
Block ciphers
Dr. Yee Wei Law ⟨yeewei.law@unisa.edu.au⟩

2023-09-12

Contents

1 Introduction 1

2 Advanced Encryption Standard (AES) 3
2.1 Arithmetic in GF(2𝑛) 5

2.2 Key schedule 10
2.3 Encryption/decryption 15

3 References 21

Acronyms
AES Advanced Encryption Standard . 2
CRYPTREC Cryptography Research and Evaluation Committee 4
DES Data Encryption Standard . 2
ECB electronic cookbook . 2
NESSIE New European Schemes for Signatures, Integrity and Encryption 4
TDEA Triple Data Encryption Algorithm . 2

1 Introduction

Whereas a stream cipher contains a memory, embodied in its current state, a
block cipher is memoryless outside its current block and therefore has no current
state [PBO+03, Sec. 2.1].

Definition 1: Block cipher [Gol04, Definition 5.3.5]

A block cipher is a triple of PPT algorithms (Gen, Enc,Dec) satisfying two con-
ditions:
1.On input 1𝑛, algorithm Gen outputs a pair of bit strings (keys).
2. There exists a polynomially bounded function ℓ ∶ ℕ → ℕ, called the block

length, such that for every pair (𝑒, 𝑑) in the range of Gen(1𝑛), and for each
𝑚 ∈ {0, 1}ℓ(𝑛), algorithms Enc and Dec satisfy

Pr {Dec𝑑(Enc𝑒(𝑚)) = 𝑚} = 1.

In Definition 1, Gen(1𝑛) outputs a pair of keys that can be
• different, in which case we get a public-key block cipher;
• the same, in which case we get a symmetric-key block cipher.

1

A block cipher is commonly assumed/understood to be a symmetric-key block ci-
pher.
NIST SP 800-175B [Bar20] defines a block cipher as � a family of functions and
their inverse functions that is parameterised by cryptographic keys; the functions
map bit strings of a fixed length to bit strings of the same length. � This defi-
nition is consistent with Definition 1, although not as precise.
Some authors are more specific in their definition of block ciphers. For example,
Katz and Lindell [KL21, Sec. 3.6.3] define a block cipher as a � strong pseudo-
random permutation � [Gol01, Definition 3.7.5]. This definition includes key
generation implicitly and is specific about the properties of Enc and Dec.
• Watch Dan Boneh’s� “What are block ciphers?”, which introduces block ciphers

as pseudorandom permutation functions.
• For the purpose of this course, we shall separate the assumption/construction

(e.g., pseudorandom permutation) and the implicit security notion from the def-
inition itself.

Currently, there are two NIST-approved
block ciphers, namely
1.Advanced Encryption Standard

(AES), see Sec. 2;
2. Triple Data Encryption Algorithm

(TDEA), also called Triple DES.

The block ciphers Skipjack [Sch15, Sec.
13.12] and Data Encryption Standard
(DES) [Sch15, Ch. 12] were previously
approved but their approval has been
withdrawn; watch� LinkedIn Learning
video.
Table 1 summarises the standards and
approval statuses.

Table 1: Standards and approval statuses of block ciphers [BR19, Sec. 2].
Block cipher Standard Status

AES FIPS 197 Acceptable
Two-key TDEA encryption NIST SP 800-67 Disallowed
Two-key TDEA decryption Legacy use

Three-key TDEA encryption NIST SP 800-67
Deprecated through 2023,

disallowed after 2023
Three-key TDEA decryption Legacy use

Skipjack encryption FIPS 185 Disallowed
Skipjack decryption Legacy use

DES encryption FIPS 46-3 Disallowed
DES decryption Legacy use

Applying a block cipher to the same input block will always produce the same out-
put block when the same key is used [Bar20, Sec. 3.2.1.5]. This naive mode of
operation, as illustrated in Figure 1, is called electronic cookbook (ECB) mode.

2

https://www.coursera.org/lecture/crypto/what-are-block-ciphers-t4JJr
https://www.linkedin.com/learning/symmetric-cryptography-essential-training/the-data-encryption-standard-des
https://www.linkedin.com/learning/symmetric-cryptography-essential-training/the-data-encryption-standard-des

Private-Key Encryption 89

is its block length. The main distinction between block ciphers and pseudo-
random permutations is that the former typically only support a specific set
of key/block lengths, and in particular do not support arbitrary-length keys.
For simplicity, we will assume in this section that ` = n.

As shown earlier (cf. Construction 3.30), a block cipher can be used to
construct a stream cipher that accepts an IV ; this means we can use any
block cipher F to implement the stream-cipher modes of operation discussed
in Section 3.6.2. Several other block-cipher modes of operation are also pos-
sible; here, we present four of the most common ones and discuss their secu-
rity. In our discussion, we assume for simplicity that all messages m being
encrypted have length a multiple of n (the block length of F), and write
m = m1,m2, . . . ,m` where each mi ∈ {0, 1}n represents a block of the plain-
text. (Messages whose length is not a multiple of n can be unambiguously
padded to have length a multiple of n by appending a 1 followed by sufficiently
many 0s, and so this assumption is without much loss of generality.)

Electronic Code Book (ECB) mode. This is a naive mode of operation
in which the ciphertext is obtained by direct application of the block cipher
to each plaintext block. That is, c := Fk(m1), Fk(m2), . . . , Fk(m`); see Fig-
ure 3.4. Decryption is done in the obvious way, using the fact that F−1

k is
efficiently computable.

Fk Fk Fk

m1

c3c1

m2

c2

m3

FIGURE 3.4: Electronic Code Book (ECB) mode.

ECB mode is deterministic and therefore cannot be CPA-secure. Worse,
ECB-mode encryption is not even EAV-secure. This is because if a block is
repeated in the plaintext, it will result in a repeating block in the ciphertext.
Thus, for example, it is easy to distinguish the encryption of a plaintext that
consists of two identical blocks from the encryption of a plaintext that con-
sists of two different blocks. This is not just a theoretical problem. Consider
encrypting an image in which small groups of pixels correspond to a plaintext
block. Encrypting using ECB mode may reveal a significant amount of infor-
mation about patterns in the image, something that should not happen when
using a secure encryption scheme. (Figure 3.5 demonstrates this.) For these
reasons, ECB mode should never be used.

Figure 4-7: The original image (left) and the ECB-encrypted image (right)

The Python program in Listing 4-4 also shows ECB’s insecurity. It
picks a pseudorandom key and encrypts a 32-byte message p containing
two blocks of null bytes. Notice that encryption yields two identical
blocks and that repeating encryption with the same key and the same
plaintext yields the same two blocks again.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms,
modes
from cryptography.hazmat.backends import default_backend
from binascii import hexlify as hexa
from os import urandom

BLOCKLEN = 16
def blocks(data):
 split = [hexa(data[i:i+BLOCKLEN]) for i in range(0, len(data),
BLOCKLEN)]
 return ' '.join(split)

k = urandom(16)
print 'k = %s' % hexa(k)

create an instance of AES-128 to encrypt and decrypt

Figure 1: Applying block cipher 𝐹𝑘 in
ECB mode [KL21, Figure 3.4].

Figure 2: Image of Tux the penguin in plain-
text and in ECB-mode ciphertext [Aum18,
Figure 4-7].

In the ECB mode, data patterns in the plaintext, such as repeated blocks, remain
apparent in the ciphertext, as evident in Figure 2.
If the multiple blocks in a typical message are encrypted separately, an adver-
sary can easily substitute individual blocks, possibly without detection [Bar20,
Sec. 3.2.1.5].
� ECB mode is deterministic and not semantically secure [KL21, p. 89].

Quiz 1

Can you device an IND experiment that shows violation of IND-PASS?

� Detail: Why the name “electronic codebook”?

If a plaintext block is always encrypted to the same ciphertext block, when-
ever the same key is used, then an attacker can build a codebook of plaintext-
ciphertext pairs that it can look upwhenever it needs to encrypt/decrypt some
text. This is called a codebook attack.
If the block size is 2𝑏 bits
for 𝑏 ∈ ℕ, an electronic
cookbook needs at least
22𝑏⏟
#rows

× 2𝑏⏟
#bits per row

= 22𝑏+𝑏 bits.

• When 𝑏 = 4, we need 128 kilobytes.
• When 𝑏 = 5, we need 16 gigabytes.
• When 𝑏 = 6, we need 128 exabytes.

The codebook attack not only rules out usage of the ECB mode but also indi-
cates the need for a sufficiently large block size, i.e., at least 26 = 64 bits in a
block. AES uses 27 = 128-bit blocks.

Other modes of operation than ECB for block ciphers are discussed in the next
lecture (see knowledge base entry).

2 AES

The significance of the AES warrants a quick review of the historical context:

3

https://lo.unisa.edu.au/mod/glossary/view.php?id=3065178&mode=entry&hook=42567

� Detail: Historical context
The DES algorithm was first published in 1975 and then standardised in
FIPS PUB 46 in 1977.

DES was theoretically secure but its small key
length of 56 bits rendered it vulnerable to exhaus-
tive (key) search attacks.
• In 1997, RSA Security organised the first DES

Challenge, and the key was found in 96 days.
• In the 1999 round of DES Challenge, the key was

found in 22 hours 15 minutes using a purpose-
built machine called “Deep Crack” and 100,000
computers during their idle time [McN99].

• Watch Dan Boneh’s � “Exhaustive search at-
tacks”.

In January 1997, NIST initiated the development of the successor to DES,
namely the AES, inviting proposals from the global community.
So that it can be used to protect sensitive government information well into
the 21st century, the AES must support a block size of 128 bits, and key sizes
of 128, 192 and 256 bits.

In August 1998, NIST shortlisted 15 candidates.
In October 2000, NIST announced the selection of Joan
Daemen and Vincent Rijmen’s Rijndael as the AES.
In November 2001, the AES was published as FIPS
197 [NIS01].

In 2003, the New European Schemes for Signatures, Integrity and Encryp-
tion (NESSIE) project formally recommended Rijndael/AES [Pre03].
At about the same time, the (Japanese) Cryptography Research and Eval-
uation Committee (CRYPTREC) also formally recommended Rijndael/AES,
which remains a recommendation as of 2022 [CRY22].
As of 2020, more than 5700 AES algorithm implementations had been vali-
dated by Cryptographic AlgorithmValidation Program (CAVP) as conforming
to FIPS 197 specifications [NIS21].
Nowadays, almost all modern 64-bit processors have native instructions for
AES [Mou21], e.g., Intel has AES New Instructions (AES-NI) for not only
accelerating AES computation but also mitigating timing and cache-based
attacks [Gue09].

Quiz 2

In [CRY22], what is the other recommended 128-bit block cipher than AES?

4

https://www.coursera.org/learn/crypto/lecture/fPA8S/exhaustive-search-attacks
https://www.coursera.org/learn/crypto/lecture/fPA8S/exhaustive-search-attacks
https://en.wikipedia.org/wiki/EFF_DES_cracker
https://www.cryptrec.go.jp/en
https://www.cryptrec.go.jp/en
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://www.intel.com.au/content/www/au/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html

Our discussion shall be guided by FIPS 197 [NIS01], [DR20]
() and the OpenSSL implementation of AES (which is differ-
ent from BoringSSL implementation of AES).

A rigorous coverage of the AES would cover finite fields, linear
codes and boolean functions first [DR20, Ch. 2], but only a user’s
view of finite fields will be covered in Sec. 2.1.

Rijndael was designed to support a variable block length and a
variable key length; both can be independently specified to any
multiple of 32 bits, with a minimum of 128 bits and a maximum
of 256 bits.

Information Security and Cryptography

Joan Daemen
Vincent Rijmen

The Design
of Rijndael
The Advanced Encryption Standard
(AES)

Second Edition

The AES is thus, strictly speaking, a subset of Rijndael with the block length fixed
at 128 bits, and key lengths limited to 128, 192 and 256 bits.
For a quick overview of the AES, watch Dan Boneh’s � “The AES Block Cipher”.
For our discussion here, an unconventional starting point is taken, by inspecting
theOpenSSL source code at https://github.com/openssl/openssl/tree/master/
crypto/aes.
• We shall look for an implementation of the AES in ECB mode (which is basically

the AES itself).
• The security of the AES depends on viewing a single byte of data in two different

ways: a byte as an eight-dimensional vector over the Galois field GF(2); a
byte as an element of the Galois field GF(28).

Rationale for these two views : operations that are easy to analyse in
one representation are difficult to analyse in another [CMR06], thwart-
ing cryptanalysts’ effort to formulate straightforward algebraic attacks.

We discuss arithmetic in Galois fields — an important part of the AES — in
Sec. 2.1.

• We then discuss the key schedule in Sec. 2.2, before looking into encryption/de-
cryption in Sec. 2.3.

2.1 Arithmetic in GF(2𝑛)

A Galois field, also called a finite field, which in turn is a field (see Definition 2)
with a finite number of elements.

Definition 2: Field [HW03, p. 176]

A field is a triple (𝔽, +, ×), consisting of set 𝔽 and binary operations + and ×
on 𝔽, that satisfies the following axioms:

Closure ∀𝑎, 𝑏 ∈ 𝔽,
• 𝑎 + 𝑏 ∈ 𝔽,
• 𝑎 × 𝑏 ∈ 𝔽.

5

https://github.com/openssl/openssl/tree/master/crypto/aes
https://github.com/google/boringssl/tree/master/crypto/fipsmodule/aes
https://www.coursera.org/learn/crypto/lecture/cHOMl/the-aes-block-cipher
https://github.com/openssl/openssl/tree/master/crypto/aes
https://github.com/openssl/openssl/tree/master/crypto/aes

Associativ-
ity

∀𝑎, 𝑏, 𝑐 ∈ 𝔽,
• (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐),
• (𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐).

Commuta-
tivity

∀𝑎, 𝑏 ∈ 𝔽,
• 𝑎 + 𝑏 = 𝑏 + 𝑎,
• 𝑎 × 𝑏 = 𝑏 × 𝑎.

Identi-
ty/neutral
element

∀𝑎 ∈ 𝔽,
• there exists an additive identity element 0 ∈ 𝔽 such that
𝑎 + 0 = 𝑎,

• there exists a multiplicative identity element 1 ≠ 0 and 1 ∈
𝔽 such that 𝑎 ⋅ 1 = 𝑎.

� 0 and 1 above serve as symbols rather than literal zero
and one.

Inverse
element

∀𝑎 ∈ 𝔽,
• there exists an additive inverse element −𝑎 ∈ 𝔽 such that
𝑎 + (−𝑎) = 0,

• except for element 0, there exists a multiplicative inverse
element 𝑎−1 ∈ 𝔽 such that 𝑎 × 𝑎−1 = 1.

Distributiv-
ity

× is distributive over +, i.e., ∀𝑎, 𝑏, 𝑐 ∈ 𝔽, (𝑎 + 𝑏) × 𝑐 = (𝑎 × 𝑐) +
(𝑏 × 𝑐).

Quiz 3

Is 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) true ∀𝑎, 𝑏, 𝑐 ∈ 𝔽?

�Detail: Field← ring← group [LN94, p. 12], [Lov22, Definitions 1.2.1, 3.1.1,
3.1.22]
The study of Galois fields belongs to the field of abstract algebra (see knowl-
edge base entry).
An introduction to Galois fields typically starts with groups followed by rings,
but let us trace backwards from fields to rings to groups:
• A field is a commutative division ring.
• A division ring is a ring whose elements except 0 form a group under multi-

plication. This means all elements except 0 has a multiplicative inverse.
• A ring is a triple (𝑅, +,×), where (𝑅, +) forms a commutative group, ×

is associative, and × is distributive over +.
• And finally, a group is a pair (𝐺, ⋆), consisting of set 𝐺 and binary opera-

tion ⋆ on 𝐺, that satisfies the three axioms: ⋆ is associative, 𝐺 has
an identity element with respect to ⋆, and every element in 𝐺 has an
inverse with respect to ⋆.

A Galois field is essentially a finite set on which we can perform the arithmetic
operations of addition, subtraction, multiplication and division (but not division
by zero).

6

https://lo.unisa.edu.au/mod/glossary/view.php?id=3172811&mode=entry&hook=41475
https://lo.unisa.edu.au/mod/glossary/view.php?id=3172811&mode=entry&hook=41475

The number of elements in a Galois field is called the order or cardinality of the
field.
• The order of a Galois field is necessarily of the form 𝑝𝑚, where 𝑝 is a prime

number and 𝑚 is any positive integer [Kib17, Proposition 2.2].
• Furthermore, all Galois fields of the same order are isomorphic to each other [Kib17,

Proposition 2.3], thus all Galois fields of the same order share the same notation
GF(𝑝𝑚).

Example 1

The triple ({0, 1,… , 𝑝 − 1}, + mod 𝑝,× mod 𝑝) is isomorphic to the Galois
field GF(𝑝).

The triple ({0, 1, 2, 3, 4, 5}, + mod 6, × mod 6) is not a Galois field, since the
elements 2, 3, 4 do not have a multiplicative inverse.

The triple ({0, 1, 2, 3}, + mod 4, × mod 4) is not a Galois field, since the ele-
ment 2 does not have a multiplicative inverse, although there are exactly 22
elements.
A structure having order of the form 𝑝𝑚 is not necessarily a Galois field, but
a Galois field has necessarily order of the form 𝑝𝑚.

Consider the set of 𝑛-bit strings:
• They can be viewed as elements of the Galois field GF(2𝑛).
• They can also be viewed as binary polynomials of degree up to 𝑛 − 1, e.g., the

4-bit string 1001 can be viewed as the polynomial 𝑥3 + 1.
In other words, we can view the Galois field GF(2𝑛) as a set of binary polynomials
of degree up to 𝑛 − 1:
• Elements of GF(2𝑛) can be added modulo 2:

𝑛−1
∑
𝑖=0

𝑐𝑖𝑥𝑖 +
𝑛−1
∑
𝑖=0

𝑑𝑖𝑥𝑖 =
𝑛−1
∑
𝑖=0

(𝑐𝑖 ⊕ 𝑑𝑖)𝑥𝑖.

Note addition modulo 2 is equivalent to XOR . 𝑥 is a so-called indetermi-
nate, which merely serves as a symbol.

• Elements of GF(2𝑛) can be multiplied modulo an irreducible polynomial (i.e., a
polynomial whose divisors are one and itself) of degree 𝑛:

(
𝑛−1
∑
𝑖=0

𝑐𝑖𝑥𝑖) (
𝑛−1
∑
𝑖=0

𝑑𝑖𝑥𝑖) mod 𝑚(𝑥).

For any Galois field of 𝑛 > 2, multiple irreducible polynomials are available for
choosing.

Example 2

For Galois field GF(2𝑛), we can determine the primitive polynomials (a subset
of irreducible polynomials) using the command primpoly from the MATLAB
Communications Toolbox.
The following shows theMATLAB code and associated outputs for GF(22) and

7

https://mathworld.wolfram.com/PrimitivePolynomial.html
https://au.mathworks.com/help/comm/ref/primpoly.html

GF(28):

>>> primpoly(2, 'all')

Primitive polynomial(s) =

D^2+D^1+1

ans =

7

>>> primpoly(8, 'all')

Primitive polynomial(s) =

D^8+D^4+D^3+D^2+1

D^8+D^5+D^3+D^1+1

D^8+D^5+D^3+D^2+1

D^8+D^6+D^3+D^2+1

D^8+D^6+D^4+D^3+D^2+D^1+1

D^8+D^6+D^5+D^1+1

D^8+D^6+D^5+D^2+1

D^8+D^6+D^5+D^3+1

D^8+D^6+D^5+D^4+1

D^8+D^7+D^2+D^1+1

D^8+D^7+D^3+D^2+1

D^8+D^7+D^5+D^3+1

D^8+D^7+D^6+D^1+1

D^8+D^7+D^6+D^3+D^2+D^1+1

D^8+D^7+D^6+D^5+D^2+D^1+1

D^8+D^7+D^6+D^5+D^4+D^2+1

ans =

285

299

301

333

351

355

357

361

369

391

397

425

451

463

487

501

To interpret the integer results, e.g., 7 , observe the coefficients of the
associated polynomial 𝐷2 + 𝐷1 + 1 are 1, 1, 1; and 1112 ≡ 710. We shall
use this primitive polynomial in the next example.
Alternatively, we can use the function irreducible_polys from the Python pack-
age galois to determine the irreducible polynomials for GF(𝑝𝑚).
The following shows the Python code and associated output for GF(28):
import galois

list(galois.irreducible_polys(2, 8))

[Poly(x^8 + x^4 + x^3 + x + 1, GF(2)),

Poly(x^8 + x^5 + x^3 + x + 1, GF(2)),

Poly(x^8 + x^5 + x^4 + x^3 + x^2 + x + 1, GF(2)),

Poly(x^8 + x^5 + x^3 + x^2 + 1, GF(2)),

Poly(x^8 + x^5 + x^4 + x^3 + 1, GF(2)),

Poly(x^8 + x^4 + x^3 + x^2 + 1, GF(2)),

Poly(x^8 + x^6 + x^3 + x^2 + 1, GF(2)),

Poly(x^8 + x^6 + x^4 + x^3 + x^2 + x + 1, GF(2)),

8

https://galois.readthedocs.io/en/v0.1.1/api/galois.irreducible_polys/
https://galois.readthedocs.io

Poly(x^8 + x^6 + x^5 + x + 1, GF(2)),

Poly(x^8 + x^6 + x^5 + x^2 + 1, GF(2)),

Poly(x^8 + x^6 + x^5 + x^3 + 1, GF(2)),

Poly(x^8 + x^6 + x^5 + x^4 + 1, GF(2)),

Poly(x^8 + x^6 + x^5 + x^4 + x^2 + x + 1, GF(2)),

Poly(x^8 + x^6 + x^5 + x^4 + x^3 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^2 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^3 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^3 + x^2 + 1, GF(2)),

Poly(x^8 + x^7 + x^4 + x^3 + x^2 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^5 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^5 + x^3 + 1, GF(2)),

Poly(x^8 + x^7 + x^5 + x^4 + 1, GF(2)),

Poly(x^8 + x^7 + x^5 + x^4 + x^3 + x^2 + 1, GF(2)),

Poly(x^8 + x^7 + x^6 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^6 + x^3 + x^2 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^6 + x^4 + x^2 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + 1, GF(2)),

Poly(x^8 + x^7 + x^6 + x^5 + x^2 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^6 + x^5 + x^4 + x + 1, GF(2)),

Poly(x^8 + x^7 + x^6 + x^5 + x^4 + x^2 + 1, GF(2)),

Poly(x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + 1, GF(2))]

Example 3

Consider the Galois field GF(22) where addition modulo 2 is equivalent to
XOR andmultiplication is modulo the irreducible polynomial𝑚(𝑥) ≜ 𝑥2+𝑥+1
obtained in the preceding example.
While addition/XOR is straightforward, multiplication deserves a closer look.
We can generate amultiplication table through the modular outer product [HW03,
p. 187]:

⎡
⎢
⎢
⎢
⎣

0
1
𝑥

𝑥 + 1

⎤
⎥
⎥
⎥
⎦

[0 1 𝑥 𝑥 + 1] mod 𝑚(𝑥) =
⎡
⎢
⎢
⎢
⎣

0 0 0 0
0 1 𝑥 𝑥 + 1
0 𝑥 𝑥2 𝑥(𝑥 + 1)
0 𝑥 + 1 (𝑥 + 1)𝑥 (𝑥 + 1)2

⎤
⎥
⎥
⎥
⎦

mod 𝑚(𝑥)

=
⎡
⎢
⎢
⎢
⎣

0 0 0 0
0 1 𝑥 𝑥 + 1
0 𝑥 −𝑥 − 1 −1
0 𝑥 + 1 −1 𝑥

⎤
⎥
⎥
⎥
⎦

.

(1)
Four of the elements in the preceding matrix have order 2 and have been
reduced modulo 𝑚(𝑥), e.g.,

𝑥2 mod 𝑚(𝑥) = (𝑥2 + 𝑥 + 1)(1) + (−𝑥 − 1) mod (𝑥2 + 𝑥 + 1) = −𝑥 − 1.

Furthermore, the negative ones in the final matrix of Eq. (1) are equivalent
to (1 mod 2), thus one final reduction modulo 2 gives us the multiplication
table:

× 0 1 𝑥 𝑥 + 1
0 0 0 0 0
1 0 1 𝑥 𝑥 + 1
𝑥 0 𝑥 𝑥 + 1 1

𝑥 + 1 0 𝑥 + 1 1 𝑥

9

The table above is readily verifiable using the following Python code (output
omitted):
import galois

GF = galois.GF(2***2, repr="poly")

print(GF.arithmetic_table("*"))

Applying the binary representation to the polynomials in the preceding table
gives us the equivalent multiplication table:

× 00 01 10 11
00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

We can further convert the binary representation to the integer representa-
tion using the Python code:

import galois

GF = galois.GF(2***2, repr="int")

print(GF.arithmetic_table("*"))

print(GF.repr_table())

The table returned by the function
repr_table lets us map the inte-
ger representation in the rightmost
column to the polynomial and bina-
ry/vector representations in the mid-
dle columns with ease.

x * y | 0 1 2 3

------|--------------

0 | 0 0 0 0

1 | 0 1 2 3

2 | 0 2 3 1

3 | 0 3 1 2

Power Polynomial Vector Integer

------- ------------ --------- ---------

0 0 [0, 0] 0

x^0 1 [0, 1] 1

x^1 x [1, 0] 2

x^2 x + 1 [1, 1] 3

Rijndael and the AES use the Galois field GF(28) and the irreducible polynomial

𝑚AES(𝑥) ≜ 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1. (2)

Details to follow.

2.2 Key schedule

Both the DES and AES leverage the strategies of diffusion and confusion [CMR06,
p. 2]:
Diffusion aims to spread the influence of the key and plaintext to the ciphertext.

This is done primarily through permutations.
Confusion aims to complicate the relationship among the key, plaintext and ci-

phertext. This is done primarily through substitutions.
The two strategies above can already be seen in the key schedule.
The AES, like most block ciphers, is an iterated cipher where the output is com-
puted by applying in an iterative fashion a fixed key-dependent function — called a
round transformation —𝑁𝑟 times to the input, where𝑁𝑟 is the number of rounds [vJ11,
p. 152].

10

Figure 3 shows values of 𝑁𝑟 for different values
of block length and key length.
A key scheduling algorithm takes as input a
user-selected key and produces a set of round
keys [vJ11, p. 152], a subset of which is applied
in each round transformation.
For the AES, key scheduling comprises key
expansion and round key selection [DR20,
Sec. 3.6].
Key expansion is implemented in the
function AES_set_encrypt_key in the file
crypto/aes/aes_core.c.

44 3. Specification of Rijndael

Table 3.2. Number of rounds (Nr) as a function of Nb (Nb = block length/32) and
Nk (key length/32)

Nb

Nk 4 5 6 7 8

4 10 11 12 13 14
5 11 11 12 13 14
6 12 12 12 13 14
7 13 13 13 13 14
8 14 14 14 14 14

from the cipher key. The total number of bits in ExpandedKey is equal to
the block length multiplied by the number of rounds plus 1, since the cipher
requires one round key for the initial key addition, and one for each of the
rounds. Please note that the ExpandedKey is always derived from the cipher
key; it should never be specified directly.

3.6.1 Design Criteria

The key expansion has been chosen according to the following criteria:

1. Efficiency.

a) Working memory. It should be possible to execute the key schedule
using a small amount of working memory.

b) Performance. It should have a high performance on a wide range
of processors.

2. Symmetry elimination. It should use round constants to eliminate
symmetries.

3. Diffusion. It should have an efficient diffusion of cipher key differences
into the expanded key,

4. Nonlinearity. It should exhibit enough nonlinearity to prohibit the full
determination of differences in the expanded key from cipher key differ-
ences only.

For a more thorough treatment of the criteria underlying the design of the
key schedule, we refer to Sect. 5.8.

3.6.2 Selection

In order to be efficient on 8-bit processors, a lightweight, byte-oriented expan-
sion scheme has been adopted. The application of the nonlinear SRD ensures
the nonlinearity of the scheme, without adding much in the way of temporary
storage requirements on an 8-bit processor.

Figure 3: Number of rounds 𝑁𝑟
as a function of block length 𝑁𝑏
and key length 𝑁𝑘 [DR20, Table
3.2]. Lengths are in multiples of
a word (32 bits).

There are three versions of the function AES_set_encrypt_key: one textbook version
and two optimised versions. The textbook version is:

Listing 1: AES_set_encrypt_key.
int AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key)

{

u64 *rk;

if (!userKey ||| !key) return -1;

if (bits !!= 128 &&& bits !!= 192 &&& bits !!= 256) return -2;

rk = (u64*)key->-rd_key;

if (bits === 128)

key->-rounds = 10;

else if (bits === 192)

key->-rounds = 12;

else

key->-rounds = 14;

KeyExpansion(userKey, rk, key->-rounds, bits/32);

return 0;

}

typedef union { unsigned char b[8]; u32 w[2]; u64 d; } uni;

static void KeyExpansion(const unsigned char *key, u64 *w, int nr, int nk)

{

u32 rcon; uni prev; u32 temp; int i, n;

memcpy(w, key, nk*4); /* copy key to expanded key w */

memcpy(&rcon, "\1\0\0\0", 4);

n = nk/2; /* n=2 for 128-bit keys */

prev.d = w[n-1]; /* w[1] for 128-bit keys */

for (i = n; i < (nr+1)*2; i+++) { /* i=2 to 22 for 128-bit keys */

temp = prev.w[1]; /* temp gets w[i-1] from prev */

if (i % n === 0) {

RotWord(&temp); SubWord(&temp); temp ^^= rcon; XtimeWord(&rcon);

} else if (nk > 6 &&& i % n === 2) { /* only for 256-bit keys */

SubWord(&temp);

}

prev.d = w[i-n];

prev.w[0] ^^= temp;

prev.w[1] ^^= prev.w[0];

w[i] = prev.d;

}

11

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

}

� Even this textbook version does not follow FIPS 197 [NIS01] precisely, let
alone [DR20].

In Listing 1,
• rk is an array of 4(𝑁𝑟 + 1) words; see

include/openssl/aes.h.
• w is a 64-bit pointer at rk. This is the dizzying part:

w[i] here is equivalent to w[2*i]w[2*i+1] in [NIS01, Sec.
5.2], but understandably this is done for efficiency.

• nr = number of rounds, 𝑁𝑟.
• nk = key length, 𝑁𝑘, in number of words; and n ≜ nk/2.

• rcon is the round constant, the purpose of which is to
eliminate symmetries [DR20, Sec. 3.6.1].

Key length nr nk n 𝑁𝑏
128 bits 10 4 2 4
192 bits 12 6 3 4
256 bits 14 8 4 4

For brevity, the following discussion focuses on the 128-bit (nk = 4) case.
Eq. (3) captures the essence of the KeyExpansion function in Listing 1, while Figure 4
illustrates the workflow.

𝑤[𝑖] =
⎧

⎨
⎩

key[𝑖] if 𝑖 < 𝑛,
𝑤[𝑖 − 𝑛] ⊕ SubWord(RotWord(𝑤[𝑖 − 1])) ⊕ rcon𝑖/𝑛 if 𝑖 ≥ 𝑛 and 𝑖 = 0 mod 𝑛,
𝑤[𝑖 − 𝑛] ⊕ 𝑤[𝑖 − 1] otherwise.

(3)

46 3 AES

k(i−1,0) k(i−1,1) k(i−1,2) k(i−1,3)

S S S S

ri

k(i,0) k(i,1) k(i,2) k(i,3)

Fig. 3.1 A diagrammatic representation of the key schedule for AES-128. At times the
32-bit words are treated as four bytes, as indicated. The constant ri for i ≥ 1 is given by
ri = 02i−1 in GF(28).

k(i−1,0) k(i−1,1) k(i−1,2) k(i−1,3) k(i,0) k(i,1)

S S S S

ri

k(i,2) k(i,3) k(i+1,0) k(i+1,1) k(i+1,2) k(i+1,3)

Fig. 3.2 A diagrammatic representation of the key schedule for AES-192. At times the
32-bit words are treated as four bytes, as indicated. The constant ri for i ≥ 1 is given by
ri = 02i−1 in GF(28).

Figure 4: Key expansion for AES-
128 [KR11, Fig. 3.1]: 𝑘(0, 0:3) → 𝑘(0:𝑁𝑟,
0:3).

In Eq. (3) ,
• w[0] and w[1] (128 bits) are filled with

the original key.
• Every followingword, w[i], is set to the

XOR of the previous word, w[i-1], and
the word n positions earlier, w[i-n].

• For words in positions that are a mul-
tiple of n, a transformation is applied
to w[i-1] prior to the XOR, followed by
an XOR with a round constant.

• The transformation steps, namely
RotWord and SubWord, on w[i-1], as well
as the update step XtimeWord on the
round constant are subsequently dis-
cussed.

In Figure 4, 𝑘(𝑖, 𝑗)𝑘(𝑖, 𝑗 + 1), where
𝑗 is even, is equivalent to 𝑤[𝑖] in Eq. (3)
and w[i] in Listing 1; 𝑆 represents
SubWord; and 𝑟𝑖 is exactly 𝑟𝑐𝑖/𝑛 in
Eq. (5).

12

https://github.com/openssl/openssl/blob/master/include/openssl/aes.h

The function RotWord

• Performs a byte-wise leftward rotation (cyclic
shift) on a word [NIS01, Sec. 5.2], i.e., 𝑏0𝑏1𝑏2𝑏3
becomes 𝑏1𝑏2𝑏3𝑏0.

• If the input word is represented as a fourth-order
polynomial whose coefficients are the input bytes,
then RotWord essentially multiplies the input poly-
nomial with 𝑥3 modulo (𝑥4 + 1) [NIS01, Sec. 4.3].

Listing 2: RotWord.
static void RotWord(u32 *x)

{

unsigned char *w0;

unsigned char tmp;

w0 = (unsigned char *)x;

tmp = w0[0];

w0[0] = w0[1];

w0[1] = w0[2];

w0[2] = w0[3];

w0[3] = tmp;

}

The function SubWord

• Substitutes each of the four bytes in a word with its affine transformation in
GF(28).

• If a byte is treated as a pair of nibbles 𝑥𝑦 (i.e., 4-bit 𝑥 and 4-bit 𝑦), then the affine
transformation takes the form [DR20, (3.9)]:

Aff8(Inv8(𝑥𝑦)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥3
𝑥2
𝑥1
𝑥0
𝑦3
𝑦2
𝑦1
𝑦0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1
0
0
0
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Inversion can be done by the extended Euclidean algorithm, which was covered
in an earlier tutorial, but we shall revisit it via the galois Python package in the
current tutorial.
The Galois-field arithmetic in Eq. (4) follows the description in Sec. 2.1, i.e.,
while addition is XOR, multiplication is done modulo the irreducible polynomial
𝑚AES(𝑥) in (2).

• Since there are only 256 possible output values from Eq. (4), the lookup table
or so-called S-box (short for “substitution box”) in Table 2 can be used. In the
tutorial, we shall learn how to obtain Table 2 using the galois Python package.

• Eq. (4) is the only nonlinear transformation among the building blocks of the
AES [DR20, Sec. 3.4.1]. It keeps the maximum input-output correlation
small to help resist linear and differential cryptanalyses.

• The OpenSSL code for SubWord is too lengthy to be included here.

13

A. Substitution Tables

In this appendix, we list some tables that represent various mappings used
in Rijndael.

A.1 SRD

This section includes several representations of SRD and related mappings.
More explanation about the alternative representations for the mappings used
in the definition of SRD can be found in Sect. 3.4.1. Tabular representations
of SRD and SRD

−1 are given in Tables A.1 and A.2.

Table A.1. Tabular representation of SRD(xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

x 8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

For hardware implementations, it might be useful to use the following
decomposition of SRD:

SRD[a] = Aff8(Inv8(a)), (A.1)

where Inv8(a) is the mapping

a → a−1 in GF(28) (A.2)

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
J. Daemen, V. Rijmen, The Design of Rijndael, Information Security and Cryptography,
https://doi.org/10.1007/978-3-662-60769-5

249

Table 2: Practical means for implementing Eq. (4): S-box for looking up output val-
ues Aff8(Inv8(𝑥𝑦)) in hexadecimals corresponding to input nibbles 𝑥 and 𝑦 [DR20,
Table A.1]. Same table as [NIS01, Figure 7].

The function XtimeWord updates the 32-bit round constant by recursion:

rcon𝑖/𝑛 = [𝑟𝑐𝑖/𝑛, 0016, 0016, 0016], (5a)

𝑟𝑐𝑖/𝑛 =
⎧

⎨
⎩

1 if 𝑖 = 1,
0216 × 𝑟𝑐(𝑖−1)/𝑛 if 𝑖 > 1 and 𝑟𝑐(𝑖−1)/𝑛 < 8016,
0216 × 𝑟𝑐(𝑖−1)/𝑛 ⊕ 011𝐵16 if 𝑖 > 1 and 𝑟𝑐(𝑖−1)/𝑛 ≥ 8016,

(5b)

⇕
𝑟𝑐𝑖/𝑛 = 𝑥𝑖/𝑛−1. (5c)

14

• Eqs. (5b) and (5c) are equivalent but the former
uses the hexadecimal representation while the
latter uses the polynomial representation; recall
0216 = polynomial 𝑥 in GF(28).

• The label xtime refers to multiplication by polyno-
mial 𝑥 in GF(28) [DR20, Sec. 4.1.1].
Suppose 𝑏(𝑥) = ∑7

𝑖=0 𝑏𝑖𝑥
𝑖, then

𝑥 × 𝑏(𝑥) mod 𝑚AES(𝑥) =
7
∑
𝑖=0

𝑏𝑖𝑥𝑖+1 mod 𝑚AES(𝑥)

= 𝑏7(𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) + 𝑏6𝑥7 + 𝑏5𝑥6 + 𝑏4𝑥5

+ (𝑏7 + 𝑏3)𝑥4 + (𝑏7 + 𝑏2)𝑥3 + 𝑏1𝑥2 + (𝑏7 + 𝑏0)𝑥
+ 𝑏7 mod 𝑚AES(𝑥)

=
6
∑
𝑖=0

𝑏𝑖𝑥𝑖+1
⏟⎵⎵⏟⎵⎵⏟

Left shift of 𝑏6𝑏5⋯𝑏0

+𝑏7(𝑥4 + 𝑥3 + 𝑥 + 1)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

{
1𝐵16 if 𝑏7 = 1
0016 otherwise

.

(6)

Thus, xtime can be implemented with a left shift
and a conditional XOR, consistent with Eq. (5b)
and Listing 3.

Listing 3: XtimeWord.
static void XtimeWord(u32 *w)

{

u32 a, b;

a = *w;

b = a & 0x80808080u;

a ^^= b;

b -= b >>> 7;

b &= 0x1B1B1B1Bu;

b ^^= a <<< 1;

*w = b;

}

Constant-time code
avoids if-then-else to pre-
vent timing attacks [DR20,
Sec. 4.1.1].

Computational efficiency can
be improved using a look-up
table [DR20, Table A.6] at
the expense of memory and
storage.

Finally, in terms of key selection, the first four words of the expanded key are used
for round zero, the next four words are used for round one, and so on. This
explains why rk in Listing 1 is an array of 4(𝑁𝑟 + 1) words.

Quiz 4

Referring to crypto/aes/aes_core.c, what is the difference between AES_set_decrypt_key

and AES_set_encrypt_key?

2.3 Encryption/decryption

Let us begin by inspecting the OpenSSL file crypto/aes/aes_ecb.c, which suggests
the function AES_ecb_encrypt is used for encryption and decryption, depending on
the value of the integer parameter enc.
• For encryption, the function AES_encrypt defined in crypto/aes/aes_core.c is called.
• For decryption, the function AES_decrypt defined in crypto/aes/aes_core.c is called.

The decryption process reverses the encryption process, and is not discussed
here.

In crypto/aes/aes_core.c, there are two versions of AES_encrypt: a textbook version
and an optimised version. Listing 4 shows the textbook version, where Cipher

matches the pseudocode in [NIS01, Figure 5] closely.
Listing 4: AES_encrypt and Cipher.

void AES_encrypt(const unsigned char *in, unsigned char *out,

const AES_KEY *key)

{

15

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_ecb.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

const u64 *rk;

assert(in &&& out &&& key);

rk = (u64*)key->-rd_key;

Cipher(in, out, rk, key->-rounds);

}

static void Cipher(const unsigned char *in, unsigned char *out,

const u64 *w, int nr)

{

u64 state[2];

int i;

memcpy(state, in, 16);

AddRoundKey(state, w);

for (i = 1; i < nr; i+++) {

SubLong(&state[0]); SubLong(&state[1]);

ShiftRows(state); MixColumns(state); AddRoundKey(state, w + i*2);

}

SubLong(&state[0]); SubLong(&state[1]);

ShiftRows(state); AddRoundKey(state, w + nr*2);

memcpy(out, state, 16);

}

In Listing 4 ,
• The 128-bit state is the column-first

flattened version of the 4×4 state-byte
array specified in [NIS01, Sec. 3.4].
More on this later.

• state is initialised to the plaintext.

Listing 5: AddRoundKey.
static void AddRoundKey(u64 *state,

const u64 *w)

{

state[0] ^^= w[0]; state[1] ^^= w[1];

}

• In round zero, the function AddRoundKey, as implemented in Listing 5 , XORs
the current state with the current round key.

• The first to penultimate rounds involve SubLong, ShiftRows and MixColumns — to be
subsequently discussed — prior to the application of AddRoundKey.

• The last round is the same as the preceding rounds, except it does not involve
MixColumns.

• Figure 5 illustrates the encryption process.

The function SubLong implements SubBytes in FIPS 197 [NIS01]:
• Same as the function SubWord in Listing 1, except SubLong operates on four words

rather than one word at a time.
• The OpenSSL code for SubLong is too lengthy to be included here.

16

3.1 AES Description 49

CIPHERTEXT

join

MESSAGE

split

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

MixColumns

MixColumns

MixColumns

MixColumns

MixColumns

MixColumns

MixColumns

MixColumns

MixColumns

MixColumns

MixColumns

MixColumns

k0

k1

k2

kn−1

kn

Fig. 3.4 An overview of encryption using the AES. The user-supplied key k is processed
using a key schedule (KS) to derive a set of n+1 round keys k0 . . .kn.

Figure 5: AES encryption [KR11, Fig. 3.4]: Each arrow is one byte wide. 𝑘𝑖 denotes
the subkey for round 𝑖. 𝑆 is short for SubLong and ShiftRows. 𝑛 = 𝑁𝑟 is number of
rounds and should not be confused with 𝑛 in Listing 1. Red line highlights a sample
effect of ShiftRows: 2nd byte of the state shifted to the 14th byte of the state.

17

The function ShiftRows

• Treats the state array, 𝑠, as a 4×4 matrix and
shifts its rows as follows:

𝑠0 𝑠4 𝑠8 𝑠12
𝑠1 𝑠5 𝑠9 𝑠13
𝑠2 𝑠6 𝑠10 𝑠14
𝑠3 𝑠7 𝑠11 𝑠15

↓
𝑠0 𝑠4 𝑠8 𝑠12
𝑠5 𝑠9 𝑠13 𝑠1
𝑠10 𝑠14 𝑠2 𝑠6
𝑠15 𝑠3 𝑠7 𝑠11

• Together with MixColumn, achieves diffu-
sion [KR11, Sec. 3.1.5.2].

Listing 6: ShiftRows.
static void ShiftRows(u64 *state)

{

unsigned char s[4];

unsigned char *s0;

int r;

s0 = (unsigned char *)state;

for (r = 0; r < 4; r+++) {

s[0] = s0[0*4 + r];

s[1] = s0[1*4 + r];

s[2] = s0[2*4 + r];

s[3] = s0[3*4 + r];

s0[0*4 + r] = s[(r+0) % 4];

s0[1*4 + r] = s[(r+1) % 4];

s0[2*4 + r] = s[(r+2) % 4];

s0[3*4 + r] = s[(r+3) % 4];

}

}

The function MixColumns (see Listing 7)
• Does not mix columns together.
• But treats the state array, 𝑠, as a 4×4 matrix, and each 𝑗th column of the matrix

as a four-term polynomial in GF(28):

𝑠0,𝑗𝑥3 + 𝑠1,𝑗𝑥2 + 𝑠2,𝑗𝑥 + 𝑠3,𝑗, 𝑗 = 1,… , 4, (7)

with irreducible polynomial 𝑥4 + 1. This is different from the treatment in
Sec. 2.1.
Each column is multiplied by the constant polynomial [NIS01, Sec. 5.1.3]:

𝑎(𝑥) ≜ 0316𝑥3 + 0116𝑥2 + 0116𝑥 + 0216, (8)

which was chosen because it has an inverse (making decryption possible). Specif-
ically, the inverse of 𝑎(𝑥) is 𝑎(𝑥)3 [DR20, (3.13)].
Without derivation, multiplying the polynomial in (7) with 𝑎(𝑥) in (8) is equiva-
lent to the linear transformation:

⎡
⎢
⎢
⎢
⎣

𝑠0,𝑗
𝑠1,𝑗
𝑠2,𝑗
𝑠3,𝑗

⎤
⎥
⎥
⎥
⎦

←
⎡
⎢
⎢
⎢
⎣

0216 0316 0116 0116
0116 0216 0316 0116
0116 0116 0216 0316
0316 0116 0116 0216

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑠0,𝑗
𝑠1,𝑗
𝑠2,𝑗
𝑠3,𝑗

⎤
⎥
⎥
⎥
⎦

(9)

and equivalently,

𝑠0,𝑗 ← (0216 × 𝑠0,𝑗) ⊕ (0316 × 𝑠1,𝑗) ⊕ 𝑠2,𝑗 ⊕ 𝑠3,𝑗, (10a)
𝑠1,𝑗 ← 𝑠0,𝑗 ⊕ (0216 × 𝑠1,𝑗) ⊕ (0316 × 𝑠2,𝑗) ⊕ 𝑠3,𝑗, (10b)
𝑠2,𝑗 ← 𝑠0,𝑗 ⊕ 𝑠1,𝑗 ⊕ (0216 × 𝑠2,𝑗) ⊕ (0316 × 𝑠3,𝑗), (10c)
𝑠3,𝑗 ← (0316 × 𝑠0,𝑗) ⊕ 𝑠1,𝑗 ⊕ 𝑠2,𝑗 ⊕ (0216 × 𝑠3,𝑗). (10d)

• Thematrix in Eq. (9) is called a D-box (short for “diffusion box”). Implementation
of Eq. (10) can be seen in Listing 7.

18

Listing 7: MixColumns. Compare XtimeLong with XtimeWord in Listing 3.
typedef union { unsigned char b[8]; u32 w[2]; u64 d; } uni;

static void XtimeLong(u64 *w)

{

u64 a, b;

a = *w;

b = a & U64(0x8080808080808080);

a ^^= b;

b -= b >>> 7;

b &= U64(0x1B1B1B1B1B1B1B1B);

b ^^= a <<< 1;

*w = b;

}

static void MixColumns(u64 *state)

{

uni s1; uni s; int c;

for (c = 0; c < 2; c+++) { /* works on 2 cols at once */

s1.d = state[c]; /* 2 cols x 4 bytes/col */

s.d = s1.d;

s.d ^^=((s.d & U64(0xFFFF0000FFFF0000))>>>16) | ((s.d & U64(0x0000FFFF0000FFFF))<<<16);

/* result: s =

s0 + s2

s1 + s3

s2 + s0

s3 + s1 */

s.d ^^=((s.d & U64(0xFF00FF00FF00FF00))>>> 8) | ((s.d & U64(0x00FF00FF00FF00FF))<<< 8);

/* result: s =

s0 + s2 + s1 + s3

s1 + s3 + s0 + s2

s2 + s0 + s3 + s1

s3 + s1 + s2 + s0 */

s.d ^^= s1.d;

/* result: s =

s0 + s2 + s1 + s3 + s0 = s2 + s1 + s3

s1 + s3 + s0 + s2 + s1 = s3 + s0 + s2

s2 + s0 + s3 + s1 + s2 = s0 + s3 + s1

s3 + s1 + s2 + s0 + s3 = s1 + s2 + s0 */

XtimeLong(&s1.d);

s.d ^^= s1.d;

/* result: s =

s2 + s1 + s3 + 2*s0

s3 + s0 + s2 + 2*s1

s0 + s3 + s1 + 2*s2

s1 + s2 + s0 + 2*s3 */

s.b[0] ^^= s1.b[1]; s.b[4] ^^= s1.b[5];

s.b[1] ^^= s1.b[2]; s.b[5] ^^= s1.b[6];

s.b[2] ^^= s1.b[3]; s.b[6] ^^= s1.b[7];

s.b[3] ^^= s1.b[0]; s.b[7] ^^= s1.b[4];

/* result: s =

s2 + s1 + s3 + 2*s0 + 2*s1

s3 + s0 + s2 + 2*s1 + 2*s2

s0 + s3 + s1 + 2*s2 + 2*s3

s1 + s2 + s0 + 2*s3 + 2*s0 */

state[c] = s.d;

}

}

Listing 8 shows a speed-optimised but “rolled-up” version of AES_encrypt using lookup

19

tables:
• The arrays Te0, Te1, Te2 and Te3 capture simultaneously the results of (4) and

MixColumns.
• ShiftRows is accomplished using shifting, e.g., t0 stores the transformed version

of the first element of s0, the second element of s1, the third element
of s2, and the last element of s3.

Listing 8: Speed-optimised AES_encrypt using lookup tables.
void AES_encrypt(const unsigned char *in, unsigned char *out,

const AES_KEY *key)

{

const u32 *rk;

u32 s0, s1, s2, s3, t0, t1, t2, t3;

int r;

assert(in &&& out &&& key);

rk = key->-rd_key;

/* map byte array block to cipher state

* and add initial round key: */

s0 = GETU32(in) ^ rk[0]; /* 1st column */

s1 = GETU32(in + 4) ^ rk[1]; /* 2nd column */

s2 = GETU32(in + 8) ^ rk[2]; /* 3rd column */

s3 = GETU32(in + 12) ^ rk[3]; /* 4th column */

/* Nr - 1 full rounds: */

r = key->-rounds >>> 1; /* because one iteration below = two rounds */

for (;;) {

t0 =Te0[(s0 >>> 24)] ^ Te1[(s1 >>> 16) & 0xff] ^

Te2[(s2 >>> 8) & 0xff] ^ Te3[(s3) & 0xff] ^ rk[4];

t1 =Te0[(s1 >>> 24)] ^ Te1[(s2 >>> 16) & 0xff] ^

Te2[(s3 >>> 8) & 0xff] ^ Te3[(s0) & 0xff] ^ rk[5];

t2 =Te0[(s2 >>> 24)] ^ Te1[(s3 >>> 16) & 0xff] ^

Te2[(s0 >>> 8) & 0xff] ^ Te3[(s1) & 0xff] ^ rk[6];

t3 =Te0[(s3 >>> 24)] ^ Te1[(s0 >>> 16) & 0xff] ^

Te2[(s1 >>> 8) & 0xff] ^ Te3[(s2) & 0xff] ^ rk[7];

rk += 8;

if (---r === 0) { break; }

s0 =Te0[(t0 >>> 24)] ^ Te1[(t1 >>> 16) & 0xff] ^

Te2[(t2 >>> 8) & 0xff] ^ Te3[(t3) & 0xff] ^ rk[0];

s1 =Te0[(t1 >>> 24)] ^ Te1[(t2 >>> 16) & 0xff] ^

Te2[(t3 >>> 8) & 0xff] ^ Te3[(t0) & 0xff] ^ rk[1];

s2 =Te0[(t2 >>> 24)] ^ Te1[(t3 >>> 16) & 0xff] ^

Te2[(t0 >>> 8) & 0xff] ^ Te3[(t1) & 0xff] ^ rk[2];

s3 =Te0[(t3 >>> 24)] ^ Te1[(t0 >>> 16) & 0xff] ^

Te2[(t1 >>> 8) & 0xff] ^ Te3[(t2) & 0xff] ^ rk[3];

}

/* apply last round and

* map cipher state to byte array block: */

s0 =(Te2[(t0 >>> 24)] & 0xff000000) ^ (Te3[(t1 >>> 16) & 0xff] & 0x00ff0000) ^

(Te0[(t2 >>> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t3) & 0xff] & 0x000000ff) ^

rk[0];

PUTU32(out , s0);

s1 =(Te2[(t1 >>> 24)] & 0xff000000) ^ (Te3[(t2 >>> 16) & 0xff] & 0x00ff0000) ^

(Te0[(t3 >>> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t0) & 0xff] & 0x000000ff) ^

rk[1];

20

PUTU32(out + 4, s1);

s2 =(Te2[(t2 >>> 24)] & 0xff000000) ^ (Te3[(t3 >>> 16) & 0xff] & 0x00ff0000) ^

(Te0[(t0 >>> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t1) & 0xff] & 0x000000ff) ^

rk[2];

PUTU32(out + 8, s2);

s3 =(Te2[(t3 >>> 24)] & 0xff000000) ^ (Te3[(t0 >>> 16) & 0xff] & 0x00ff0000) ^

(Te0[(t1 >>> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t2) & 0xff] & 0x000000ff) ^

rk[3];

PUTU32(out + 12, s3);

}

Quiz 5

Referring to crypto/aes/aes_core.c, how many bytes of storage are needed for
Te0, Te1, Te2 and Te3? Compare this with the size of L1 data cache on an ARM
Cortex-A53, a widely used microprocessor.

3 References
[Aum18] J.-P. Aumasson, Serious Cryptography: A Practical Introduction to Modern Encryption,

No Starch Press, 2018.
[Bar20] E. Barker, Guideline for Using Cryptographic Standards in the Federal Government:

Cryptographic Mechanisms, Special Publication 800-175BRevision 1, NIST, 2020. https:
//doi.org/10.6028/NIST.SP.800-175Br1.

[BR19] E. Barker and A. Roginsky, Transitioning the use of cryptographic algorithms and key
lengths, NIST Special Publication 800-131A Revision 2, 2019. https://doi.org/10.
6028/NIST.SP.800-131Ar2.

[CMR06] C. Cid, S. Murphy, and M. Robshaw, Algebraic Aspects of the Advanced Encryption Stan-
dard, Springer New York, NY, 2006. https://doi.org/10.1007/978-0-387-36842-9.

[CRY22] CRYPTREC, 電子政府における調達のために参照すべき暗号のリスト（cryptrec 暗号リス
ト）, LS-0001-2012R7, 2022, created 2013, updated 2022. Available at https://www.

cryptrec.go.jp/list/cryptrec-ls-0001-2012r7.pdf.
[DR20] J. Daemen and V. Rijmen, The Design of Rijndael: The Advanced Encryption Standard

(AES), 2nd ed., Information Security and Cryptography, Springer-Verlag, Heidelberg,
2020. https://doi.org/10.1007/978-3-662-60769-5.

[Gol01] O. Goldreich, Foundations of Cryptography: Volume I Basic Tools, Cambridge University
Press, 2001. https://doi.org/10.1017/CBO9780511546891.

[Gol04] O. Goldreich, Foundations of Cryptography: Volume II Basic Applications, Cambridge
University Press, 2004. https://doi.org/10.1017/CBO9780511721656.

[Gue09] S. Gueron, Intel’s new AES instructions for enhanced performance and security, in Fast
Software Encryption (O. Dunkelman, ed.), Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009, pp. 51–66.

[HW03] D. W. Hardy and C. L. Walker, Applied Algebra: Codes, Ciphers and Discrete Algorithms,
Pearson Education, Inc., 2003.

[KL21] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 3rd ed., CRC Press, 2021.
Available at https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=

6425020.
[Kib17] M. R. Kibler, Galois Fields and Galois Rings Made Easy, ISTE Press Ltd, 2017.
[KR11] L. R. Knudsen and M. J. Robshaw, The Block Cipher Companion, Information Security

and Cryptography Texts and Monographs, Springer Berlin, Heidelberg, 2011. https://
doi.org/10.1007/978-3-642-17342-4.

[LN94] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, revised
ed., Cambridge University Press, 1994.

21

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://www.7-cpu.com/cpu/Cortex-A53.html
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.1007/978-0-387-36842-9
https://www.cryptrec.go.jp/list/cryptrec-ls-0001-2012r7.pdf
https://www.cryptrec.go.jp/list/cryptrec-ls-0001-2012r7.pdf
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1017/CBO9780511721656
https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=6425020
https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=6425020
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/978-3-642-17342-4

[Lov22] S. Lovett, Abstract Algebra: A First Course, 2nd ed., Chapman and Hall/CRC, 2022.
https://doi.org/10.1201/9781003299233.

[McN99] D. McNett, US government’s encryption standard broken in less than a day, formal press
release, 1999. Available at http://www.distributed.net/images/d/d7/19990119_-_PR_
-_release-des3.pdf.

[Mou21] N. Mouha, Review of the Advanced Encryption Standard, NISTIR 8319, 2021. https:
//doi.org/10.6028/NIST.IR.8319.

[NIS01] NIST, Announcing the ADVANCEDENCRYPTIONSTANDARD (AES), Federal Informa-
tion Processing Standards Publication 197, November 2001. https://doi.org/10.6028/
NIST.FIPS.197.

[NIS21] NIST, Cryptographic Standards and Guidelines Share to Facebook: AES De-
velopment, 2021, Created 29 Dec 2016, updated 23 Aug 2021. Available at
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/

archived-crypto-projects/aes-development.
[PBO+03] B. Preneel, A. Biryukov, E. Oswald, B. V. Rompay, L. Granboulan, E. Dottax, S. Mur-

phy, A. Dent, J. White, M. Dichtl, S. Pyka, M. Schafheutle, P. Serf, E. Biham,
E. Barkan, O. Dunkelman, J.-J. Quisquater, M. Ciet, F. Sica, L. Knudsen, M. Parker, and
H. Raddum, NESSIE Security Report, Deliverable D20, NESSIE Consortium, February
2003, Version 2.0.

[Pre03] B. Preneel, NESSIE project announces final selection of crypto algorithms: An open
competition for the crypto algorithms of the 21st century, Press Release, 2003. Avail-
able at https://www.cosic.esat.kuleuven.be/nessie/deliverables/press_release_
feb27.pdf.

[Sch15] B. Schneier, Applied Cryptography, Second Edition: Protocols, Algorithms, and Source
Code in C, 20th anniversary edition ed., Wiley, 2015. Available at https://learning.
oreilly.com/library/view/applied-cryptography-protocols/9781119096726.

[vJ11] H. C. van Tilborg and S. Jajodia (eds.), Encyclopedia of Cryptography and Security,
Springer, Boston, MA, 2011. https://doi.org/10.1007/978-1-4419-5906-5.

22

https://doi.org/10.1201/9781003299233
http://www.distributed.net/images/d/d7/19990119_-_PR_-_release-des3.pdf
http://www.distributed.net/images/d/d7/19990119_-_PR_-_release-des3.pdf
https://doi.org/10.6028/NIST.IR.8319
https://doi.org/10.6028/NIST.IR.8319
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://www.cosic.esat.kuleuven.be/nessie/deliverables/press_release_feb27.pdf
https://www.cosic.esat.kuleuven.be/nessie/deliverables/press_release_feb27.pdf
https://learning.oreilly.com/library/view/applied-cryptography-protocols/9781119096726
https://learning.oreilly.com/library/view/applied-cryptography-protocols/9781119096726
https://doi.org/10.1007/978-1-4419-5906-5

	Introduction
	AES
	Arithmetic in GF(2n)
	Key schedule
	Encryption/decryption

	References

