schemes.
Leveraging provable security, cryptographers produced a useful array of crypto-
graphic primitives.
Let us be absolutely clear right from the outset: a symmetric-key encryption scheme
can be constructed using a stream cipher, or a block cipher and a mode of
operation.
The term “stream cipher” is not defined in NIST’s Computer Security Research
Center Glossary. In fact, there is no NIST Special Publication or FIPS that covers
stream ciphers.
Stream ciphers have had a bumpy road:
• The New European Schemes for Signatures, Integrity and Encryption (NESSIE)

project that took place from 1999 till 2003 did not provide any recommendation
for stream ciphers, partly because most stream ciphers in use were secret or
proprietary designs [PBO+03, Sec. 3.3.5], and partly because of the uncertainties
with the security of the candidate stream ciphers submitted to the project for
study.

1

https://csrc.nist.gov/glossary
https://csrc.nist.gov/glossary
https://www.cosic.esat.kuleuven.be/nessie/
https://www.cosic.esat.kuleuven.be/nessie/

• It was around the time of the NESSIE project that multiple vulnerabilities of
the once-standard stream cipher RC4 were discovered.

� In fact, there is an Internet Engineering Task Force
(IETF) RFC, namely RFC 7465 [Pop15], that specifically
prohibits the use of the troubled RC4 cipher suite in
Transport-Layer Security (TLS).

� One of the most recent attacks is AlFardan et
al.’s [ABP+13], which managed to recover the first 200
bytes of a plaintext stream after 228 to 232 encryptions of
the same plaintext; watch � video.

Adi Shamir at 2004 RSA
Conference: “Stream

ciphers: dead or alive?”

• On the heels of the NESSIE project, the ECRYPT Stream Cipher (eSTREAM)
project, which ran from 2004 till 2008, proposed 4 algorithms for software im-
plementation and 3 algorithms for hardware implementation.

• Among the eSTREAM portfolio [RB08] are Salsa20 and Grain:

� Salsa20 [RB08, pp. 84-97]: Created
by D.J. Bernstein, this cipher has
been succeeded by ChaCha20.

Although not standardised by NIST,
ChaCha20 is standardised in RFC
8439 [NL18], and implemented in
OpenSSL, BoringSSL and Tink.

� Grain [RB08, pp. 179-190]: This
started as two variants: 80-bit and
128-bit.

The latter evolved into Grain-
128AEAD [HJM+21], a finalist (but
not a winner) in the NIST Lightweight
Cryptography standardisation process.

Fortunately, a stream cipher can be constructed from a block cipher, and this is
one of the reasons why there has been much more development in block ciphers
than stream ciphers.
Nevertheless, stream ciphers are desirable where exceptionally high through-
put is required in software and where exceptionally low resource consumption
is required in hardware [RB08].

2 Definition and classification

Definition 1: Stream cipher [KL21, Sec. 3.6.1]

A stream cipher is a pair of deterministic algorithms (Init, 𝑓) where
• Init takes as input a secret key serving as a seed 𝑠 and an optional

initialisation vector (IV), and outputs some initial state 𝜎0.
• The next-state function 𝑓 takes as input the current state 𝜎𝑖 and outputs a

bit 𝑧𝑖 along with the updated state 𝜎𝑖+1.
� An IV is practically mandated for security, for example by the eSTREAM
project [RB08, p. 2].
� In practice, 𝑓 outputs a byte or a larger number of random bits, but a bit
is the smallest granularity.

Clearly, a stream cipher is stateful, and is sometimes referred to as a state-based
symmetric-key encryption scheme [Gol04, Construction 5.3.1.2].

2

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://cr.yp.to/salsa20.html
https://cr.yp.to/chacha.html
https://github.com/openssl/openssl/tree/master/providers/implementations/ciphers
https://boringssl.googlesource.com/boringssl/+/master/crypto/chacha/
https://github.com/google/tink/tree/master/java_src/src/main/java/com/google/crypto/tink/aead

Inspired by the one-time pad, a stream cipher generates a pseudorandom keystream
from a fixed-length secret key, with the intent that the keystream appears random
to a probabilistic polynomial-time (PPT) adversary.
Stream ciphers can be classified as:

Synchronous/synchronised [MvV96,
Definition 6.2]: Keystream is generated
independently of the plaintext and
ciphertext.

Asynchronous/unsynchronised/self-
synchronising [MvV96, Def. 6.5]:
Keystream is generated as a function of
the key and a fixed number of previous
ciphertext bits.

As per Figure 1, the encryption process
can be described by:

𝜎𝑖+1 = 𝑓(𝜎𝑖, 𝑘), (1a)
𝑧𝑖 = 𝑔(𝜎𝑖, 𝑘), (1b)
𝑐𝑖 = ℎ(𝑧𝑖, 𝑚𝑖), (1c)

where 𝜎0 is the secret initial state and
maybe determined from the key 𝑘; 𝑔 is a
function that produces the keystream 𝑧𝑖;
ℎ is the output function that combines
the keystream and plaintext 𝑚𝑖 to pro-
duce ciphertext 𝑐𝑖.

As per Figure 2, the encryption function
can be described by:

𝜎𝑖 = (𝑐𝑖−𝑡, 𝑐𝑖−𝑡+1,… , 𝑐𝑖−1), (2a)
𝑧𝑖 = 𝑔(𝜎𝑖, 𝑘), (2b)
𝑐𝑖 = ℎ(𝑧𝑖, 𝑚𝑖), (2c)

where 𝜎0 = (𝑐−𝑡, 𝑐−𝑡+1,… , 𝑐−1) is the non-
secret initial state; 𝑘 is the key; 𝑔 is a
function that produces the keystream 𝑧𝑖;
ℎ is the output function that combines
the keystream and plaintext 𝑚𝑖 to pro-
duce ciphertext 𝑐𝑖.

§6.1 Introduction 193

Stream ciphers are commonly classified as being synchronous or self-synchronizing.

(ii) Synchronous stream ciphers

6.2 Definition A synchronous stream cipher is one in which the keystream is generated inde-
pendently of the plaintext message and of the ciphertext.

The encryption process of a synchronous stream cipher can be described by the equations

σi+1 = f(σi, k),

zi = g(σi, k),

ci = h(zi,mi),

where σ0 is the initial state and may be determined from the key k, f is the next-state
function, g is the function which produces the keystream zi, and h is the output function
which combines the keystream and plaintextmi to produce ciphertext ci. The encryption
and decryption processes are depicted in Figure 6.1. The OFB mode of a block cipher (see
§7.2.2(iv)) is an example of a synchronous stream cipher.

zi

f

k
zi

k

σi+1

(ii) Decryption

(i) Encryption
mi
ci

zi
σiσi+1

g h

σi
mi

ci

ci

mih−1g

f

σi

Figure 6.1: General model of a synchronous stream cipher.

6.3 Note (properties of synchronous stream ciphers)
(i) synchronization requirements. In a synchronous stream cipher, both the sender and

receiver must be synchronized – using the same key and operating at the same posi-
tion (state) within that key – to allow for proper decryption. If synchronization is lost
due to ciphertext digits being inserted or deleted during transmission, then decryption
fails and can only be restored through additional techniques for re-synchronization.
Techniques for re-synchronization include re-initialization, placing special markers
at regular intervals in the ciphertext, or, if the plaintext contains enough redundancy,
trying all possible keystream offsets.

(ii) no error propagation. A ciphertext digit that is modified (but not deleted) during
transmission does not affect the decryption of other ciphertext digits.

(iii) active attacks. As a consequence of property (i), the insertion, deletion, or replay
of ciphertext digits by an active adversary causes immediate loss of synchronization,
and hence might possibly be detected by the decryptor. As a consequence of property
(ii), an active adversary might possibly be able to make changes to selected ciphertext
digits, and know exactly what affect these changes have on the plaintext. This illus-
trates that additional mechanisms must be employed in order to provide data origin
authentication and data integrity guarantees (see §9.5.4).

Most of the stream ciphers that have been proposed to date in the literature are additive
stream ciphers, which are defined below.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

§6.1 Introduction 193

Stream ciphers are commonly classified as being synchronous or self-synchronizing.

(ii) Synchronous stream ciphers

6.2 Definition A synchronous stream cipher is one in which the keystream is generated inde-
pendently of the plaintext message and of the ciphertext.

The encryption process of a synchronous stream cipher can be described by the equations

σi+1 = f(σi, k),

zi = g(σi, k),

ci = h(zi,mi),

where σ0 is the initial state and may be determined from the key k, f is the next-state
function, g is the function which produces the keystream zi, and h is the output function
which combines the keystream and plaintextmi to produce ciphertext ci. The encryption
and decryption processes are depicted in Figure 6.1. The OFB mode of a block cipher (see
§7.2.2(iv)) is an example of a synchronous stream cipher.

zi

f

k
zi

k

σi+1

(ii) Decryption

(i) Encryption
Plaintextmi
Ciphertext ci
Key k
Keystream zi
State σiσi+1

g h

σi
mi

ci

ci

mih−1g

f

σi

Figure 6.1: General model of a synchronous stream cipher.

6.3 Note (properties of synchronous stream ciphers)
(i) synchronization requirements. In a synchronous stream cipher, both the sender and

receiver must be synchronized – using the same key and operating at the same posi-
tion (state) within that key – to allow for proper decryption. If synchronization is lost
due to ciphertext digits being inserted or deleted during transmission, then decryption
fails and can only be restored through additional techniques for re-synchronization.
Techniques for re-synchronization include re-initialization, placing special markers
at regular intervals in the ciphertext, or, if the plaintext contains enough redundancy,
trying all possible keystream offsets.

(ii) no error propagation. A ciphertext digit that is modified (but not deleted) during
transmission does not affect the decryption of other ciphertext digits.

(iii) active attacks. As a consequence of property (i), the insertion, deletion, or replay
of ciphertext digits by an active adversary causes immediate loss of synchronization,
and hence might possibly be detected by the decryptor. As a consequence of property
(ii), an active adversary might possibly be able to make changes to selected ciphertext
digits, and know exactly what affect these changes have on the plaintext. This illus-
trates that additional mechanisms must be employed in order to provide data origin
authentication and data integrity guarantees (see §9.5.4).

Most of the stream ciphers that have been proposed to date in the literature are additive
stream ciphers, which are defined below.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

Figure 1: General model of a syn-
chronous stream cipher [MvV96, Figure
6.1].

194 Ch. 6 Stream Ciphers

6.4 Definition A binary additive stream cipher is a synchronous stream cipher in which the
keystream, plaintext, and ciphertext digits are binary digits, and the output function h is the
XOR function.

Binary additive stream ciphers are depicted in Figure 6.2. Referring to Figure 6.2, the
keystream generator is composed of the next-state function f and the function g (see Fig-
ure 6.1), and is also known as the running key generator.

Generator

Keystream
mi

zi

cimi

ci

Plaintextmi
Ciphertext ci
Key k

Keystream zi

zi
kk

Keystream

Generator

(ii) Decryption(i) Encryption

Figure 6.2: General model of a binary additive stream cipher.

(iii) Self-synchronizing stream ciphers

6.5 Definition A self-synchronizing or asynchronous stream cipher is one in which the key-
stream is generated as a function of the key and a fixed number of previous ciphertext digits.

The encryption function of a self-synchronizing stream cipher can be described by the
equations

σi = (ci−t, ci−t+1, . . . , ci−1),

zi = g(σi, k),

ci = h(zi,mi),

where σ0 = (c−t, c−t+1, . . . , c−1) is the (non-secret) initial state, k is the key, g is the
function which produces the keystream zi, and h is the output function which combines
the keystream and plaintext mi to produce ciphertext ci. The encryption and decryption
processes are depicted in Figure 6.3. The most common presently-used self-synchronizing
stream ciphers are based on block ciphers in 1-bit cipher feedback mode (see §7.2.2(iii)).

hk
zi

ci

(i) Encryption

gk
zi

mi

(ii) Decryption

g h−1

cimi

Figure 6.3: General model of a self-synchronizing stream cipher.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

194 Ch. 6 Stream Ciphers

6.4 Definition A binary additive stream cipher is a synchronous stream cipher in which the
keystream, plaintext, and ciphertext digits are binary digits, and the output function h is the
XOR function.

Binary additive stream ciphers are depicted in Figure 6.2. Referring to Figure 6.2, the
keystream generator is composed of the next-state function f and the function g (see Fig-
ure 6.1), and is also known as the running key generator.

Generator

Keystream
mi

zi

cimi

ci

Plaintextmi
Ciphertext ci
Key k

Keystream zi

zi
kk

Keystream

Generator

(ii) Decryption(i) Encryption

Figure 6.2: General model of a binary additive stream cipher.

(iii) Self-synchronizing stream ciphers

6.5 Definition A self-synchronizing or asynchronous stream cipher is one in which the key-
stream is generated as a function of the key and a fixed number of previous ciphertext digits.

The encryption function of a self-synchronizing stream cipher can be described by the
equations

σi = (ci−t, ci−t+1, . . . , ci−1),

zi = g(σi, k),

ci = h(zi,mi),

where σ0 = (c−t, c−t+1, . . . , c−1) is the (non-secret) initial state, k is the key, g is the
function which produces the keystream zi, and h is the output function which combines
the keystream and plaintext mi to produce ciphertext ci. The encryption and decryption
processes are depicted in Figure 6.3. The most common presently-used self-synchronizing
stream ciphers are based on block ciphers in 1-bit cipher feedback mode (see §7.2.2(iii)).

hk
zi

ci

(i) Encryption

gk
zi

mi

(ii) Decryption

g h−1

cimi

Figure 6.3: General model of a self-synchronizing stream cipher.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

Figure 2: General model of an asyn-
chronous stream cipher [MvV96, Figure
6.3].

A synchronous stream cipher can be
constructed from a block cipher in the
output feedback (OFB) mode or counter
(CTR) mode; see knowledge base entry.

An asynchronous stream cipher can be
constructed from a block ciphers in the
1-bit cipher feedback (CFB) mode; see
knowledge base entry.

An example of a synchronous stream cipher is:

3

https://lo.unisa.edu.au/mod/glossary/view.php?id=3065178&mode=entry&hook=42567
https://lo.unisa.edu.au/mod/glossary/view.php?id=3065178&mode=entry&hook=42567

Definition 2: Binary additive stream cipher [MvV96, Definition 6.4], [Sma16,
Sec. 10.2]
A synchronous stream cipher in which the keystream, plaintext, and cipher-
text digits are binary digits, and the output function ℎ is the XOR function.

As shown in Figure 3, the binary addi-
tive stream cipher consists a keystream
generator or running key generator im-
plemented by the functions 𝑓 and 𝑔 in
Eq. (1).

The linear feedback shift regis-
ter (LFSR) has been a staple in
keystream generator designs, because
1. it can readily be analysed using alge-

braic techniques,
2. it can produce bit streams that pass

common statistical tests,
3. it is well-suited to efficient hardware

implementation, and
4. it is well-studied.
See [RB08, p. 20] and [MvV96, Sec.
6.2.1].

10.2. STREAM CIPHER BASICS 181

I, where a sudden increase in radio traffic at a certain point on the Western Front would
signal an imminent offensive.

• Active Attacks: Here the adversary is allowed to insert, delete or replay messages be-
tween the two communicating parties. A general requirement is that an undetected in-
sertion attack should require the breaking of the cipher, whilst the cipher needs to allow
detection and recovery from deletion or replay attacks.

Bulk symmetric ciphers essentially come in two variants: stream ciphers, which operate on one
data item (bit/letter) at a time, and block ciphers, which operate on data in blocks of items (e.g.
64 bits) at a time. In this chapter we look at historical stream ciphers, leaving modern stream
ciphers until Chapter 12 and modern block ciphers until Chapter 13.

10.2. Stream Cipher Basics

Figure 10.2 gives a simple explanation of a stream cipher. This is very similar to our previous
simple model, except the random bit stream is now produced from a short secret key using a public
algorithm, called the keystream generator.

Secret key

Keystream generator

✻

Keystream
101001110

✻

⊕ Ciphertext✲
011011011

Plaintext
110010101

❄

Figure 10.2. Stream ciphers

Thus we have ci = mi ⊕ ki where

• m0,m1, . . . are the plaintext bits,
• k0, k1, . . . are the keystream bits,
• c0, c1, . . . are the ciphertext bits.

This means
mi = ci ⊕ ki

i.e. decryption is the same operation as encryption.
Stream ciphers such as that described above are simple and fast to implement. They allow very

fast encryption of large amounts of data, so they are suited to real-time audio and video signals.
In addition there is no error propagation; if a single bit of ciphertext gets mangled during transit
(due to an attacker or a poor radio signal) then only one bit of the decrypted plaintext will be
affected. They are very similar to the Vernam cipher mentioned earlier, except now the keystream
is only pseudo-random as opposed to truly random. Thus whilst similar to the Vernam cipher they
are not perfectly secure.

Just like the Vernam cipher, stream ciphers suffer from the following problem: the same key
used twice gives the same keystream, which can reveal relationships between messages. For example
suppose m1 and m2 were encrypted under the same key k, then an adversary could work out the
exclusive-or of the two plaintexts without knowing what the plaintexts were

c1 ⊕ c2 = (m1 ⊕ k)⊕ (m2 ⊕ k) = m1 ⊕m2.

Hence, there is a need to change keys frequently either on a per message or on a per session basis.
This results in difficult key management and distribution challenges, which, as we shall see later, can

Figure 3: A binary additive stream ci-
pher [Sma16, Figure 10.2]. IV omit-
ted but usually present. Blue annota-
tion indicates publicly available infor-
mation. Red annotation indicates infor-
mation available to legitimate parties.

An LFSR is a shift register whose input bit is a linear function of its previous
state [Jet19]; watch � LinkedIn Learning video.
Each LFSR is associated with a primitive polynomial in a Galois field.
However, the linearity of the LFSRmakes it susceptible to algebraic attacks [RB08].
For example, the stream cipher Toyocrypt was broken by an attack that can solve
an overdefined system of multivariate equations for the initial state bits [CM03];
recovery of the initial state bits leads to recover of the key.
Thus, an LFSR is typically either used together with nonlinear structures, or re-
placed by nonlinear structures such as a nonlinear feedback shift register (NFSR);
see Example 1.

Example 1

One of the ten finalists in NIST’s lightweight AEAD standardisation process
that started in 2017 is Grain-128AEAD.
Grain-128AEADv2 is the second version of the Grain-128AEAD and consists
of binary additive stream cipher, as shown in Figure 4.

4

https://www.linkedin.com/learning/symmetric-cryptography-essential-training/linear-feedback-shift-registers-lfsrs
https://csrc.nist.gov/projects/lightweight-cryptography/finalists

Grain-128AEADv2

2 Algorithm Specification

Grain-128AEADv2 consists of two main building blocks. The first is a pre-output

generator, which is constructed using a Linear Feedback Shift Register (LFSR),

a Non-linear Feedback Shift Register (NFSR) and a pre-output function, while

the second is an authenticator generator consisting of a shift register and an

accumulator. The design is very similar to Grain-128a, but has been modified to

allow for larger authenticators and to support AEAD. Moreover, the modes of

usage have been updated.

2.1 Building Blocks and Functions

The pre-output generator generates a stream of pseudo-random bits, which are

used for encryption and the authentication tag. It is depicted in Fig. 1. The

LFSR

Accumulator

Register

NFSR

g f

h
7 2 7

6524

mi

z'i zi

y512+t

...

/ / /

// /

Figure 1: An overview of the building blocks in Grain-128AEADv2.

content of the 128-bit LFSR is denoted St = [st0, s
t
1, . . . , s

t
127] and the content

of the 128-bit NFSR is similarly denoted Bt = [bt0, b
t
1, . . . , b

t
127]. These two shift

registers represent the 256-bit state of the pre-output generator.

The primitive feedback polynomial of the LFSR, defined over GF(2) and de-

noted f(x), is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

6

Binary additive
stream cipher

Figure 4: Building blocks of Grain-128AEADv2 [HJM+21, Figure 1]. � Func-
tions 𝑓, 𝑔 and ℎ here are different from those in Eq. (1).

In Figure 4, the 128-bit LFSR is associated with the primitive polynomial:

𝑓(𝑥) = 1 + 𝑥32 + 𝑥47 + 𝑥58 + 𝑥90 + 𝑥121 + 𝑥128.

The next-state function for the LFSR is

𝑠𝑡+1127 = 𝑠𝑡0 + 𝑠𝑡7 + 𝑠𝑡38 + 𝑠𝑡70 + 𝑠𝑡81 + 𝑠𝑡96,

where 𝑠𝑡0,… , 𝑠𝑡127 denote the current 128 bits of the LFSR. The Boolean func-
tion (not output function) is

ℎ(𝑥) = 𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5 + 𝑥6𝑥7 + 𝑥0𝑥4𝑥8, (3)

where 𝑥1 = 𝑠𝑡8, 𝑥2 = 𝑠𝑡13, 𝑥3 = 𝑠𝑡20, 𝑥5 = 𝑠𝑡42, 𝑥6 = 𝑠𝑡60, 𝑥7 = 𝑠𝑡79, 𝑥8 = 𝑠𝑡94.

Quiz 1

In Example 1, can you tell from [HJM+21, p. 7] what 𝑥0 and 𝑥4 in Eq. (3) are
mapped to?

Advantages of stream ciphers:
Compared to block ciphers, easier to
achieve higher throughput and re-
source efficiency for the same secu-
rity parameter.
No error propagation: when a single
ciphertext bit gets corrupted during
transit (either naturally or due to at-
tacks), only one bit of the decrypted
plaintext is affected.

Disadvantages of stream ciphers:
Reuse of keystream segment allows
an adversary to discover the XOR of
two plaintexts, since (𝑚1⊕𝑘)⊕(𝑚2⊕
𝑘) = 𝑚1 ⊕ 𝑚2, where 𝑚1 and 𝑚2 are
the compromised plaintexts.

5

3 References

[ABP+13] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering,
and J. C. N. Schuldt, On the security of RC4 in TLS, in 22nd
USENIX Security Symposium (USENIX Security 13), USENIX
Association, Washington, D.C., August 2013, pp. 305–320. Avail-
able at https://www.usenix.org/conference/usenixsecurity13/

technical-sessions/paper/alFardan.
[CM03] N. T. Courtois and W. Meier, Algebraic attacks on stream ciphers

with linear feedback, in Advances in Cryptology — EUROCRYPT 2003
(E. Biham, ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2003,
pp. 345–359.

[Gol04] O. Goldreich, Foundations of Cryptography: Volume II Basic Applica-
tions, Cambridge University Press, 2004. https://doi.org/10.1017/
CBO9780511721656.

[HJM+21] M. Hell, T. Johansson, A. Maximov, W. Meier, J. Sönnerup, and
H. Yoshida, Grain-128AEADv2 - A lightweight AEAD stream ci-
pher, 2021. Available at https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/documents/finalist-round/

updated-spec-doc/grain-128aead-spec-final.pdf.
[Jet19] U. Jetzek, Galois Fields, Linear Feedback Shift Registers and their

Applications, Carl Hanser Verlag, 2019. https://doi.org/10.3139/
9783446456136.

[KL21] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 3rd ed.,
CRC Press, 2021. Available at https://ebookcentral.proquest.com/
lib/unisa/detail.action?docID=6425020.

[MvV96] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1996. Available at https://cacr.
uwaterloo.ca/hac/.

[NL18] Y. Nir and A. Langley, ChaCha20 and Poly1305 for IETF Protocols,
IETF RFC 8439, June 2018. Available at https://www.rfc-editor.

org/rfc/rfc8439.
[Pop15] A. Popov, Prohibiting RC4 cipher suites, IETF RFC 7465, 2015. Avail-

able at https://www.rfc-editor.org/rfc/rfc7465.html.
[PBO+03] B. Preneel, A. Biryukov, E. Oswald, B. V. Rompay, L. Granboulan,

E. Dottax, S. Murphy, A. Dent, J. White, M. Dichtl, S. Pyka,
M. Schafheutle, P. Serf, E. Biham, E. Barkan, O. Dunkelman, J.-J.
Quisquater, M. Ciet, F. Sica, L. Knudsen, M. Parker, and H. Rad-
dum, NESSIE Security Report, Deliverable D20, NESSIE Consortium,
February 2003, Version 2.0.

[RB08] M. Robshaw and O. Billet (eds.), New Stream Cipher Designs: The
eSTREAM Finalists, LNCS 4986, Springer Berlin, Heidelberg, 2008.
https://doi.org/10.1007/978-3-540-68351-3.

[Sma16] N. P. Smart, Cryptography Made Simple, Information Security and
Cryptography, Springer International Publishing Switzerland, 2016.
https://doi.org/10.1007/978-3-319-21936-3.

6

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1017/CBO9780511721656
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://doi.org/10.3139/9783446456136
https://doi.org/10.3139/9783446456136
https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=6425020
https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=6425020
https://cacr.uwaterloo.ca/hac/
https://cacr.uwaterloo.ca/hac/
https://www.rfc-editor.org/rfc/rfc8439
https://www.rfc-editor.org/rfc/rfc8439
https://www.rfc-editor.org/rfc/rfc7465.html
https://doi.org/10.1007/978-3-540-68351-3
https://doi.org/10.1007/978-3-319-21936-3

	Introduction
	Definition and classification
	References

