
COMP 5074 Cryptography and Data
Protection (2022)

Lecture 7: Authenticated encryption with associated data
Dr. Yee Wei Law ⟨yeewei.law@unisa.edu.au⟩

Friday 4th November, 2022

� Template and resources

This lecture handout uses the same template as the Research Paper except
the font size has been increased to 14 pt for on-Zoom readability.
The LATEX code and other resources used in this document are available for
you to use, but please make sure you have enough original content.

Contents

1. Introduction 2

2. ASCON 3
2.1. Initialisation . 5
2.2. Processing of associated data . 6
2.3. Processing of plaintext/ciphertext . 7
2.4. Finalisation . 8
2.5. Ascon permutation . 8

3. XOODYAK 11
3.1. Cyclist . 12
3.2. Xoodoo . 14
3.3. Summary of key features . 19
3.4. Experiments with XKCP . 19

A. Appendix: Glossary 22
A.1. Bitslicing . 22
A.2. Masking . 22
A.3. Substitution-permutation network (SPN) 23

1

B. References 23

List of acronyms

AEAD Authenticated encryption with asso-
ciated data

DES Data Encryption Standard
FIPS Federal Information Processing Stan-

dard
IETF Internet Engineering Task Force
IND Indistinguishability
IV Initialisation vector
LSB Least significant bit/byte
MAC Message authentication code
MSB Most significant bit/byte

NIST National Institute of Standards and
Technology

SHA Secure Hash Algorithm
SIMD Single-instruction multiple-data
SPN Substitution permutation network
XKCP eXtended (or Xoodoo) Keccak Code

Package
XOF Extendable-output function
XOR Exclusive-or
WSL Windows Subsystem for Linux

1. Introduction

We covered a number of cryptographic primitives so far: stream ciphers and
block ciphers (used in conjunction with modes of operation) for protecting data
confidentiality, hash functions for protecting integrity.
This brings us naturally to authentication.
Traditionally, we would cover message authentication codes, but recent trends
highlight the advantages of combining authentication with encryption in the form
of authenticated encryption.

• We first encountered authenticated encryption in Lecture 2 where it was de-
fined as a symmetric-key encryption scheme that is CCA-secure and unforge-
able.

• A secure way of constructing an authenticated encryption is the generic com-
position paradigm called encrypt-then-MAC.

• There are many scenarios where a ciphertext is accompanied by some meta-
data or associated data (e.g., packet header) thatmust be authenticated along-
side the ciphertext, resulting in the need for authenticated encryption with
associated data (AEAD).

Quiz 1

Does the associated data need to be confidential?

• In 2017, NIST initiated a process to solicit, evaluate and standardise light-
weight AEAD algorithms, and in 2021, after two review rounds, NIST an-
nounced ten finalists.

2

This lecture covers two of the AEAD finalists: Ascon and Xoodyak.
• Ascon is based on the duplex construction, which we studied in the previous

lecture.
• Designed by the Keccak team, Xoodyak is based on the full-state keyed du-

plex construction [DMVA17], which is an extension of the duplex construc-
tion.

• Studying Ascon and Xoodyak thus supports a natural progression of learn-
ing.

2. ASCON

The Ascon specification [DES21] provides details on
• Three authenticated encryption schemes: Ascon-128, Ascon-128a and As-

con-80pq.
• Two extendable-output functions (XOFs): Ascon-Hash and Ascon-Hasha.

The Ascon specification recommends pairing
• Ascon-128 with Ascon-Hash; and
• Ascon-128a with Ascon-Hasha.

The Ascon family of algorithms is parameterised by key length 𝑘, rate (i.e., data
block size) 𝑟, internal round numbers 𝑎 and 𝑏; see Table 1.

Table 1: Ascon parameters [DES21, Table 1].
Algorithm 𝑘 𝑟 𝑎 𝑏 Nonce Tag
Ascon-128 128 64 12 6 128 128
Ascon-128a 128 128 12 8 128 128
Ascon-80pq 160 64 12 6 128 128

Note:
• While Ascon-128 and Ascon-128a use 128-bit keys, Ascon-80pq uses 160-bit

keys to provide resistance against quantum key search based on Grover’s al-
gorithm (which can reduce an ordinarily 𝑂(𝑁) search to 𝑂(√𝑁) using quan-
tum computing, where 𝑁 is the number of records to search [Gro96]).

• All three schemes use a 128-bit nonce and a 128-bit message authentication
code (MAC) tag.

3

https://ascon.iaik.tugraz.at/
https://keccak.team/xoodyak.html

As with any security scheme, the security strength and the computational effi-
ciency are of the utmost concern.

In terms of security:

• All three Ascon authenticated en-
cryption schemes offer in theory
128-bit security.

• The best attacks compromise 7 out
of the full 12 rounds. For example,
Rohit and Sarkar’s attack [RS21]
can recover a secret key at a data
complexity of 263, time complexity
of 2115.2, and requires 269 bits of
memory.

In terms of computational efficiency:

• Learning the lessons from the
Advanced Encryption Standard
(AES, see Lecture 4), Ascon was
designed to resist cache-timing
attacks.
This requires Ascon to avoid table
look-ups, and the standard tech-
nique for this is bistslicing (see
Sec. A.1).
All Ascon algorithms lend them-
selves to efficient bitsliced im-
plementations on 64-bit plat-
forms [DES21, Sec. 1].

• Reference and optimised C and as-
sembly implementations of Ascon
are provided by the authors on
GitHub.

To describe the building blocks of Ascon, we start with an overview:
• All members of the Ascon family operate on a state of 320 bits.
• A state, denoted by 𝑆, is divided into an outer part 𝑆𝑟 of 𝑟 bits and an inner

part 𝑆𝑐 of 𝑐 bits. This is consistent with the sponge and duplex constructions
(see Lecture 6).

Quiz 2

Based on the information (including Table 1) thus far, what is the value
of capacity 𝑐 for Ascon-128?

• A state is split into 5 64-bit registers, i.e.,

𝑆 = 𝑆𝑟‖𝑆𝑐 = 𝑥0‖𝑥1‖𝑥2‖𝑥3‖𝑥4, (1)

where 𝑥0, … , 𝑥4 denote the content of the 5 registers.
• When interpreted as a byte array, the most significant byte (MSB) of 𝑆 is the

0th byte, which is also the MSB of 𝑥0; while the least significant byte (LSB)
is the 39th byte, which is also the LSB of 𝑥4:

𝑥0 = 𝑆0‖ ⋯ ‖𝑆7, ⋯ , 𝑥4 = 𝑆32‖ ⋯ ‖𝑆39.

4

https://github.com/ascon/ascon-c

Table 2: Symbols and notation for discussing Ascon in Sec. 2.
Symbols/notation Meaning
𝑆, 𝑆𝑟, 𝑆𝑐 320-bit state, 𝑟-bit outer state and 𝑐-bit inner state
𝑥0, … , 𝑥0 The 5 64-bit words of the state
𝑥𝑖,𝑗 The 𝑗th (0 ≤ 𝑗 ≤ 63) bit of 𝑥𝑖, with 𝑗 = 0 marking the LSB
𝐾 Secret key of length ≤ 160 bits
𝑁, 𝑇 Nonce and MAC tag of 128 bits
𝑃, 𝐶, 𝐴 Plaintext, ciphertext and associated data (subscript 𝑖 indexes

𝑟-bit blocks)
ℰ𝑘,𝑟,𝑎,𝑏, 𝒟𝑘,𝑟,𝑎,𝑏 Encryption/decryption using key length 𝑘, rate 𝑟, number of

initialisation and finalisation rounds 𝑎, and number of inter-
mediate rounds 𝑏

𝑝 (𝑝𝑎) Permutation function of Ascon (𝑝 applied 𝑎 times)
⊥ Message authentication error/failure
|𝑥| Number of bits in bitstring 𝑥
⌊𝑥⌋𝑘 The first (most significant) 𝑘 bits of bitstring 𝑥
⌈𝑥⌉𝑘 The last (least significant) 𝑘 bits of bitstring 𝑥

Using the symbols and notation in Table 2, we denote the encryption process by

ℰ𝑘,𝑟,𝑎,𝑏(𝐾, 𝑁, 𝐴, 𝑃) = (𝐶, 𝑇). (2)

and the decryption process by

𝒟𝑘,𝑟,𝑎,𝑏(𝐾, 𝑁, 𝐴, 𝐶, 𝑇) ∈ {𝑃, ⊥}. (3)

The ensuing discussion covers operations involved in ℰ𝑘,𝑟,𝑎,𝑏(𝐾, 𝑁, 𝐴, 𝑃) and
𝒟𝑘,𝑟,𝑎,𝑏(𝐾, 𝑁, 𝐴, 𝐶, 𝑇) in terms of

• initialisation (Sec. 2.1),
• processing of associated data (Sec. 2.2),
• processing of plaintext/ciphertext (Sec. 2.3),
• finalisation (Sec. 2.4).

As each of the preceding processing stages involves the permutation 𝑝, Sec. 2.5
discusses 𝑝 in detail.

2.1. Initialisation

The initial value of the 320-bit state, 𝑆, depends on the secret key 𝐾, nonce 𝑁, and
a 64-bit initialisation vector (IV) specifying the values of 𝑘, 𝑟, 𝑎 and 𝑏 [DES21, Sec.

5

2.4.1]:

IV𝑘,𝑟,𝑎,𝑏 ← 𝑘‖𝑟‖𝑎‖𝑏‖0160−𝑘 =
⎧{{
⎨{{⎩

80400𝑐0600000000 for Ascon-128,
80800𝑐0800000000 for Ascon-128a,
𝑎0400𝑐06 for Ascon-80pq;

(4)

𝑆 ← IV𝑘,𝑟,𝑎,𝑏 ‖𝐾‖𝑁. (5)

Quiz 3

What is the difference between “←” and “=”?

To initialise 𝑆, 𝑎 rounds of the round transformation 𝑝 (more on this later) are
applied to 𝑆, followed by an XOR of 𝐾 (see the “Initialisation” part of Figure 1):

𝑆 ← 𝑝𝑎(𝑆) ⊕ (0320−𝑘‖𝐾) (6)

𝑘‖𝑟‖𝑎‖𝑏‖0∗

𝐾‖𝑁

𝑟

𝑐 𝑝𝑎
⊕

0∗‖𝐾

𝑐
⊕𝑟
𝐴1

𝑝𝑏
⊕

𝐴𝑠

𝑐 𝑝𝑏
⊕

0∗‖1

𝑐
⊕𝑟
𝑃1𝐶1

𝑝𝑏
𝑐
⊕

𝑃𝑡−1𝐶𝑡−1

𝑝𝑏
⊕

𝑃𝑡𝐶𝑡
𝑟

⊕

𝐾‖0∗

𝑐 𝑝𝑎
⊕

𝐾

𝑘 𝑇

Initialisation Associated data Plaintext Finalisation

(a) Encryption ℰ𝑘,𝑟,𝑎,𝑏(𝐾, 𝑁, 𝐴, 𝑃)

𝑘‖𝑟‖𝑎‖𝑏‖0∗

𝐾‖𝑁

𝑟

𝑐 𝑝𝑎
⊕

0∗‖𝐾

𝑐
⊕𝑟
𝐴1

𝑝𝑏
⊕

𝐴𝑠

𝑐 𝑝𝑏
⊕

0∗‖1

𝑐
⊕𝑟
𝑃1𝐶1

𝑝𝑏
𝑐
⊕

𝑃𝑡−1𝐶𝑡−1

𝑝𝑏
⊕

𝑃𝑡𝐶𝑡
𝑟

⊕

𝐾‖0∗

𝑐 𝑝𝑎
⊕

𝐾

𝑘 𝑇

Initialisation Associated data Ciphertext Finalisation

(b) Decryption 𝒟𝑘,𝑟,𝑎,𝑏(𝐾, 𝑁, 𝐴, 𝐶, 𝑇)

Figure 1: Every member of the Ascon family applies permutation 𝑝 (2𝑎 + 𝑏) num-
ber of rounds to a 320-bit state: 𝑎 rounds during initialisation, 𝑏
rounds when processing associated data and plaintext, and 𝑎 rounds
during finalisation. Diagrams made using TikZ code from [Jea16].

2.2. Processing of associated data

For processing associated data, 𝐴, it is padded with 1‖0𝑟−1−(|𝐴| mod 𝑟), so that the
result is a multiple of 𝑟-bit blocks [DES21, Sec. 2.4.2].

6

Quiz 4

Suppose 𝐴 is 13 bytes long, how many zero bits are there in the pad?

Suppose padding results in 𝑠 blocks of 𝐴, then each of these blocks is XORed with
𝑆𝑟 (recall Eq. (1)); and in concatenation with 𝑆𝑐, the result is fed to 𝑏 rounds of
permutation 𝑝 [DES21, Sec. 2.4.2]:

𝑆 ← 𝑝𝑏((𝑆𝑟 ⊕ 𝐴𝑖)‖𝑆𝑐), 1 ≤ 𝑖 ≤ 𝑠. (7)
Above, note the index of 𝐴 goes from 1 to 𝑠, following the notation in the Ascon
specification [DES21].
After 𝑏 rounds of permutation 𝑝, as expressed by Eq. (7), a 1-bit domain separation
constant is XORed to 𝑆:

𝑆 ← 𝑆 ⊕ (0319‖1). (8)

Eqs. (7)–(8) are captured in the “Associated data” part of Figure 1.

2.3. Processing of plaintext/ciphertext

For processing plaintext, 𝑃, it is padded in exactly the same way 𝐴 is padded, as
described in the previous subsection [DES21, Sec. 2.4.3].
Suppose padding results in 𝑡 blocks of 𝑃, the first block 𝑃1 is XORed with the state
𝑆 to produce the first ciphertext block 𝐶1, which is then permuted to update the
state. The process is subsequently repeated for 𝑃2, … , 𝑃𝑡 [DES21, Sec. 2.4.3]:

𝐶𝑖 ←
⎧{
⎨{⎩

𝑆𝑟 ⊕ 𝑃𝑖 if 1 ≤ 𝑖 < 𝑡,
⌊𝑆𝑟 ⊕ 𝑃𝑖⌋|𝑃| mod 𝑟 if 𝑖 = 𝑡;

(9)

𝑆 ←
⎧{
⎨{⎩

𝑝𝑏(𝐶𝑖‖𝑆𝑐) if 1 ≤ 𝑖 < 𝑡,
𝐶𝑖‖𝑆𝑐 if 𝑖 = 𝑡.

(10)

In Eq. (9), the last ciphertext block 𝐶𝑡 is truncated to the length of the unpadded
last plaintext block-fragment so that its length is between 0 and 𝑟 − 1 bits, and the
ciphertext is exactly as long as the plaintext.
Eqs. (9)–(10) are captured in the “Plaintext” part of Figure 1(a).
For processing ciphertext, 𝐶, it is padded in exactly the same way 𝐴 is padded, as
described in the previous subsection [DES21, Sec. 2.4.3].
Suppose padding results in 𝑡 blocks of 𝐶, the following statements capture the
decryption process [DES21, Sec. 2.4.3]:

𝑃𝑖 ←
⎧{
⎨{⎩

𝑆𝑟 ⊕ 𝐶𝑖 if 1 ≤ 𝑖 < 𝑡,
⌊𝑆𝑟⌋|𝐶𝑡| ⊕ 𝐶𝑡 if 𝑖 = 𝑡; (11)

𝑆 ←
⎧{
⎨{⎩

𝑝𝑏(𝐶𝑖‖𝑆𝑐) if 1 ≤ 𝑖 < 𝑡,
(𝑆𝑟 ⊕ (𝑃𝑡‖1‖0𝑟−1−|𝐶𝑡|)) ‖𝑆𝑐 if 𝑖 = 𝑡. (12)

7

Eqs. (11)–(12) are captured in the “Ciphertext” part of Figure 1(b).

2.4. Finalisation

The finalisation stage of Ascon produces a MAC tag [DES21, Sec. 2.4.4]:

𝑆 ← 𝑝𝑎 (𝑆 ⊕ (0𝑟‖𝐾‖0𝑐−𝑘)) , (13)
𝑇 ← ⌈𝑆⌉128 ⊕ ⌈𝐾⌉128. (14)

The preceding equations are captured in the “Finalisation” part of Figure 1.

2.5. ASCON permutation

The complexity of the process depicted in Figure 1 liesmainly in the permutation 𝑝,
which takes the form of a substitution permutation network (SPN, see Sec. A.3) [DES21,
Sec. 2.6].
The Ascon permutation 𝑝 is a combination of three successive transformation lay-
ers: 𝑝𝐶, then 𝑝𝑆, and finally 𝑝𝐿.
As an overview, Figure 2 illustrates the directions of diffusion effected by the three
transformation layers.

2.6 Permutation

The main components of the AEAD and hashing schemes of Ascon are the two
320-bit permutations pa and pb. The permutations iteratively apply an SPN-based
round transformation p that in turn consists of three steps pC, pS, pL:

p = pL ◦ pS ◦ pC .

pa and pb differ only in the number of rounds. The number of rounds a and the
number of rounds b are tunable security parameters.
For the description and application of the round transformations, the 320-bit state S
is split into five 64-bit registers words xi, S = x0 ‖ x1 ‖ x2 ‖ x3 ‖ x4 (see Figure 3).

x0x1x2x3x4

(a) Round constant addition pC

x0x1x2x3x4

(b) Substitution layer pS with 5-bit S-box S(x)

x0x1x2x3x4

(c) Linear layer with 64-bit diffusion functions Σi(xi)

Figure 3: The register words of the 320-bit state S and operations pL ◦ pS ◦ pC.

2.6.1 Addition of Constants

The constant addition step pC adds a round constant cr to register word x2 of the
state S in round i (see Figure 3a). Both indices r and i start from zero and we use
r = i for pa and r = i + a− b for pb (see Table 4):

x2 ← x2 ⊕ cr .

Table 4: The round constants cr used in each round i of pa and pb.
p12 p8 p6 Constant cr p12 p8 p6 Constant cr

0 00000000000000f0 6 2 0 0000000000000096

1 00000000000000e1 7 3 1 0000000000000087

2 00000000000000d2 8 4 2 0000000000000078

3 00000000000000c3 9 5 3 0000000000000069

4 0 00000000000000b4 10 6 4 000000000000005a

5 1 00000000000000a5 11 7 5 000000000000004b

13

Figure 2: The three transformations that constitute the permutation 𝑝 [DES21,
Figure 3].

The transformation layers are discussed in turn:

8

𝑝𝐶: This layer XORs 𝑥2 (one of the 5 64-bit words in Eq. (1)) with round constant
𝑐𝑖 [DES21, Sec. 2.6.1], i.e.,

𝑥2 ← 𝑥2 ⊕ 𝑐𝑖. (15)
For 𝑝𝑎 = 𝑝12, the 12 64-bit round constants are 0xf0, 0xe1, 0xd2, …, 0x4b.
For 𝑝𝑏 = 𝑝8, the 8 64-bit round constants are 0xb4, 0xa5, 0x96, …, 0x4b.
For 𝑝𝑏 = 𝑝6, the 6 64-bit round constants are 0x96, 0x87, 0x78, …, 0x4b.
Note:

• The last digit of the round constant increments while the other digit
decrements with each round.

• The last round constant is 0x4b in every case.

� Detail: Design rationales [DES21, Sec. 5.2.1]

The word 𝑥2 was chosen to enable efficient bitsliced S-box implementa-
tions.
Round-dependent round constants thwart slide attacks [BW99].
The low entropy/uncertainty of the round constants is meant to show
that the constants are not used to implement any backdoor.

𝑝𝑆: This is the nonlinear substitution layer, which updates the state with 64 par-
allel applications of the 5-bit S-box in Figure 3 to each bitslice of the five
register words 𝑥0, … , 𝑥4.

2.6.2 Substitution Layer

The substitution layer pS updates the state S with 64 parallel applications of the
5-bit S-box S(x) defined in Figure 4a to each bit-slice of the five registers x0 . . . x4
(Figure 3b). It is typically implemented in this bitsliced form with operations
performed on the entire 64-bit words, as in the example code in Figure 5 (page 42).
The lookup table of S is given in Table 5, where x0 is the MSB and x4 the LSB.

Table 5: Ascon’s 5-bit S-box S as a lookup table.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

2.6.3 Linear Diffusion Layer

The linear diffusion layer pL provides diffusion within each 64-bit register word xi
(Figure 3c). It applies a linear function Σi(xi) defined in Figure 4b to each word xi:

xi ← Σi(xi), 0 ≤ i ≤ 4 .

x0

x1

x2

x3

x4

1

1

1

1

1

1

x0

x1

x2

x3

x4

(a) Ascon’s 5-bit S-box S(x)

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(b) Ascon’s linear layer with 64-bit functions Σi(xi)

Figure 4: Ascon’s substitution layer and linear diffusion layer.

14

Figure 3: The 5-bit S-box of Ascon [DES21, Figure 4].

� Detail: Design rationales [DES21, Sec. 5.2.2]

Compared to the 𝜒 step mapping of Keccak (see Lecture 6), 𝑝𝑆 has been
specifically designed to provide higher differential and linear branch
numbers (3 as opposed to 2), have no fixed points (as opposed one),
and make each output bit depend on more input bits (4 as opposed

9

to 3).
The branch number is a measure of diffusion [DR20, Ch. 9]. The higher
the branch number, themore resistant the scheme is against differential
or linear cryptanalysis.
The low algebraic degree of 2 theoretically makes the 5-bit S-box more
prone to algebraic attacks, but a practical attack has yet to be found,
and the simple S-box enables efficient masked implementation (see
Sec. A.2) of countermeasures to side-channel analyses.

𝑝𝐿: This is the linear diffusion layer, which provides diffusion within each 64-bit
register word:

𝑥0 ← Σ0(𝑥0) = 𝑥0 ⊕ (𝑥0 ⋙ 19) ⊕ (𝑥0 ⋙ 28), (16a)
𝑥1 ← Σ1(𝑥1) = 𝑥1 ⊕ (𝑥1 ⋙ 61) ⊕ (𝑥1 ⋙ 39), (16b)
𝑥2 ← Σ2(𝑥2) = 𝑥2 ⊕ (𝑥2 ⋙ 1) ⊕ (𝑥2 ⋙ 6), (16c)
𝑥3 ← Σ3(𝑥3) = 𝑥3 ⊕ (𝑥3 ⋙ 10) ⊕ (𝑥3 ⋙ 17), (16d)
𝑥4 ← Σ4(𝑥4) = 𝑥4 ⊕ (𝑥4 ⋙ 7) ⊕ (𝑥4 ⋙ 41). (16e)

Above, Σ is not to be confused with summation.
To appreciate (16) as a linear transformation, consider rewriting (16a) as a
matrix equation [RAD+20, Sec. 2.1]:

𝑥0 ← Σ0(𝑥0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋮ 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0
0 ⋮ ⋮ 1 ⋮ ⋮ ⋮ ⋮ ⋮ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋮ ⋮ ⋮ ⋮ 1 ⋮ ⋮ ⋮ 0
0 ⋮ ⋮ ⋮ ⋮ ⋮ 1 ⋮ ⋮ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 1 0 ⋯ 1 0 ⋯ 1 0
0 ⋯ 0 1 ⋯ 0 1 ⋯ 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥0,63
⋮

𝑥0,29
𝑥0,28

⋮
𝑥0,20
𝑥0,19

⋮
𝑥0,1
𝑥0,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

in GF(2). (17)

To understand the pattern of the 64×64 matrix in the preceding equation,
notice the last row has ones in the entries corresponding to 𝑥0,0, 𝑥0,19 and
𝑥0,28, as required by (16a). The penultimate row equals the last row left-
shifted by by one column, and so on.

� Detail: Design rationales [DES21, Sec. 5.2.3]

The Σ functions were chosen to be similar to the Σ functions in SHA-2
(see Lecture 6), but with one less rotation for efficiency.
The rotation constants (how many bits to rotate through) were chosen
to achieve good diffusion after three rounds.

10

3. XOODYAK

Xoodyak was designed by the Keccak team under the leadership of the co-inventor
of the AES, Joan Daemen; see https://keccak.team/xoodyak.html.
In short, Xoodyak is the Cyclist mode of operation [DHP+21] on top of Xoodoo
[DHVAVK18], a family of permutation functions parameterised by the number of
rounds. Formally,

Definition 1: Xoodyak [DHP+21, Definition 2]

Xoodyak is Cyclist [𝑓, 𝑅hash, 𝑅kin, 𝑅kout, ℓratchet] with
• 𝑓 being Xoodoo [12] with width 𝑏 = 48 bytes = 384 bits;
• 𝑅hash = 16 bytes = 128 bits, specifying the block size of a hash, when

Cyclist is used in the hash mode;
• 𝑅kin = 44 bytes = 352 bits, specifying the block size of an input, when

Cyclist is used in the keyed mode;
• 𝑅kout = 24 bytes = 192 bits, specifying the block size of an output, when

Cyclist is used in the keyed mode;
• ℓratchet = 16 bytes = 128 bits, specifying the number of bytes of the state

to be overwritten with zeros.

The parameters satisfy the constraint (in unit bytes):

max(𝑅hash, 𝑅kin, 𝑅kout) + 2 ≤ 𝑏,

where the term 2 (bytes) is to account for the bits used for padding and domain
separation [DHP+21, Sec. 2.2].
The update from Keccak’s width of 320 bits to 384 bits — a perfect fit for 12 32-bit
microprocessor registers — was an explicit design decision [DHVAVK18, Sec. 5.7]
partly inspired by Gimli [BKL+17].
Definition 1 conveniently sets out the agenda for the ensuing discussion:

• First, we discuss the Cyclist mode of operation alonsgide its parameters in
Sec. 3.1.

• Then, we discuss the Xoodoo family of permutations in Sec. 3.2.
• Finally in Sec. 3.3, we summarise the key security and computational effi-

ciency features of Xoodyak.
In the Xoodyak specification [DHP+21], the key features of Xoodyak are among
the first items discussed, but having knowledge of the algorithmic compo-
nents could help us understand these features better, hence the order of dis-
cussion.

11

https://keccak.team/xoodyak.html

3.1. CYCLIST

Cyclist is based on the full-state keyed duplex construction [DMVA17], an exten-
sion of the duplex construction covered in Lecture 6.

The full-state keyed duplex construction, denoted KD𝑓
𝐊, is illustrated in Figure 4.614 J. Daemen et al.

Fig. 1. Full-state keyed duplex construction KDf
K. In this figure, the sequence

of calls is Z = KD.Init(δ, iv, σ, false), Z = KD.Duplexing(σ, true), and Z =
KD.Duplexing(σ, false).

receiving Z. This is in fact a re-phasing compared to the original definition of the
duplex [11] or of the full-state keyed duplex [38], and it aims at better reflect-
ing typical use cases. We illustrate this with the SpongeWrap authenticated
encryption scheme [11] and its more recent variants [38]. In this scheme, each
plaintext block is typically encrypted by (i) applying f , (ii) fetching a block of
key stream, (iii) adding the key stream and plaintext blocks to get a ciphertext
block, and (iv) adding the plaintext block to the outer part of the state. By
inspecting Algorithm 3 in [11], there is systematically a delay between the pro-
duction of key stream and its use, requiring to buffer a key stream block between
the (original) duplexing calls. In contrast, our re-phased calls better match the
sequence of operations.

The flag in the initialization and duplexing calls is required to implement
decryption in SpongeWrap and variants. In that case, the sequence of oper-
ations is the same as above, except that step (iii) consists of adding the key
stream and ciphertext blocks to get a plaintext block. However, a user would
need to see the keystream block before being able to add the plaintext block
in step (iv). One can see, however, that step (iv) is equivalent to overwriting
the outer part of the state with the ciphertext block. Switching between adding
the plaintext block (for encryption) and overwriting with the ciphertext block
(for decryption) is the purpose of the flag. The usage of the flag, alongside the
re-phasing is depicted in Fig. 1.

Note that in Algorithm 1 in the case that the flag is true, the outer part
of the state is overwritten with σ. For consistency with the algorithms of con-
structions we will introduce shortly, this is formalized as bitwise adding Z to σ
before its addition to the state if flag is true. Alternatively, one could define an
authenticated encryption mode that does not allow overwriting the state with
the ciphertext block C. For example, encryption would be C = P + M × Z,
with P the plaintext block and M a simple invertible matrix. Upon decryption,
the outer part of the state then becomes C + (M + I) × Z. If M is chosen such
that M + I is invertible, the adversary has no control over the outer part of the
state after the duplexing call. This would require changing “σ ← σ + Z” into
“σ ← σ + M × Z” in Algorithm 1.

Figure 4: An example of a sequence of function calls to a full-state keyed duplex
object KD𝑓

𝐊: 𝑍 = KD.Init(𝛿, iv, 𝜎, false), 𝑍 = KD.Duplexing(𝜎,
true), 𝑍 = KD.Duplexing(𝜎, false). Diagram from [DMVA17, Fig. 1].

In Figure 4,
• The input 𝐊 is an array/matrix consisting of 𝑢 keys of size 𝑘 bits.
• The input 𝛿 indexes one of the 𝑢 keys in 𝐊.
• the input iv is an initialisation vector. Together, a 𝑘-bit key and an iv are as

long as the width 𝑏 of the permutation 𝑓.
• Initialisation is performed by function call KD.Init(𝛿, iv, 𝜎, flag), which ini-

tialises the state to 𝑓 (𝐊[𝛿]‖iv), where 𝜎 is a user-provided string and “flag”
is set to true when the outer state is to be overwritten with the outer part of
𝜎.

• Intermediate processing is performed by duplexing call KD.duplexing(𝜎, flag),
where “flag” is as previously defined.

In essence, Cyclist is a duplex object extended with an interface for absorbing
strings of arbitrary length, their encryption and squeezing output of arbitrary
length.
Clearly, the terminology of absorbing and squeezing of the sponge construction (see
Lecture 6) remains applicable here, since it is what the duplex construction is
based on.
Cyclist has two modes:

• hash mode — in this mode, Cyclist = sponge;
• keyed mode — in this mode, Cyclist = full-state keyed duplex.

12

Our focus here is the keyed mode.
Cyclist’s accommodation for the two modes above is reflected by its designers’
emphasis on the programming/user interface; see the Keccak team’s � YouTube
video on “Xoodyak, a lightweight cryptographic scheme”.
In fact, the Xoodyak specification includes specification of the internal and external
interfaces of Cyclist [DHP+21, Algorithms 2 and 3].
For an example of the external interface, consider encrypting this sequence: 𝐴1‖𝑃1,
𝐴2, 𝑃3, where 𝐴∗ denotes associated data that needs to be authenticated but not
encrypted, and 𝑃∗ denotes plaintext that needs to be authenticated and encrypted.
The following function calls are applicable:

Cyclist (𝐾, ID, counter)
Absorb (nonce)
Absorb (𝐴1), 𝐶1 ← Encrypt (𝑃1), 𝑇1 ← Squeeze (𝑡)
Output (𝐶1, 𝑇1) and wait for the next message
Absorb (𝐴2), 𝑇2 ← Squeeze (𝑡)
Output (𝑇2) and wait for the next message

𝐶3 ← Encrypt (𝑃3), 𝑇3 ← Squeeze (𝑡)
Output (𝐶3, 𝑇3) and wait for the next message

Above ,
• A Cyclist object is instantiated with a secret key 𝐾, an optional ID for the

key, and a counter which plays the role of the iv in Figure 4.
The counter is “absorbed” in a trickled way starting with the most significant
digits (not bits, so a basis of 2 to 28 inclusive is applicable) to limit the number
of power traces available with distinct inputs [DHP+21, Sec. 3.2.2].
The idea of trickle-feeding a counter to the Cyclist processing pipeline is
credited to Taha and Schaumont [TS14]; see Figure 5.

Fig. 2. Authenticated Encryption mode using KECCAK

II. BACKGROUND

The SHA-3 standard uses the SPONGE chaining mode with a

fixed permutation function called KECCAK-function [3]. The

sponge construction is a generalized hashing function with

arbitrary-length input and arbitrary-length output. The size of

the internal state is b = 25 ∗ 2l bits and l = [0 : 6] arranged

in a 5 ∗ 5 ∗ 2l 3D array. The SHA-3 standard will use l = 6,

while lightweight instances can use as low as l = 3. The input

block size (the rate r) is strictly less than the state size, with

the difference (b− r) called capacity c.
The Sponge works as shown in Fig. 2. The internal state

(b = 1600 bits) is initialized to all zeroes. Then, every input

block of r bits gets XORed with part of the internal state

before being processed by the Keccak-function f . This routine

continues until all the input bits get processed (in our case, the

Key, IV and Message). The MAC output will be the first bits

of the final state. The maximum size of output bits is limited

to the rate r. If more bits are needed, additional runs of the

Keccak-function will be required.
KECCAK-function consists of 12+2l (24 for SHA-3) rounds

of five binary operations:

Roundout = ι ◦ χ ◦ π ◦ ρ ◦ θ (Roundin)

θ is an XOR operation with 11 inputs and one output. It is

responsible for diffusion. ρ and π are permutations over the

state bits. χ is a nonlinear operation between three bits of

the state. ι is binary XOR with a round constant to break the

symmetry.

A. Keyed Applications

KECCAK applications that involve processing of a secret

key are [3]:

• MAC-digest generation: The sponge operates with

arbitrary-length input (|K|+|IV |+|M |) and fixed-length

output (|MAC|), where K is the secret key, IV is the

initialization vector, and M is the message. The hashing

function is represented by H . In this application, the use

of IV is optional.

MAC = H(K||[IV]||M)

• Stream encryption: The sponge operates with fixed-length

input (|K| + |IV |) and arbitrary-length output (|P |),
where P is the input plaintext.

C = H(K||IV)⊕ P

• Authenticated encryption: The sponge operates in the

SPONGEWRAP construction, where there is a new input

Fig. 3. The new countermeasure, where |IV | is the bitlength of IV and fr
is a round-reduced version of Keccak f

and output in each execution of the Keccak-function.

The authenticated encryption mode is shown in Fig. 2,

where the two previous modes are combined to generate

ciphertext and MAC digest in a single pass. Here, the IV

can take the role of associated data.

Figure 2 can also serve to understand the other two modes. In

the MAC mode, there is no ciphertext output, while there is

no message or MAC output in the stream encryption mode.

III. ALMOST-ZERO AREA COUNTERMEASURE FOR SHA-3

Our countermeasure uses the tree construction as shown

in Fig. 3. The tree construction was originally proposed by

Goldreich, Goldwasser and Micali (GGM construction) [4].

It was previously used by Kocher to protect the AES block

cipher [5], however with a different structure and for a

different goal.
First of all, we use one run of Keccak-function f to spread

the limited size key (typically 128 bits) to the full internal state

(1600 bits). Then, the rate of the Sponge is squeezed to only

one bit, where every bit of the IV, except the last one, goes

to a separate input block followed by a round-reduced version

of Keccak fr. Here the tree construction shows out because

every bit of the IV determines the next leaf in the tree. The

very last bit of the IV will be followed by a normal full-round

f . Then, the normal rate of the Sponge will be restored and

the message will be processed normally.

This countermeasure matches the applications of stream and

authenticated encryptions, however we will have to mandate

the use of IV in the MAC-digest generation. We will not

impose any special requirement on the IV other than what is

already required for these applications, that the IV is: nonce

(never repeated for the same message), and uncontrolled by the

attacker [6]. Also, the bit-length of the IV will depend on the

required cryptographic strength, with no special requirements

for applying our countermeasure.

A. Security Analysis

Our countermeasure targets security against differential

analysis attacks (Differential power / electromagnetic / fault

/ fault sensitivity analysis). Protection against simple analysis

attacks can easily be achieved due to the high parallelism in

hardware implementations.
The first run of f is required to increase the number of

unknown bits that the adversary will have to recover (from

128 bits to 1600 bits). Then, during the next run, the adversary

will have only one bit of known / controlled value (IV0). This

94 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

Authorized licensed use limited to: University of Adelaide. Downloaded on July 17,2022 at 07:20:04 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Taha and Schaumont’s countermeasure to side-channel analysis, where
an IV is trickled-fed to the outer state of Keccak [TS14, Fig. 3]. 𝑓𝑟 in the
figure is a round-reduced version of the Keccak-𝑓 permutation formaking
space for the incoming IV substrings.

• 𝐶∗ denotes ciphertext, 𝑇∗ denotes aMAC tag, and 𝑡 denotes the desired length
of a MAC tag.

13

https://youtu.be/h7chn74DCNQ?t=136
https://youtu.be/h7chn74DCNQ?t=136

• The process is stateful, i.e., a state is maintained going from one function call
to the other.

• At any time in keyed mode, the function Ratchet () can be invoked [DHP+21,
Sec. 3.2.5], to cause part of the state to be overwritten with zeroes, thereby
making it computationally infeasible to compute the state value before the
call to Ratchet (). This mitigates the impact of recovering the internal state,
e.g., after a side-channel attack.
This ratchet mechanism (a mechanism that allows movement in only one di-
rection) is a distinct security feature of Xoodyak.
The ratchet mechanism is paired with the key derivation mechanism imple-
mented by the function SqueezeKey (), which works like Squeeze () but in the
key space for the purpose of deriving rolling subkeys [DHP+21, Secs. 2.2 and
3.2.6].
Using the rolling subkeys derived from the long-term key instead of the long-
term key itself provides resilience against side-channel attacks by making
the secret key a moving target.

3.2. XOODOO

Xoodoo is a family of permutations parameterised by the number of rounds 𝑛𝑟,
hence the notation Xoodoo [𝑛𝑟].
Xoodoo is iterated, i.e., it iteratively applies a round function to a state.
A Xoodoo state consists of 3 equally sized horizontal planes, each one consisting
of 4 parallel 32-bit lanes; see Figure 6.

6 The design of Xoodoo and Xoofff

x

y

z

lane
x

y

z

plane
x

y

z

state
x

y

z

sheet
x

y

z

column

Figure 2: Toy version of the Xoodoo state, with lanes reduced to 8 bits, and different
parts of the state highlighted.

Table 1: Notational conventions
Ay Plane y of state A
Ay ≪ (t, v) Cyclic shift of Ay moving bit in (x, z) to position (x+ t, z + v)
Ay Bitwise complement of plane Ay
Ay +Ay′ Bitwise sum (XOR) of planes Ay and Ay′
Ay ·Ay′ Bitwise product (AND) of planes Ay and Ay′

Algorithm 1 Definition of Xoodoo[nr] with nr the number of rounds
Parameters: Number of rounds nr
for Round index i from 1− nr to 0 do
A = Ri(A)

Here Ri is specified by the following sequence of steps:
θ :

P ← A0 +A1 +A2
E ← P ≪ (1, 5) + P ≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 + Ci

χ :
B0 ← A1 ·A2
B1 ← A2 ·A0
B2 ← A0 ·A1
Ay ← Ay +By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

Table 2: The round constants ci with −11 ≤ i ≤ 0, in hexadecimal notation (the least
significant bit is at z = 0).

i ci i ci i ci i ci
−11 0x00000058 −8 0x000000D0 −5 0x00000060 −2 0x000000F0
−10 0x00000038 −7 0x00000120 −4 0x0000002C −1 0x000001A0
−9 0x000003C0 −6 0x00000014 −3 0x00000380 0 0x00000012

Figure 6: Parts of a Xoodoo state [DHVAVK18, Figure 2]. Planes are indexed from
𝑦 = 0 (bottom) to 𝑦 = 2 (top). Every lane shown here is 8 bits long but
should be understood as 32 bits long. The terminology here is inherited
from Keccak, but “row” and “slice” are not applicable.

In analysis, a state bit is indexed based on the Cartesian coordinate system in
Figure 6, where 0 ≤ 𝑥, 𝑦 ≤ 3 and 0 ≤ 𝑧 ≤ 31, and denoted by 𝐀[𝑥, 𝑦, 𝑧].
In implementation, the state is stored in a flattened form, i.e.,

𝑆 = 𝑆[0]‖𝑆[1]‖ ⋯ ‖𝑆[𝑏 − 1],
14

which is related to 𝐀[𝑥, 𝑦, 𝑧] by

𝐀[𝑥, 𝑦, 𝑧] = 𝑆[(𝑥 + 4) ⋅ 32 + 𝑧],

i.e., 𝐀 is serialised into 𝑆 lane-first (lane as defined in Figure 6), then by 𝑥 and 𝑦.
Compare this with what was said about the Keccak state in Lecture 6.

A round function in the Xoodoo permu-
tation consists of 5 step mappings:

1. the mixing layer 𝜃,

2. the “western” plane shifting layer
𝜌west,

3. the round-constant addition layer
𝜄,

4. the nonlinear layer 𝜒,

5. the “eastern” plane shifting layer
𝜌east.

Compare the step mappings of Xoodoo
with those of Keccak:

1. the mixing layer 𝜃,

2. the intra-lane translation layer 𝜌

3. the intra-slice transposition layer
𝜋,

4. the nonlinear layer 𝜒,

5. the round-constant addition layer
𝜄.

Table 3: Symbols and notation for discussing Xoodyak in Sec. 3.
Symbols/notation Meaning
𝐊, 𝑢 An array/matrix of user keys and number of user keys in 𝐊
𝑛𝑟 Number of rounds
𝐀𝑦 Plane (defined in Figure 6) 𝑦 of state 𝐀
𝐀𝑦 Bitwise complement of 𝐀𝑦
𝐀𝑦 ⋘ (Δ𝑥, Δ𝑧) Rotation of 𝐀𝑦 moving bit at (𝑥, 𝑧) to (𝑥 + Δ𝑥, 𝑧 + Δ𝑧)
𝐀𝑦 + 𝐀𝑦′ Bitwise sum (XOR) of planes 𝐀𝑦 and 𝐀𝑦′

𝐀𝑦 ⋅ 𝐀𝑦′ Bitwise product (AND) of planes 𝐀𝑦 and 𝐀𝑦′

Based on the symbols and notation in Table 3, the step mappings are defined as
follows.
Step mapping 𝜃:

𝐀𝑦 ← 𝐀𝑦 + ⎛⎜⎜⎜
⎝

2
∑
𝑗=0

𝐀𝑗
⎞⎟⎟⎟
⎠

⋘ (1, 5) + ⎛⎜⎜⎜
⎝

2
∑
𝑗=0

𝐀𝑗
⎞⎟⎟⎟
⎠

⋘ (1, 14), 𝑦 = 0, 1, 2. (18)

Equivalently [ZZS21, Sec. 2.2],

𝐀[𝑥, 𝑦, 𝑧] ← 𝐀[𝑥, 𝑦, 𝑧] ⊕ ⎛⎜⎜⎜
⎝

2
∑
𝑗=0

𝐀[𝑥 − 1, 𝑗, 𝑧 − 5]⎞⎟⎟⎟
⎠

⊕ ⎛⎜⎜⎜
⎝

2
∑
𝑗=0

𝐀[𝑥 − 1, 𝑗, 𝑧 − 14]⎞⎟⎟⎟
⎠

. (19)

15

Like Keccak’s 𝜃, Xoodoo’s 𝜃 a column parity mixing layer [SD18]; it is linear and
the design rationales for both are similar [DHVAVK18, Sec. 7.3.1].
To achieve a dense parity-folding matrix (see Definition 2) for good diffusion, and
so that 𝜃 can be inverted for decryption, 𝜃 needs to operate on columns of odd
size [SD18, Corollary 2 and Sec. 7], explaining the 𝑦-dimension of the Keccak and
Xoodoo state.

Definition 2: Parity-folding matrix [SD18, Sec. 2.3]

The column parity of a matrix 𝐀 is a row vector defined as ⃗1⊤
𝑚𝐀, where ⃗1𝑚 is

an 𝑚-dimensional vector of 1’s.
For example, for

𝐀 =

⎡
⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 1 1 0 1 0 0

⎤
⎥⎥⎥⎥⎥
⎦

,

the column parity is
[1 0 0 1 0 1 0 0] .

The expanded column pairty of 𝐀 is a matrix with 𝑚 rows all equal to the
column parity of 𝐀, and it is given by 𝟏𝑚×𝑚𝐀.
If 𝜃 is the column parity mixer, then the parity-folding matrix 𝐙 satisfies the
equation:

𝜃(𝐀) = 𝐀 + 𝟏𝑚×𝑚𝐀𝐙.

Step mapping 𝜌west (see Figure 7):

𝐀2 ← 𝐀2 ⋘ (0, 11), (20a)
𝐀1 ← 𝐀1 ⋘ (1, 0). (20b)

Equivalently [ZZS21, Sec. 2.2],
𝐀[𝑥, 2, 𝑧] ← 𝐀[𝑥, 2, 𝑧 − 11], (21a)
𝐀[𝑥, 1, 𝑧] ← 𝐀[𝑥 − 1, 1, 𝑧], (21b)

Note intra-plane diffusion does not affect 𝐀0.
𝜌west is by design the dispersion (Daemen’s term [DR20, p. 133]) layer after 𝜃, so
that bits or bytes that are close to each other after 𝜃 are moved to positions that
are distant [DHVAVK18, Secs. 5.1 and 5.7].

16

Joan Daemen, Seth Hoffert, Gilles Van Assche and Ronny Van Keer 7

0

1

2

complement

Figure 3: Effect of χ on one plane.

+ =

column parity θ-effect

fold

Figure 4: Effect of θ on a single-bit state.

0

1

2
shift (2,8)

shift (0,1)

0

1

2
shift (0,11)

shift (1,0)

Figure 5: Illustration of ρeast (left) and ρwest (right).

Table 3: Notational conventions for specification of the rolling functions
Ay,x Lane x of plane Ay
B An auxiliary variable that has the shape of a plane
Ay,x ≪ v Cyclic shift of lane Ay,x moving bit from x to x+ v
Ay,x � v Shift of lane Ay,x moving bit from x to x+ v, setting bits x < v to 0
Ay,x +Ay′,x′ Bitwise sum (XOR) of lanes Ay,x and Ay′,x′
Ay,x ·Ay′,x′ Bitwise product (AND) of lanes Ay,x and Ay′,x′

Joan Daemen, Seth Hoffert, Gilles Van Assche and Ronny Van Keer 7

0

1

2

complement

Figure 3: Effect of χ on one plane.

+ =

column parity θ-effect

fold

Figure 4: Effect of θ on a single-bit state.

0

1

2
shift (2,8)

shift (0,1)

0

1

2
shift (0,11)

shift (1,0)

Figure 5: Illustration of ρeast (left) and ρwest (right).

Table 3: Notational conventions for specification of the rolling functions
Ay,x Lane x of plane Ay
B An auxiliary variable that has the shape of a plane
Ay,x ≪ v Cyclic shift of lane Ay,x moving bit from x to x+ v
Ay,x � v Shift of lane Ay,x moving bit from x to x+ v, setting bits x < v to 0
Ay,x +Ay′,x′ Bitwise sum (XOR) of lanes Ay,x and Ay′,x′
Ay,x ·Ay′,x′ Bitwise product (AND) of lanes Ay,x and Ay′,x′

Figure 7: Xoodoo’s 𝜌west step map-
ping [DHVAVK18, Figure
5].

Figure 8: Xoodoo’s 𝜌east step map-
ping [DHVAVK18, Figure
5].

Step mapping 𝜄:

𝐀0 ← 𝐀0 + 𝐂𝑖, −11 ≤ 𝑖 ≤ 0. (22)

Above,
• The round constant 𝐂𝑖 is only nonzero for the two least significant bytes of

the lane at (𝑥, 𝑦) = (0, 0), i.e.,

𝐀[0, 0, 𝑧] ← 𝐀[0, 0, 𝑧] ⊕ 𝐂𝑖, −11 ≤ 𝑖 ≤ 0.

• 𝑖 = −11 applies to the first round, and 𝑖 = 0 applies to the last round.
• The round constants can be found in [DHVAVK18, Table 2] and are omitted

here.
Round-dependent round constants thwart slide attacks [BW99].
The round constants were chosen to destroy the translation-invariance / shift-
invariance and hence symmetry of the round function [DHVAVK18, Sec. 5.6], help-
ing to thwart cryptanalysis.

Step mapping 𝜒 (see Figure 9):

𝐀2 ← 𝐀2 + 𝐀0 ⋅ 𝐀1, (23a)
𝐀1 ← 𝐀1 + 𝐀2 ⋅ 𝐀0, (23b)
𝐀0 ← 𝐀0 + 𝐀1 ⋅ 𝐀2. (23c)

17

Equivalently [ZZS21, Sec. 2.2],

𝐀[𝑥, 𝑦, 𝑧] ← 𝐀[𝑥, 𝑦, 𝑧] ⊕ ((𝐀[𝑥, 𝑦 + 1 mod 3, 𝑧] ⊕ 1) ∧ 𝐀[𝑥, 𝑦 + 2 mod 3, 𝑧]) . (24)

Unlike Keccak’s 𝜒 which operates on 5 bits, Xoodoo’s 𝜒 operates on 3 bits, so
Xoodyak has 4×32 3-bit S-boxes.
𝜒 is based on the shift-invariant quadraticmapping of the same name thatDaemen
analysed in his PhD thesis [Dae95] decades ago, so its properties are well known.
𝜒 is by design involutive (a function that is its own inverse) [DHVAVK18, Sec. 1.2],
and has an algebraic degree of 2 [Dae95, Sec. 6.9]. This contributes to the ease
of analysis of Xoodoo in terms of its resistance to differential and linear cryptanal-
yses [Dae95, Sec. 6.9]; and ease of masked implementations.

Joan Daemen, Seth Hoffert, Gilles Van Assche and Ronny Van Keer 7

0

1

2

complement

Figure 3: Effect of χ on one plane.

+ =

column parity θ-effect

fold

Figure 4: Effect of θ on a single-bit state.

0

1

2
shift (2,8)

shift (0,1)

0

1

2
shift (0,11)

shift (1,0)

Figure 5: Illustration of ρeast (left) and ρwest (right).

Table 3: Notational conventions for specification of the rolling functions
Ay,x Lane x of plane Ay
B An auxiliary variable that has the shape of a plane
Ay,x ≪ v Cyclic shift of lane Ay,x moving bit from x to x+ v
Ay,x � v Shift of lane Ay,x moving bit from x to x+ v, setting bits x < v to 0
Ay,x +Ay′,x′ Bitwise sum (XOR) of lanes Ay,x and Ay′,x′
Ay,x ·Ay′,x′ Bitwise product (AND) of lanes Ay,x and Ay′,x′

Figure 9: Effect of 𝜒 on plane 𝐀2 [DHVAVK18, Figure 3].

Step mapping 𝜌east (see Figure 8):

𝐀2 ← 𝐀2 ⋘ (2, 8), (25a)
𝐀1 ← 𝐀1 ⋘ (0, 1). (25b)

Equivalently [ZZS21, Sec. 2.2],
𝐀[𝑥, 2, 𝑧] ← 𝐀[𝑥 − 2, 2, 𝑧 − 8], (26a)
𝐀[𝑥, 1, 𝑧] ← 𝐀[𝑥, 1, 𝑧 − 1]. (26b)

The designers experimented with only one dispersion layer but found out that did
not achieve enough dispersion, so added this second dispersion layer after 𝜒.
Although both 𝜌west and 𝜌east do not affect plane 𝐀0, 𝜄 only affects 𝐀0. This is a
result of trade-off between diffusion and computational efficiency.

18

3.3. Summary of key features

With knowledge of the algorithmic components of Xoodyak in mind, we now sum-
marise the key security and computational efficiency features of Xoodyak.

In terms of security,

• The design of Xoodyak was
based on considerations of a
wide range of attacks, e.g., slide
attacks [BW99], multi-target
attacks [Bih02], side-channel at-
tacks; and has incorporated state-
of-the-art countermeasures, e.g.,
Taha and Schaumont’s [TS14].

• Xoodyak protects the secret key
through a ratchet and key deriva-
tion mechanism (see Sec. 3.1), of-
fering leakage resilience.

• Xoodyak has desirable properties
in terms of resistance to differen-
tial cryptanlaysis [DHVAVK18,
Sec. 1.2], and furthermore it
lends itself to efficient masking
and threshold countermeasures
against differential power analysis
and similar attacks [DHP+21].

• The best attack is attributed to
Zhou et al. [ZLD+20] who could re-
cover a key in 244 time with neg-
ligible memory cost in the nonce-
misuse setting if Xoodyak uses
6 rounds instead of the full 12
rounds. Thus, full-round Xoodyak
offers nominal 128-bit security.

In terms of computational efficiency,

• The atomic operations (shift,
XOR, AND) are simple and light-
weight [DHP+21, Sec. 5.1].

• Abundant symmetry enables
a high level of code/circuit
reuse [DHP+21, Sec. 5.1].

• However, Xoodyak is inher-
ently serial at the construction
level [DHP+21, Sec. 1.4].

• Reference and optimised imple-
mentations of Xoodyak can be
found in the eXtended (or Xoodoo)
Keccak Code Package (XKCP) on
GitHub.

3.4. Experiments with XKCP

This subsection documents some simple experiments with XKCP.

� For your research paper,

there is no need to reproduce the results below.

19

https://github.com/XKCP/XKCP

To reproduce the experimental results reported in this lecture, these software pre-
requisites must be satisfied:

• Ubuntu 22.04 LTS environment running on Windows Subsystem for Linux
(WSL) version 2.
Check out this guide to installing Ubuntu on WSL2 on Windows 10, or this
guide to installing Ubuntu on WSL2 on Windows 11.

• git, gcc, make and xsltproc in Ubuntu 22.04 on WSL2. These can be installed
through command:
sudo apt install build -essential xsltproc

• Visual Studio Code in Windows.
Below are the steps for reproducing the experimental results reported in this lec-
ture:

1. This needs only be done once to clone the XKCP repository on GitHub to a
local repository:
git clone https://github.com/XKCP/XKCP

This command — to be executed in the XKCP directory — updates the local
repository:
git pull

2. Assuming the local repository is at /home/lawyw/Dev in Ubuntu, Figure 10 shows
how the local repository can be accessed in Windows.

Figure 10: Accessing XKCP files in WSL2.

High-level Xoodyak files lie in the directory XKCP/lib/high/Xoodyak, while
low-level files lie in the directories XKCP/lib/low/common, XKCP/lib/low/Xoodoo,

XKCP/lib/low/Xoodoo-times4, XKCP/lib/low/Xoodoo-times8,
XKCP/lib/low/Xoodoo-times16. The last three directories store parallelised

20

https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-10
https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-11-with-gui-support
https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-11-with-gui-support
https://code.visualstudio.com/download

versions of the implementation of Xoodoo, e.g., times4 means implementation
of 4 parallelised instances of Xoodoo.

3. The last comment in the file Makefile.build provides the instruction on how to
specific a build target:
<!-- Target names are of the form x/y where x is taken from the
first set and y from the second set. -->
<group all="XKCP">
<product delimiter="/">

<factor set="reference reference32bits compact generic32
 generic32lc generic64 generic64lc SSSE3 AVX XOP AVX2 AVX2noAsm
 AVX512 AVX512noAsm ARMv6 ARMv6M ARMv7M ARMv7A ARMv8A AVR8"/>

<factor set="UnitTests Benchmarks KeccakSum libXKCP.a libXKCP.so
 libXKCP.dylib"/>
</product>
</group>

Let us choose the build targets to be generic64/UnitTests, generic64/Benchmarks,
SSSE3/UnitTests and SSSE3/Benchmarks:
make generic64/UnitTests generic64/Benchmarks
make SSSE3/UnitTests SSSE3/Benchmarks

� SSSE3 is Intel’s Supplemental Streaming SIMD Extension 3 instruction
set [Int22], and not supported on contemporary Apple computers.
Upon successful execution of the make commands, these directories will be
created: XKCP/bin/generic and XKCP/bin/SSSE3. Furthermore, each of these direc-
tories will contain two executable files: UnitTests and Benchmarks.

4. Unit tests: The executable UnitTests checks if the Xoodyak implementation
works as expected. Figure 11 shows the expected output if both the generic64
and SSSE3 versions of UnitTests completed without issue for Xoodyak.

Figure 11: Successful unit test results for Xoodyak.

5. Benchmarks: Figure 12 compares the outputs of the generic64 and SSSE3 ver-
sions of Benchmarks for Xoodyak.

Figure 12: generic64 vs SSSE3 benchmark results for Xoodyak.
21

Thus, the SIMD-optimised version is 33%more efficient than the unoptimised
version.

A. Appendix: Glossary

This appendix provides brief explanation of terms that appear in the discussion
above but are tangential to the main topics of this lecture.

A.1. Bitslicing

Bitslicing is the standard technique to avoid table look-ups without compromising
efficiency [DR20, Sec. 4.2.2].
The technique was invented by Biham [Bih97] for the Data Encryption Standard
(DES) and later adapted to other ciphers. For example, Käsper and Schwabe’s
bitslicing technique for the AES [KS09] is highly cited.
The method of bitslicing views a processor — say a 64-bit processor — as a single-
instruction multiple-data (SIMD) computer that can perform 64 one-bit operations
simultaneously, while the 64 bits of each block are set in 64 different words, of
which the first bit is associated with the first block, the second bit associated with
the second block, etc. [Bih97].
Watch Thomas Pornin’s � YouTube video on “BearSSL: SSL for All Things” for a
quick introduction to bitslicing.

A.2. Masking

Masking is a class of techniques for randomising processed data to obscure inter-
mediate values from cryptanalysts in their attempts to exploit information leakage
for side-channel attacks [SMN21].
For example,

• 𝑟 is a Boolean mask when XORed with bitstring 𝑥 to obscure the value of 𝑥:
𝑥 ⊕ 𝑟 [Mes01].

• 𝑟 is an arithmetic mask when added to bitstring 𝑥 in a Galois field of cardi-
nality 2𝑛 to obscure the value of 𝑥: 𝑥 + 𝑟 mod 2𝑛 [Mes01].

22

https://youtu.be/ILeWSeOOwyI?t=3160

A.3. Substitution-permutation network (SPN)

The SPN is a widely used structure, e.g., it is used by the AES [Bak22, Sec. 2.3.1]
although this was not mentioned in Lecture 4.
An SPN effects diffusion and confusion in an iterated approach, i.e., in rounds.
In an SPN, a round typically consists of a non-linear transformation (usually
using S-boxes), followed by a linear transformation, and then addition of the
round key.

B. References

[Bak22] A. Baksi, Classical and Physical Security of Symmetric Key Crypto-
graphic Algorithms, Computer Architecture and Design Methodolo-
gies, Springer Nature Singapore Pte Ltd, 2022. https://doi.org/
10.1007/978-981-16-6522-6. 23

[BKL+17] D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel,
K. Nawaz, T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, and
B. Viguier, Gimli : A cross-platform permutation, in Cryptographic
Hardware and Embedded Systems – CHES 2017 (W. Fischer and
N. Homma, eds.), Springer International Publishing, Cham, 2017,
pp. 299–320. 11

[Bih97] E. Biham, A fast new DES implementation in software, in Fast Soft-
ware Encryption, Springer Berlin Heidelberg, Berlin, Heidelberg,
1997, pp. 260–272. https://doi.org/10.1007/BFb0052352. 22

[Bih02] E. Biham, How to decrypt or even substitute DES-encrypted mes-
sages in 228 steps, Information Processing Letters 84 no. 3 (2002),
117–124. https://doi.org/10.1016/S0020-0190(02)00269-7. 19

[BW99] A. Biryukov and D. Wagner, Slide attacks, in Fast Software Encryp-
tion (L. Knudsen, ed.), Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1999, pp. 245–259. 9, 17, 19

[Dae95] J. Daemen, Cipher and hash function design strategies based on
linear and differential cryptanalysis, Ph.D. thesis, KU Leuven,
1995. Available at https://cs.ru.nl/~joan/papers/JDA_Thesis_
1995.pdf. 18

[DHP+20] J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and
R. Van Keer, Xoodyak, a lightweight cryptographic scheme, IACR
Transactions on Symmetric Cryptology 2020 no. S1 (2020), 60–87,
see also [DHP+21]. https://doi.org/10.13154/tosc.v2020.iS1.
60-87. 24

23

https://doi.org/10.1007/978-981-16-6522-6
https://doi.org/10.1007/978-981-16-6522-6
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1016/S0020-0190(02)00269-7
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://doi.org/10.13154/tosc.v2020.iS1.60-87
https://doi.org/10.13154/tosc.v2020.iS1.60-87

[DHP+21] J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and
R. Van Keer, Xoodyak, a lightweight cryptographic scheme,
Xoodyak specification v2, May 2021, see also [DHP+20].
Available at https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/finalist-round/
updated-spec-doc/xoodyak-spec-final.pdf. 11, 13, 14, 19,
23

[DHVAVK18] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer, The de-
sign of Xoodoo and Xoofff, IACR Transactions on Symmetric Cryp-
tology 2018 no. 4 (2018), 1–38. https://doi.org/10.13154/tosc.
v2018.i4.1-38. 11, 14, 16, 17, 18, 19

[DMVA17] J. Daemen, B. Mennink, and G. Van Assche, Full-state keyed du-
plex with built-in multi-user support, in Advances in Cryptology –
ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), Springer Inter-
national Publishing, Cham, 2017, pp. 606–637. 3, 12

[DR20] J. Daemen and V. Rijmen, The Design of Rijndael: The Advanced En-
cryption Standard (AES), 2nd ed., Information Security and Cryp-
tography, Springer-Verlag, Heidelberg, 2020. https://doi.org/10.
1007/978-3-662-60769-5. 10, 16, 22

[DES21] C. Dobraunig, M. Eichlseder, and F. M. M. Schläffer, Ascon v1.2:
Submission to NIST, May 2021. Available at https://ascon.iaik.
tugraz.at. 3, 4, 6, 7, 8, 9, 10

[Gro96] L. K. Grover, A fast quantum mechanical algorithm for database
search, in Proceedings of the Twenty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC ’96, Association for Com-
puting Machinery, New York, NY, USA, 1996, p. 212–219. https:
//doi.org/10.1145/237814.237866. 3

[Int22] Intel Corporation, Intel® Architecture Instruction Set
Extensions and Future Features: Programming Refer-
ence, September 2022, 319433-046. Available at https:
//software.intel.com/content/www/us/en/develop/download/
intel-architecture-instruction-set-extensions-programming-reference.
html. 21

[Jea16] J. Jean, TikZ for Cryptographers, https://www.iacr.org/authors/
tikz/, 2016. 6

[KS09] E. Käsper and P. Schwabe, Faster and timing-attack resistant
AES-GCM, in Cryptographic Hardware and Embedded Systems -
CHES 2009 (C. Clavier and K. Gaj, eds.), Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009, pp. 1–17. https://doi.org/10.1007/
978-3-642-04138-9_1. 22

24

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-662-60769-5
https://ascon.iaik.tugraz.at
https://ascon.iaik.tugraz.at
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-04138-9_1

[Mes01] T. S. Messerges, Securing the AES finalists against power analy-
sis attacks, in Fast Software Encryption (G. Goos, J. Hartmanis,
J. van Leeuwen, and B. Schneier, eds.), Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001, pp. 150–164. 22

[RAD+20] K. Ramezanpour, A. Abdulgadir, W. Diehl, J.-P. Kaps, and P. Am-
padu, Active and passive side-channel key recovery attacks on
ascon, in NIST Lightweight Cryptography Workshop, 2020, presen-
tation at https://csrc.nist.gov/CSRC/media/Presentations/
active-passive-side-channel-key-attacks-on-ascon/
images-media/session-5-ramezanpour-active-passive-ascon.pdf.
Available at https://csrc.nist.gov/CSRC/media/Events/
lightweight-cryptography-workshop-2020/documents/papers/
active-passive-recovery-attacks-ascon-lwc2020.pdf. 10

[RS21] R. Rohit and S. Sarkar, Diving deep into the weak keys of
round reduced Ascon, IACR Transactions on Symmetric Cryptology
2021 no. 4 (2021), 74–99. https://doi.org/10.46586/tosc.v2021.
i4.74-99. 4

[SMN21] P. Socha, V. Miškovský, and M. Novotný, High-level synthesis,
cryptography, and side-channel countermeasures: A comprehensive
evaluation, Microprocessors and Microsystems 85 (2021), 104311.
https://doi.org/10.1016/j.micpro.2021.104311. 22

[SD18] K. Stoffelen and J. Daemen, Column parity mixers, IACR Transac-
tions on Symmetric Cryptology 2018 no. 1 (2018), 126–159. https:
//doi.org/10.13154/tosc.v2018.i1.126-159. 16

[TS14] M. Taha and P. Schaumont, Side-channel countermeasure for sha-
3 at almost-zero area overhead, in 2014 IEEE International Sym-
posium on Hardware-Oriented Security and Trust (HOST), 2014,
pp. 93–96. https://doi.org/10.1109/HST.2014.6855576. 13, 19

[ZZS21] Z. Zhang, W. Zhang, and H. Shi, Genetic algorithm assisted state-
recovery attack on round-reduced Xoodyak, in Computer Security –
ESORICS 2021 (E. Bertino, H. Shulman, and M. Waidner, eds.),
Springer International Publishing, Cham, 2021, pp. 257–274. 15,
16, 18

[ZLD+20] H. Zhou, Z. Li, X. Dong, K. Jia, and W. Meier, Practical Key-
Recovery Attacks On Round-Reduced Ketje Jr, Xoodoo-AE And
Xoodyak, The Computer Journal 63 no. 8 (2020), 1231–1246. https:
//doi.org/10.1093/comjnl/bxz152. 19

25

https://csrc.nist.gov/CSRC/media/Presentations/active-passive-side-channel-key-attacks-on-ascon/images-media/session-5-ramezanpour-active-passive-ascon.pdf
https://csrc.nist.gov/CSRC/media/Presentations/active-passive-side-channel-key-attacks-on-ascon/images-media/session-5-ramezanpour-active-passive-ascon.pdf
https://csrc.nist.gov/CSRC/media/Presentations/active-passive-side-channel-key-attacks-on-ascon/images-media/session-5-ramezanpour-active-passive-ascon.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/active-passive-recovery-attacks-ascon-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/active-passive-recovery-attacks-ascon-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/active-passive-recovery-attacks-ascon-lwc2020.pdf
https://doi.org/10.46586/tosc.v2021.i4.74-99
https://doi.org/10.46586/tosc.v2021.i4.74-99
https://doi.org/10.1016/j.micpro.2021.104311
https://doi.org/10.13154/tosc.v2018.i1.126-159
https://doi.org/10.13154/tosc.v2018.i1.126-159
https://doi.org/10.1109/HST.2014.6855576
https://doi.org/10.1093/comjnl/bxz152
https://doi.org/10.1093/comjnl/bxz152

	Introduction
	Ascon
	Initialisation
	Processing of associated data
	Processing of plaintext/ciphertext
	Finalisation
	Ascon permutation

	Xoodyak
	Cyclist
	Xoodoo
	Summary of key features
	Experiments with XKCP

	Appendix: Glossary
	Bitslicing
	Masking
	Substitution-permutation network (SPN)

	References

