COMP 5074 Cryptography and Data
Protection (2024)

Lecture 6: Block cipher modes of operation

Dr. Yee Wei Law (yeewei.law@unisa.edu.au)

2024-10-04
Contents
1 Introduction 1/5 CTR 11
2 CBC 3|6 XTS-AES 14
3 CFB 8 | 7 References 19
4 OFB 10

List of acronyms

AEAD Authenticated encryption with asso-
ciated data

AES Advanced Encryption Standard

AXU Almost XOR universal

CBC Cipher block chaining

CCA Chosen-ciphertext attack

CCM Counter with CBC-MAC

CFB Counter feedback

CMAC Cipher-based message authentica-
tion code

CPA Chosen-plaintext attack

CTR Counter

ECB Electronic codebook

FIPS Federal Information Processing
Standard

FPE Format-preserving encryption

GCM Galois/counter mode
IETF Internet Engineering Task Force
IND Indistinguishability

1 Introduction

v
LFSR
LSB
MAC
MEE
MSB
NIST

NESSIE

PPT
PRF
PRP
SSL
TLS
XOR
XTS

Initialisation vector

Linear feedback shift register
Least significant bits

Message authentication code
MAC-encode-encrypt

Most significant bits

National Institute of Standards
and Technology

New European Schemes for Signa-
tures, Integrity and Encryption
Probabilistic polynomial-time
Pseudorandom function
Pseudorandom permutation
Secure Socket Layer

Transport Layer Security
Exclusive-or

XEX tweakable block cipher with
ciphertext stealing

Discussion of block ciphers in the previous lecture would not be complete without
discussion of the modes of operation as well.

According to NIST SP 800-175B [Bar20],

Definition 1: Mode of operation [

An algorithm that uses a block cipher algorithm as a cryptographic primitive
to provide a cryptographic service, such as confidentiality or authentication.

A mode of operation ® Specifies how to construct an encryption scheme using a
of a block cipher block cipher as a building block.

* Partitions a plaintext message into a series of blocks
which are then encrypted one block at a time with a block
cipher [PBO*03, Sec. 2.1].

The distinct advantage of separating block cipher design from the design of mode
of operation is that we can design block ciphers and modes of operation indepen-
dently [Smal6, Sec. 13.1]:

* Whereas the design goal for a block cipher is that it is a strong pseudorandom
permutation (PRP), the design goal of a mode of operation is one of indistin-
guishability or non-malleability goals, such as IND-CCA (see Lecture 2).

* A designer of a mode of operation tries to prove mathematically that the mode
satisfies the required security definition on the assumption that the block cipher
is a strong PRP.

NIST’s recommendations for block cipher models of operation can be found in their
SP 800-38 series of publications:

1. SP 800-38A [Dwo01] specifies the _ cipher block chaining (CBC), cipher
feedback (CFB), | output feedback (OFB) and | counter (CTR) modes, besides
the electronic codebook (ECB) mode (see previous lecture).

¢ These modes are also standardised in ISO/IEC 10116:2017 [ISO17].

¢ These modes are discussed in Secs. 2-5.

2. SP 800-38B [Dwo05] specifies the cipher-based message authentication code (CMAC)
mode, which achieves authentication through a block cipher.

e CMAC evolved from CBC-MAC.

e CMAC 1s not covered in this course.

3. SP 800-38C [Dwo04] specifies the counter with CBC-MAC (CCM) mode for achiev-
ing authenticated encryption.

* CCM combines the CTR mode for encryption with CBC-MAC for authentica-
tion.

e CCM i1s not covered in this course.

4. SP 800-38D [NIS07] specifies the Galois/counter mode (GCM), for AEAD, and
its specialisation, GMAC, for authentication of unencrypted data.

e GCM is not covered in this course.

e GMAC 1s not covered 1n this course.

5.SP 800-38E [Dwol0a] approves the specification of the XTS-AES mode of the
AES in IEEE Std 1619-2007, subject to one additional requirement.

* XTS = XOR-encrypt-XOR tweakable block cipher with ciphertext stealing.

e TEEE Std 1619-2007 has been revised to IEEE Std 1619-2018 [IEE19].

* Protects confidentiality of data at rest in block-oriented storage devices, when
CBC and CTR modes cannot.

e XTS-AES is discussed 1n Sec. 6.

6. SP 800-38F [Dwo12] specifies two deterministic authenticated-encryption modes
of operation based on the AES for key wrapping, i.e., the protection of the confi-
dentiality and integrity of cryptographic keys: [} the AES key wrap mode, and
] the AES key wrap with padding mode.

* AES key wrap is also standardised in RFC 3394 [SHO02] and implemented in
OpenSSL.

* AES key wrap with padding is also standardised in RFC 5649 [HDO09]. This
eliminates the requirement that the length of the key to be wrapped be a mul-
tiple of 64 bits.

* In principle, these modes provide more security than regular authenticated
encryption schemes at the expense of throughput [Dwol2, Sec. 3.1].

¢ These modes are not covered in this course.

7. SP 800-38G [Dwo19] specifies two format-preserving encryption (FPE) modes
of the AES algorithm, namely FF1 and FF3-1.

* NIST does not have a definition for FPE, but “format-preserving” can be under-
stood as preserving the alphabet of the plaintext in the ciphertext [BRRS09],
e.g., a 16-decimal-digit credit card number encrypted to a 16-decimal-digit
number.

e (¥) Why? Classic scenario: integrating encryption into an existing database
does not require changing the type and size of the data field, e.g., the “credit
card number” field remains a string of 16 decimal digits.

* These modes are not covered in this course.

2 CBC

In the CBC mode, ciphertext blocks are chained as illustrated in Figure 1.

* The IV can be public and provided along with the ciphertext blocks, but must be
randomised/unpredictable.

¢ CBC encryption:

i

_|CIPHk(R®1IV) ifi=1,
~ |CIPH(B® C;_;) otherwise,

where C; and B denote the ith ciphertext block and plaintext block respectively.

* CBC decryption:
_|erpHY(CH IV ifi=1,
"7 |CIPHZ'(C) @ C;_, otherwise.

https://github.com/openssl/openssl/blob/master/crypto/modes/wrap128.c
https://github.com/openssl/openssl/blob/master/crypto/modes/wrap128.c

(~ [INmIALIZATION |PLAINTEXT1 | |PLAINTEXT2 |

VECTOR
Y — > —»{]
|—
& INPUT BLOCK 1 INPUT BLOCK 2 INPUT BLOCK n
o
O CIPHy CIPH, CIPH,
Z
in OUTPUT BLOCK 1 OUTPUT BLOCK 2 OUTPUT BLOCK n
_ |ciPHERTEXT1| | CIPHERTEXT 2| CIPHERTEXT n
4 | ciPHERTEXT 1] | CIPHERTEXT 2] CIPHERTEXT n
A 4 _________________E v
E INPUT BLOCK 1 INPUT BLOCK 2 | INPUT BLOCK n
> :
CIPH, CIPH1, | CIPH™,
O |
LéJ OUTPUT BLOCK 1 OUTPUT BLOCK 2 i OUTPUT BLOCK n
v v :
| g — EE—
INITIALIZATION
_ | VECTOR | PLAINTEXT1 | | PLAINTEXT2 | PLAINTEXT n

Figure 1: CBC mode [Dwo0O1, Figure 2].

If CIPH in Figure 1 is the AES algorithm, how many bytes long should the
IV be?

Security:

* Theorem 1 states, given the right conditions, the CBC mode is CPA-secure.

Theorem 1: [, Theorem 13.6], [, Theorem 3.32]

Provided the underlying block cipher CIPH is a PRP, and the IV is random,
the CBC mode satisfies IND-CPA.

In particular, suppose A denotes a PPT adversary against the n-bit CBC
mode that makes at most T invocations of the block cipher through the
encryption oracle, then there exists a PPT adversary B against CIPH such
that '

AdVESTPA(A) < AdVERL(B) + 3T2/2".

To appreciate Theorem 1 numerically, set block length n = 128 bits and key
length = 128 bits.

Assuming the AES behaves as a PRP to any PPT 3B,
AdVRES(B) < 27128,
and thus o
Advips ™ (A) < 27128(1 + 3T2).
Bounding A’s advantage at 27%% requires T < 23!, which is more than 2.14 billion.
Best practice: refresh encryption keys periodically.

* Some IND-CPA proofs [BR0O5, Theorem 5.8.1] model the underlying block cipher
as a pseudorandom function (PRF) and provide a different advantage bound.

e Predictable IVs lead to attacks; see Example 1.

¢ Not CCA-secure [BR05, Sec. 5.10.2], and implementations must be guarded
against timing attacks; see Example 2.

e Watch Dan Boneh’s B “Modes of Operation: Many Time Key (CBC)”.

Example 1

TLS 1.0 and SSL 3.0 implemented a variant of the CBC mode called chained
CBC [KL21, p. 91] or CBC-chain [BR05, Problem 33].

Figure 2 depicts the scenario where the first plaintext is encrypted into ¢;, c,,
c;, and the second plaintext is encrypted into ¢y, cs.

Vulnerable—> 111, m, ms, my s
v D D PD Cy S?) D
!
I
I
I
______ ! l
v C, C, s Cq Cs

Figure 2: CBC mode using chained IVs [KL21, Figure 3.7].

IV unpredictability is destroyed when c; is used as the IV for m,.
A sketch of a CPA:

1. Suppose the attacker A4 knows that m, is one of m{ and m!, e.g., “Yes” or
“No” for criminal record.

2. A eavesdrops on IV, ¢;, ¢,, c;.

3. Knowing c; will be used as the IV for m,, A crafts m, < IV@® m{ @ c; and
queries the encryption oracle with m,.

4. The encryption oracle returns ¢, < F.(c; ® IV@® m? @ ¢;) = F.(IV & m?).

5.1fc; == F,(IV®mY), A knows c, is an encryption of m?. Otherwise, A knows
¢, is an encryption of mji.

The vulnerability above has been assigned the ID CVE-2011-3389 in the
National Vulnerability Database and the associated attack is known as the
BEAST attack.

Error characteristics [Sch15, pp. 195-196]:

* Lack of error tolerance due to chaining.

* Ciphertext error: One erroneous ciphertext bit affects the entire current plain-
text block, and the corresponding bit of the next plaintext block.

» The phenomenon of error extension = Small ciphertext error causing large
plaintext error.

» Nevertheless, self-recovering because blocks after the next are not affected.

* Synchronisation error: Lost ciphertext blocks need to be re-transmitted to de-
crypt the next ciphertext block.

Practical aspects:

https://www.coursera.org/learn/crypto/lecture/wlIX8/modes-of-operation-many-time-key-cbc
https://nvd.nist.gov/vuln/detail/CVE-2011-3389

¢ Plaintext that is not an integer multi- *

ple of blocks needs to be padded.

Standard for padding: Cryptographic
Message Syntax in RFC 5652 [Hou09]
derived from PKCS #7 version 1.5 in

RFC 2315 [Kal98].
» Pad 1s appended, not prepended.

» A one-byte pad is 0x01, a two-byte

pad is 0x0202, etc.

» Plaintext that is an integer multi-
ple of blocks is padded with a whole
block of 0x10 if the block length is

16 bytes.

» Rationale: If the last byte of the
last block happens to be 0x01, this e
might be mistaken as a 1-byte pad.

A whole-block pad avoids the ambi-

guity.

However, padding can be exploited for

timing attacks; see Example 2.

To avoid padding, use ciphertext steal-

ing:

» NIST SP 800-38A Adden-
dum [DwolOb] specifies three
variants, namely CBC-CS1, CBC-
CS2 and CBC-CS3, as illustrated in
Figure 3.

» CBC-CS2 originated in [Sch15] and
1s also described in RFC 2040 and
RFC 3962.

» IND-CPA security proof exists for
alll three variants [RWZ12].

» Not as popular [Aum21, p. 25] as
the CTR mode for avoiding padding.

Block chaining precludes parallelisa-
tion of encryption and decryption.

Implementated in OpenSSL:
crypto/modes/cbc128.c,

crypto/modes/cts128.c.

* The Python cryptography library by

default uses the AES in CBC mode.

Figure 3: Ciphertext stealing for a multiple

block [RWZ12, Fig. 1]. Ciphertext for
CBC-CS1: C,C,C5Cy.

= d —t—b-d—|
P, P P; P, 0
IV .. 2 &)
Ex Ex Ex Exg
Ci @) Cs Cy Cy
f— d —l— b-d—|

of b-bit blocks and one d-bit

CBC'CSQ Ifd == b then C1C2C;<C4 else C1C2C4C§k.

CBC-CS3: Cl C2C4C§k .

https://github.com/openssl/openssl/blob/master/crypto/modes/cbc128.c
https://github.com/openssl/openssl/blob/master/crypto/modes/cts128.c
https://cryptography.io/en/latest/fernet/
https://cryptography.io/en/latest/fernet/

Example 2

TLS 1.1 and 1.2 supported
the MEE-TLS-CBC construc-

tion in Figure 4, where MEE = | m

MAC-encode-encrypt. |

Payload MAC tag Padding

SQN | HDR Payload

The MEE-TLS-CBC construc-

tion provides length-hiding au- | Encrypt '
thenticated encryption security _—
provided _| MAC tags are ad- S

equately longl, h_l decryﬁtion Figure 4: MEE-TLS-CBC performs the en-
dqes notrevea the cause of any cryption part of MAC-encode-encrypt in the
failure [PRS11]. CBC mode, which requires padding, but

The secono’! condition is ,Vio' padding is not authenticated [AP13b, Figure
lated by most implementations 11.

for practical purposes.

The Lucky Thirteen [AP13b] is a distinguishing attack that exploits the unau-
thenticated padding and the reporting of MAC verification errors by TLS im-

plementations. “Thirteen” refers to the number of bytes in the message
header [AP13a].

Sketch of distinguishing attack:

1. Attacker A prepares two 288-byte (18 blocks x 16 bytes/block) messages:
* my « 32 arbitrary bytes (2 blocks) followed by 256 copies of OxFF.
* m; « 287 arbitrary bytes (almost 18 blocks) followed by 0x00.

2. A sends m, and m, to the challenger.

3. Challenger returns HDR|CBC,(m,|tag|pad), where b is either O or 1.

4.Since my, is an integer number of blocks, A knows where to truncate the
ciphertext to get the ciphertext blocks for m,,. Denote these ciphertext
blocks by cp,.

5. A tricks the targeted TLS implementation into decrypting HDR||c,.

6. Consider two cases:

Case 1: ¢p, 1s an encryption of m,. Case 2: ¢y, 1s an encryption of m;.
* Decrypting c, reveals 256 copies of ® Decrypting ¢, reveals a single 0x00

OxFF at the trailing end, which the the trailing end, which the decryp-
decryptor assumes to be a pad. tor assumes to be a pad.

* Decryptor removes the 256-byte ® Decryptor removes the 1-byte pad
pad and interprets the remaining and interprets the remaining 287
32 bytes as a 12-byte message and bytes as a 267-byte message and a

a 20-byte MAC tag. 20-byte MAC tag.
* Message authentication fails after ® Message authentication fails after
4 evaluations of the hash function. at least 8 evaluations of the hash

function.

7. For either case, an error message is returned to A, and the time difference
between the two cases was in the order of us on a typical processor (in

2013). This timing difference was enough to launch a timing attack; see
Figure 5.
0.00006 [T T T T T T i Following the disclosure of the at-

tack, countermeasures including
equalising running times and in-
troducing random waiting periods
were implemented in OpenSSL; see
ssl/record/tls_pad.c.

0.00005 F
0.00004 |

0.00003 |

Probability

0.00002 |

0.00001 [

J |
d ~— Several years later, Lucky Thirteen

150100 1.51 %100 1.52x10° 1.53 x10° 1.54 %106 1.55%10° 1.56 X100 1.57 x 10°

Hardware Cycles (Calculated by Attacker) was upgraded tO LUCky MiCI‘OSGC-
Figure 5: Distinguishable distribu- °Pds [AP16], defeating the counter-
tions of timing values for m, and Deasures implemented in Amazon’s
m, [AP13b, Figure 2]. implementation of TLS called s2n.

Starting with version 1.3, TLS no
longer supports CBC [Res18].

A\ Attention: Best practice

Current best practice is replacing CBC-based encryption with authenticated
encryption.

3 CFB

The CFB mode in Figure 6 enables a block cipher to operate as a self-synchronising
stream cipher.

* The IV can be public and provided along with the ciphertext blocks, but must be
randomised/unpredictable.

* Parameterised by s, where 1 < s < b and b is the block size of the block cipher.
s = 1 gives us a stream cipher although an inefficient one.

¢ s-bit CFB encryption:
JAY ifi =1,

C# = P* @ MSB, (CIPH(I))), I =
; s> s(k(1)) i LSBb_S(Ii_l)”Ci”fl otherwise,

where CJ is the ith s-bit ciphertext segment, P¥ is the ith s-bit plaintext segment,
MSB(-) = most significant bits of -, LSB(-) = least significant bits of -.

» CIPH is used for keystream generation.
» The plaintext is XORed with the keystream and never fed to CIPH.

» If the latest plaintext block is less than s bits long, the resultant ciphertext is
less than s bits long. No padding is required.

¢ s-bit CFB decryption:
1Y ifi =1,

pP* = ¥ @ MSB, (CIPH(I))), I, =
i i © s(k(l)) i LSBb—s(Ii—l)”Ci#il otherwise.

https://github.com/openssl/openssl/blob/master/ssl/record/tls_pad.c
https://github.com/aws/s2n-tls

» Decryption uses CIPH

INITIALIZATION
VECTOR

rather than CIPH ..

A A A
INPUT BLOCK 2 INPUT BLOCK n
INPUT BLOCK 1 (b-s) Bits i s Bits (b-s) Bits | s Bits
|_
o CIPH CIPH CIPH
> K K K
o OUTPUT BLOCK 1 OUTPUT BLOCK 2 ! OUTPUT BLOCK n
LZ) Select : Discard Select : Discard ! Select : Discard
] s Bits i (b-s) Bits s Bits | (b-s) Bits i s Bits ¢ (b-s) Bits
PLAINTEXT 1 PLAINTEXT 2 PLAINTEXT n
s Bits s Bits s Bits
CIPHERTEXT 1 CIPHERTEXT 2 CIPHERTEXT n
s Bits s Bits s Bits
INITIALIZATION
VECTOR
A
INPUT BLOCK 2 INPUT BLOCK n
INPUT BLOCK 1 (b-s) Bits | s Bits (b-s) Bits { s Bits
'_
e CIPH, CIPH, CIPH,
E OUTPUT BLOCK 1 OUTPUT BLOCK 2 OUTPUT BLOCK n
O Select | Discard Select | Discard Select : Discard
LéJ s Bits | (b-s) Bits s Bits (b-s) Bits s Bits i (b-s) Bits
CIPHERTEXT 1 CIPHERTEXT 2 [] CIPHERTEXT n []
s Bits s Bits s Bits
PLAINTEXT 1 PLAINTEXT 2 PLAINTEXT n
s Bits s Bits s Bits
Figure 6: CFB mode [Dwo01, Figure 3].
Security:

* Believed to provide IND-CPA provided the underlying block cipher is indisin-
guishable from a random permutation; see [vJ11, p. 793] and [Mau91].

* Not CCA-secure [Smal6, Table 13.2].
* Best practice is to refresh the key after 2/2710 pn-bit blocks.

Error characteristics [Sch15, p. 201]:

* Ciphertext error: One errorneous ciphertext bit affects the corresponding bit in
the current plaintext block and the entire next plaintext block.

Like CBC, suffers from error extension but is also self-recovering.

¢ Synchronisation error: Lost ciphertext blocks need to re-transmitted to decrypt
the next ciphertext block.

Practical aspects:

e Encryption must be serial, while decryption can be parallelised since decryption
of the current ciphertext block does not depend on the decryption of any preced-
ing ciphertext block [vJ11, p. 791].

* Rarely used because it offers little advantage over the CTR mode (see Sec. 5).

* Implemented in OpenSSL: crypto/modes/cfb128.c.

https://github.com/openssl/openssl/blob/master/crypto/modes/cfb128.c

4 OFB

The OFB mode in Figure 7 enables a block cipher to operate as a synchronous
stream cipher.

® The IV can be public and provided along with the ciphertext blocks, but must be
randomised/unpredictable [Smal6, Theorems 13.8-13.9].

A\ Attention: Nonce-based IV &

NIST’s recommendation [Dwo01, Appendix C] that the IV can be a nonce —
unique for each execution of the mode under a given key but not necessarily
unpredictable — is not strong enough.

* OFB encryption:

B @ CIPHY(IV) ifi < n,
P@® MSB, (CIPHg)(IV)) otherwise,

(1)

i

where CIPHE)(IV) means applying the block cipher to IV i number of times, u
1s the number of bits in the final plaintext block. The OFB mode does not
require an integer multiple of blocks and hence padding.

* OFB decryption:

¢; ® CIPHY 1) ifi <n,
C; ® MSB, <CIPH§?(IV)) otherwise.

(2)

l

INITIALIZATION
VECTOR
A i A
|
INPUT BLOCK 1 INPUT BLOCK 2 i INPUT BLOCK n
e |
|
> CIPH, CIPH, | CIPH,
- |
% OUTPUT BLOCK 1 OUTPUT BLOCK 2 ! OUTPUT BLOCK n
|
w

CIPHERTEXT 1 CIPHERTEXT 2 CIPHERTEXT n
INITIALIZATION
/ VECTOR
h 4 .
INPUT BLOCK 1 INPUT BLOCK 2 | INPUT BLOCK n
1
- CIPH, CIPH, | CIPH,
Qo '
E OUTPUT BLOCK 1 OUTPUT BLOCK 2 i OUTPUT BLOCK n
O
Ll
D ,,,,,,,,,,,,,,
]
CIPHERTEXT 1 CIPHERTEXT 2 CIPHERTEXT n []
\ PrANTET 2

Figure 7: OFB mode [Dwo01, Figure 4]. The last plaintext block can be less than
one-block long, say u-bit long.

Security:

¢ Believed to provide IND-CPA provided the underlying block cipher is indistin-
guishable from a random permutation [vJ11, p. 791].

¢ Not CCA-secure [Smal6, Table 13.2].
* Best practice is to refresh the key after 22719 p-bit blocks.

Error characteristics [Sch15, p. 204]:

* Ciphertext error: One errorneous ciphertext bit affects the corresponding bit in
the current plaintext block.

Therefore, unlike CBC and CFB, OFB does not suffer from error extension
* Synchronisation error: Lost ciphertext blocks do not need to be re-transmitted
but the encrypted IV in Eqgs. (1)-(2) must be resynchronised to decrypt subse-

quent ciphertext blocks, e.g., by trying subsequent encrypted values of the IV
until decryption produces a valid plaintext; see Example 3.

Example 3

For the ith ciphertext block, Figure 7 shows the encrypted IVis IV, = CIPH?(IV :
Suppose the 2nd and 3rd ciphertext blocks are lost.

When the 4th ciphertext block C, arrives, decrypting C, with IV, or IV; pro-
duces an invalid plaintext, whereas IV, produces a valid plaintext. This
achieves resynchronisation of the encrypted IV.

Practical aspects:

* Both encryption and decryption can be parallelised since the block cipher is never
applied to the plaintext or ciphertext directly.
/- The encrypted IVs must be generated in sequence, but they can be generated
before encryption/decryption begins.

e Rarely used because it offers little advantage over the CTR mode (see Sec. 5).

* Implemented in OpenSSL: crypto/modes/ofb128.c.

5 CTR

The CTR mode in Figure 8 enables a block cipher to operate as a synchronous
stream cipher.

* Instead of an IV, a typically increasing counter sequence is used. This se-
quence can be public and predictable, but must be unique for each execution of
the mode under a given key [Dwo01, Appendix B].

Example 4 provides two examples of how counters can be generated.
* CTR encryption:

_ (R @® CIPHK(T}) ifi < n,

= 3
" |P@® MSB,(CIPHL(T)) otherwise, 3)

where T; is the ith counter, and u is the number of bits in the final plaintext block.
Thus, like OFB, CTR does not require an integer multiple of blocks and hence
padding.

https://github.com/openssl/openssl/blob/master/crypto/modes/ofb128.c

* CTR decryption:

ENCRYPT

\

B.2]:

, _) Ci ® CIPHK(T)
‘7 |c; ® MSB,(CIPHK(T))) otherwise.

COUNTER 1

A

INPUT BLOCK 1

CIPH,

OUTPUT BLOCK 1

PLAINTEXT 1

CIPHERTEXT 1

COUNTER 1

COUNTER 2

INPUT BLOCK 2

CIPH,

OUTPUT BLOCK 2

PLAINTEXT 2

INPUT BLOCK 1

CIPH,

OUTPUT BLOCK 1

CIPHERTEXT 1

PLAINTEXT 1

CIPHERTEXT 2

COUNTER 2

INPUT BLOCK 2

OUTPUT BLOCK 2

CIPHERTEXT 2

PLAINTEXT 2

ifi < n,

4)

COUNTER n

INPUT BLOCK n

CIPH,

OUTPUT BLOCK n

CIPH, | - -

CIPHERTEXT n

COUNTER n

INPUT BLOCK n

CIPH,

OUTPUT BLOCK n

CIPHERTEXT n

PLAINTEXT n

Figure 8: CTR mode [Dwo01, Figure 5].

Example 4

110 1{0(0|1 O
11010011
1101{1/{0/0 O
1101/1/0/0 1
110 1{1/(0|/1 O
110 1/1/0|1 1
1101 0/0[{00
1101{0/0/01

ment, e.g.,

Two examples of counter generation methods can be found in [Dwo01, Sec.

1. Generate a random string as wide as a block and reserve m number of bits
for counting, e.g.,

Sample initial counter.
m = 3.

2. Partition a counter block into a nonce segment and an m-bit counter seg-

Nonce Counter Sample initial counter.
11 010/00 1 |m=23.
1 1 01 0|0 1 O |Instead of an incrementing function, an LFSR
1 1 01 0/0 1 1 |canalsobeused,butthecounter bitscannot be
110101 0 O |allzeroin the latter case.
110101 0 1
1101011 0
1101011 1

Security:

* Theorem 2 states, given the right conditions, the CTR mode is CPA-secure.

Theorem 2: [, Theorem 13.11]

Provided the underlying block cipher CIPH is a PRP, and each counter is
unique, the CTR mode satisfies IND-CPA.

In particular, suppose A denotes a PPT adversary against the n-bit CTR
mode that makes at most T invocations of the block cipher through the
encryption oracle, then there exists a PPT adversary B against CIPH such
that _

AQVIRSPR(A) < AdVER(B) + T2/2",

¢ Some IND-CPA proofs such as [BR05, Theorem 5.7.1] and [KL21, Theorem 3.33]
model the underlying block cipher as a PRF and provide a different advantage
bound.

* Not CCA-secure [BRO5, Sec. 5.10.1].
* Best practice is to refresh the key after 2/2710 p-bit blocks [vJ 11, p. 7911.
* Watch Dan Boneh’s @3 “Modes of Operation: Many Time Key (CTR)”.

Error characteristics same as those of the OFB mode, except the resynchronisation
of the counter for CTR mode is more efficient than the resynchronisation of the
encrypted IV for the OFB mode.

Practical aspects:

* Both encryption and decryption can be parallelised since the block cipher is never
applied to the plaintext or ciphertext directly.

Counters are not bound by serial generation, unlike the chain of encrypted
IVs in the OFB mode.

* Implemented in OpenSSL: crypto/modes/ctri128.c.

Referring to the OpenSSL code for the CTR mode summarised in Listing 1,

1. In the function ctr128_inc, what is the variable ¢ mainly used for?

2. In the function crRYPTO_ctri128_encrypt, what does the argument block point
to?

3. What 1s the effect of the check for n=0?

https://www.coursera.org/learn/crypto/lecture/5wL84/modes-of-operation-many-time-key-ctr
https://github.com/openssl/openssl/blob/master/crypto/modes/ctr128.c

Listing 1: CRYPTO_ctr128_encrypt.

static void ctr128_inc(unsigned char *counter)

{
u32 n = 16, ¢ = 1;
do {
—-n;
c += counter[n];
counter[n] = (u8)c;
c >= 8;
} while (n);
}
/*
* The input encrypted as though 128bit counter mode is being used. The
* extra state information to record how much of the 128bit block we have
* used is contained in *num, and the encrypted counter is kept in
* ecount_buf. Both *num and ecount_buf must be initialised with zeros
* before the first call to CRYPTO_ctri128_encrypt(). This algorithm assumes
* that the counter is in the x lower bits of the IV (ivec), and that the
* application has full control over overflow and the rest of the IV. This
* implementation takes NO responsibility for checking that the counter
* doesn't overflow into the rest of the IV when incremented.
*/

void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char =*out,
size_t len, const void *key,
unsigned char ivec[16],
unsigned char ecount_buf[16], unsigned int *num,
block128_f block)

unsigned int n; size_t 1 = @; n = *num;

while (1 < len) {
if (n = 0) {
(*block) (ivec, ecount_buf, key);
ctr128_inc(ivec);

}
out[1] = in[1] * ecount_buf[n];
+=+1;
n=1(n+1)%16;
t
*num = n;

6 XTS-AES

As introduced in Sec. 1, XTS-AES is specifically designed for protecting the confi-

dentiality of data at rest [Dwol0a, BGH*12].

* Designed for data stored on hard disks where there A
1s no additional space for integrity or authentication _
tags. §§ B
—
, =
. —~
O Detail: Track, sector, block 7 ==

As shown in Figure 9, a hard disk has tracks.
The smallest accessible subdivision of a track is
a sector.

A sector is further divided into configurable /og-
ical blocks.

On a Linux system, get block size by running
command: D

1 Figure 9: A = track, B
= geometrical sector, C =

Block size can be configured to be 16 bytes, the | disk sector, D = cluster.
block size of the AES. Image from Wikipedia.

sudo blockdev --getbsz -v /dev/sda

* Not designed for data in transit.

* No authentication mechanism, but provides more pro-
tection than the other approved confidentiality-only
modes against unauthorised manipulation of the en-
crypted data.

* Where storage blocks can have variable sizes, such as
with tape drives, an AEAD scheme should be used in-
stead.

O Detail: Why not CBC or CTR? [, Sec. D.2]

(TS =) Why not CBC?

¢ Using CBC, an adversary can flip any bit of the plaintext
by flipping the corresponding ciphertext bit of the previous
block, with the side-effect of “randomizing” the previous
block. See Figure 1.

¢ Using CBC, an adversary with read/write access to the encrypted disk can
copy a ciphertext sector from one position to another, and an application
reading the sector off the new location will still get the same plaintext sector
(except perhaps the first 16 bytes).

&) Why not CTR?

¢ Using CTR without authentication tags is trivially malleable, and an ad-
versary with write access to the encrypted media can flip any bit of the
plaintext simply by flipping the corresponding ciphertext bit. See Figure 8.

To see how XTS-AES works, we first explain how a tweakable block cipher works:

* A tweakable block cipher is a block cipher that encrypts a plaintext using a key
and a tweak; and a tweak plays the role of an IV or nonce [LRWO02], i.e., a fixed-
length string that makes a block cipher less deterministic.

https://en.wikipedia.org/wiki/Disk_sector

Liskov et al. [LRWO02] used the name “tweak” to differentiate it from IV and
nonce:

» Unlike an IV, a tweak does not have to be random [Mar10].
» Unlike a nonce, reuse of a tweak 1s not fatal.

Formally, a tweakable block cipher is a map Enc : X X 7 x{0,1}* — {0,1}", where

each EnEIT;(-) = Encg(T,-) is a permutation, J is the set of tweaks, and n is the
block length [Rog04].

T) Why tweakable block ciphers? Modes of operation can be easier to design and
prove for tweakable block ciphers than for conventional block ciphers [LRWO02].

¢ Liskov et al. [LRWO02] proposed a tweakable block cipher construction called the
LRW construction:

Encg(T, M) = Encg(M @ h(T)) & h(T), (5)

where K 1s a key, T is a tweak, M i1s a plaintext, h is a hash function.

The LRW construction is CCA-secure [LRWO02, Theorem 2] if h 1s from an e-
almost 2-xor-universal (e-AXU, for short) family of hash functions.

A hash function family # 1s e-AXU, if Pr{h(x) ® h(y) = z} < ¢, VX, y, z, and for any
h chosen uniformly at random (through a key) from 7.

O Detail: AXU

AXU is a historical security definition traceable back to [Kra94] proposed
for the purpose of hashing and authentication.

Suppose for message M, the authentication tagist = h(M) @ r, whereris a
nonce. An adversary that sees M and ¢ but not & or r succeeds in breaking
the authentication if it finds M’ (# M) and t' = h(M') H r.

How? One way: if the adversary can find z = h(M)@® h(M'), then it can forge
the authentication tag

V=t@®z=hM)®r®hM)®h(M) =hM)Sr.

If h is from an AXU hash function family, then the probability of finding z
1s negligible.

* Rogaway [Rog04] proposed the XOR-encrypt-XOR (XEX) tweakable block cipher
construction: 3
Encg(T,M) =Enck(M D T)D T, (6)
where T = Encg(N)oc{l ocjj k Nis an n-bit nonce, ay, ... , @) are primitive elements
of the Galois field GF(2"), j,, ..., ji are integers. There are k + 1 tweaks here,
as opposed to one tweak in the LRW construction in Eq. (5).
The XEX construction is also CCA-secure.

XTS-AES i1s a specialisation of the XEX construction that

¢ Uses two keys, namely K; and K, in Eqgs. (7)—(8).

This 1s not for boosting security but rather to appeal to the perception of com-
mercial users that two keys provide more security than one.

According to [IEE19], which two key lengths are supported? These two key
lengths determine the two variants of the AES that are supported — which
are these variants?

* Limits the number of tweaks to two:
1. the 128-bit Data Unit Sequence Number (i.e., sector number) denoted by i in
(7)—~(8); and
2. the Block Sequence Number (i.e., block number) denoted by j in (7)—(8).
i 1s nonnegative and is assigned consecutively, starting from an arbitrary non-
negative integer [IEE19, Sec. 5.1].

j starts at zero and is at most 20-bit long because the maximum number of blocks
with a data unit is 2?° [IEE19, Sec. 5.1].

When encrypting a tweak value using AES, the tweak is first converted into

a little-endian byte array [IEE19, Sec. 5.1].

If a tweak value 1s 0OXCCBBAA, how should the byte array be represented
in Python?

e Uses GF(2!%%) with irreducible polynomial: x'?® + x7 + x? + x + 1.
a in (7)—(8) is 2 or equivalently polynomial x in GF(2!8).
In Listing 2, look for the code commented with alpha”j for the Galois-field multi-
plication.

¢ Uses ciphertext stealing to cater for the situations where a sector size is not an
integer multiple of the AES block size, because some hard disk implementations
include an 8-byte non-cryptographic checksum at the end of a sector, which like
normal content also needs to be encrypted [BGH*12, Sec. 2].

See Figures 12—-13.

XTS-AES encryption and decryption:

To encrypt plaintext block P in data unit To decrypt ciphertext block C in data
i, block j into ciphertext block C: unit i, block j into plaintext block P:

C=Enc(K,P®T)DT, where P=Dec(K;,C®T)D T, where

: 7 :
T = Enc(K,,1) ® o’. (@) T = Enc(K,,i) ® . ®)

See Figure 10. See Figure 11.

Key, o P Key, o C

| |

) 4
i ——» AES-enc X P

) 4
i —— AES-enc X :()

AES-enc [«——Key, AES-dec [«——Key,

cC PP
) 4) 4
(D) (D)
N\ %
v v
C P

Figure 10: Encrypting a plaintext block Figure 11: Decrypting a ciphertext block
P using XTS-AES [IEE19, Figure 1]. C using XTS-AES [IEE19, Figure 3].

Listing 2: OpenSSL implementation of XEX in crypto/modes/xts128.c. This is a sani-
tised, little-endian, encryption-only version of function crRYPTO_xts128_encrypt. Ci-
phertext stealing is implemented in crypto/modes/cts128.c.

1 int CRYPTO_xts128_encrypt(const XTS128_CONTEXT *ctx,
2 const unsigned char iv[16],
3 const unsigned char *inp, unsigned char *out,
4 size_t len, int enc)
5 {
6 DECLARE_IS_ENDIAN;
7 union {
8 u6s ul21;
9 u32 d[4];
10 ud cl[16];
11 } tweak, scratch;
12 unsigned int i;
14 if (len < 16) return -1;
16 memcpy(tweak.c, iv, 16);
17 (*ctx—block2) (tweak.c, tweak.c, ctx—key2);
19 if (lenc & (len % 16)) len -= 16;
21 while (len = 16) {
22 scratch.u[@] = ((ub4_al *)inp)[0] ™ tweak.u[0];
23 scratch.u[1] = ((u64_al *)inp)[1] ™ tweak.u[1];
24 (*#ctx—blockl) (scratch.c, scratch.c, ctx—keyl);
25 ((ub4_al *)out)[0] = scratch.u[0] "= tweak.u[0];
26 ((ub4_al1l *)out)[1] = scratch.u[1] = tweak.u[1];
28 inp += 16; out += 16; len -= 16;
30 if (len = 0) return 0;
32 unsigned int carry, res;
34 /* alpha™j %/
35 res = 0x87 & (((int)tweak.d[3]) >> 31); /* 0x87 = 135 = x"7+x"2+x+1 */
36 carry = (unsigned int)(tweak.u[0] >> 63);
37 tweak.u[0] = (tweak.u[0] << 1) * res;
38 tweak.u[1] = (tweak.u[1] << 1) | carry;
39 }

https://github.com/openssl/openssl/blob/master/crypto/modes/xts128.c
https://github.com/openssl/openssl/blob/master/crypto/modes/cts128.c

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

57
58

if (enc) {
for (i = 0; 1 < len; +1i) {
u8 ¢ = inp[il;
out[i] = scratch.c[i];
scratch.c[1i] = c;
}
scratch.u[0] ™= tweak.ul[0];
scratch.u[1] ™~ tweak.u[1];
(*ctx—blockl) (scratch.c, scratch.c, ctx—keyl);
scratch.u[0] ™= tweak.ul[0];
scratch.u[1] "= tweak.u[1];
memcpy(out - 16, scratch.c, 16);
} else {
/* decryption code omitted */
}
return 0;
}
A 4 Y
Pm—1 Pm CP Cm—1 Cm CP
i,m—1—¢" i,mj"PP f,m—'t‘ i,m—1j"CC
Key —» XTS-AES- Key —»| XTS-AES- Key — XTs-AES- Key — XTs-AES-
blockEnc blockEnc blockDec blockDec
A 4 CC A 4 A 4 PP A 4
Cm CP """" Cm—1 Pm CP """" Pm—1
e et
Cm—‘l Cm Pm,1 Pm

Figure 12: Ciphertext stealing during Figure 13: Ciphertext stealing during

encryption [IEE19, Figure 2].

decryption [IEE19, Figure 4].

7 References

[AP16]

[AP13a]

[AP13b]

[Aum21]

[BGH*12]

M. R. AuBrecHT and K. G. PaTerson, Lucky Microseconds: A Timing Attack on Amazon’s
s2n Implementation of TLS, in Advances in Cryptology —- EUROCRYPT 2016 (M. Fis-
cuLIN and J.-S. Coron, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2016,
pp. 622—643.

N. AvLFarpan and K. Paterson, Lucky Thirteen: Breaking the TLS and DTLS Record
Protocols, web site, February 2013. Available at http://www.isg.rhul.ac.uk/tls/
Lucky13.html.

N. dJ. ALFarpan and K. G. Paterson, Lucky thirteen: Breaking the TLS and DTLS record
protocols, in 2013 IEEE Symposium on Security and Privacy, 2013, pp. 526-540. https:
//doi.org/10.1109/SP.2013.42.

J.-P. Aumasson, Crypto Dictionary: 500 Tasty Tidbits for the Curious Cryptographer, No
Starch Press, 2021.

M. V. BaLt, C. Guvor, J. P. Huchgs, L. MArTIN, and L. C. NoLr, The XTS-AES disk en-
cryption algorithm and the security of ciphertext stealing, Cryptologia 36 no. 1 (2012),
70-79. https://doi.org/10.1080/01611194.2012.635115.

http://www.isg.rhul.ac.uk/tls/Lucky13.html
http://www.isg.rhul.ac.uk/tls/Lucky13.html
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1080/01611194.2012.635115

[Bar20]

[BRRS09]

[BRO5]

[Dwo01]

[Dwo04]

[Dwo05]

[Dwo10a]

[Dwo10b]

[Dwo1l2]

[Dwo19]

[Hou09]

[HDO09]

[IEE19]

[ISO17]

[Kal98]

[KL21]

[Kra94]

[LRWO02]

[Mar10]

E. BArRkER, Guideline for Using Cryptographic Standards in the Federal Government:
Cryptographic Mechanisms, Special Publication 800-175B Revision 1, NIST, 2020.
https://doi.org/10.6028/NIST.SP.800-175Br1.

M. BerLARE, T. RistenParT, P. Rocaway, and T. SteGeRs, Format-preserving encryption,
in Selected Areas in Cryptography (M. J. JacoBson, V. RiaMEN, and R. Saravi-Naini, eds.),
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 295-312.

M. BeLrare and P. Rocaway, Introduction to modern cryptography, 2005. Available at
https://cseweb.ucsd.edu/~mihir/papers/br-book.pdf.

M. Dworkin, Recommendation for block cipher modes of operation: Methods and tech-
niques, NIST Special Publication 800-38A, 2001. Available at https://csrc.nist.gov/
publications/detail/sp/800-38a/final.

M. DworkiN, Recommendation for block cipher modes of operation: The CCM
mode for authentication and confidentiality, NIST Special Publication 800-38C, May
2004, updated in 2007. Available at https://csrc.nist.gov/publications/detail/
sp/800-38c/final.

M. Dworkin, Recommendation for block cipher modes of operation: The CMAC mode
for authentication, NIST Special Publication 800-38B, May 2005. https://doi.org/
10.6028/NIST.SP.800-38B.

M. Dworkin, Recommendation for block cipher modes of operation: The XTS-AES mode
for confidentiality on storage devices, NIST Special Publication 800-38E, 2010. Avail-
able at https://csrc.nist.gov/publications/detail/sp/800-38e/final.

M. Dworkin, Recommendation for block cipher modes of operation: Three variants of
ciphertext stealing for CBC mode, Addendum to NIST Special Publication 800-38A,
October 2010, under revision by NIST as of 13 Sep 2022.

M. DworkiN, Recommendation for block cipher modes of operation: Methods for key
wrapping, NIST Special Publication 800-38F, 2012. Available at https://csrc.nist.
gov/publications/detail/sp/800-38f/final.

M. Dworkin, Recommendation for block cipher modes of operation: Methods for format-
preserving encryption, Draft NIST Special Publication 800-38G Revision 1, February
2019. https://doi.org/https://doi.org/10.6028/NIST.SP.800-38Gr1-draft.

R. HousLey, Cryptographic Message Syntax (CMS), IETF RFC 5652, 2009, derived
from PKCS #7 version 1.5 in RFC 2315. Available at https://www.rfc-editor.org/
rfc/rfc5652.

R. HousLey and M. Dworkin, Advanced Encryption Standard (AES) Key Wrap with
Padding Algorithm, IETF RFC 5649, August 2009.

IEEE, IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage
Devices, IEEE Std 1619-2018 (Revision of IEEE Std 1619-2007), 2019. https://doi.
org/10.1109/IEEESTD.2019.8637988.

ISO/IEC, Information technology — security techniques — modes of operation for
an n-bit block cipher, ISO/IEC 10116:2017, 2017. Available at https://www.iso.org/
standard/64575.html.

B. Kauiski, PKCS #7: Cryptographic Message Syntax Version 1.5, IETF RFC 2315,
1998. Available at https://www.ietf.org/rfc/rfc2315.txt.

J. Karz and Y. LinpELL, Introduction to Modern Cryptography, 3rd ed., CRC Press,
2021. Available at https://ebookcentral.proquest.com/lib/unisa/detail.action?
docID=6425020.

H. Krawczyk, LFSR-based hashing and authentication, in Advances in Cryptology —
CRYPTO 94 (Y. G. DesmMEDT, ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, 1994,
pp. 129-139.

M. Liskov, R. L. Rivest, and D. WagNER, Tweakable block ciphers, in Advances in Cryp-
tology — CRYPTO 2002 (M. Yung, ed.), Springer Berlin Heidelberg, Berlin, Heidelberg,
2002, pp. 31-46.

L. MarTiN, XTS: A mode of AES for encrypting hard disks, IEEE Security & Privacy 8
no. 3 (2010), 68—-69. https://doi.org/10.1109/MSP.2010.111.

https://doi.org/10.6028/NIST.SP.800-175Br1
https://cseweb.ucsd.edu/~mihir/papers/br-book.pdf
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38c/final
https://csrc.nist.gov/publications/detail/sp/800-38c/final
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-38B
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://csrc.nist.gov/publications/detail/sp/800-38f/final
https://csrc.nist.gov/publications/detail/sp/800-38f/final
https://doi.org/https://doi.org/10.6028/NIST.SP.800-38Gr1-draft
https://www.rfc-editor.org/rfc/rfc5652
https://www.rfc-editor.org/rfc/rfc5652
https://doi.org/10.1109/IEEESTD.2019.8637988
https://doi.org/10.1109/IEEESTD.2019.8637988
https://www.iso.org/standard/64575.html
https://www.iso.org/standard/64575.html
https://www.ietf.org/rfc/rfc2315.txt
https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=6425020
https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=6425020
https://doi.org/10.1109/MSP.2010.111

[Mau91]

[NIS07]

[PRS11]

[PBO*03]

[Res18]

[Rog04]

[RWZ12]

[SHO2]

[Sch15]

[Smal6]

[vd11]

U. M. Maurer, New approaches to the design of self-synchronizing stream ciphers, in
Advances in Cryptology — EUROCRYPT °91 (D. W. Davigs, ed.), Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1991, pp. 458-471.

NIST, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, NIST Special Publication 800-38D, 2007, under review as of 6 Aug
2021. Available at https://csrc.nist.gov/publications/detail/sp/800-38d/final.

K. G. Paterson, T. RistenparT, and T. SurimpToN, Tag size does matter: Attacks and
proofs for the TLS record protocol, in Advances in Cryptology —ASIACRYPT 2011 (D. H.
Lee and X. Wang, eds.), LNCS 7073, Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 372-389. https://doi.org/10.1007/978-3-642-25385-0_20.

B. PreNEEL, A. Biryukov, E. OswaLp, B. V. Rompay, L. GRaNBoULAN, E. Dorrax, S. MUR-
pHY, A. DENT, J. WHITE, M. DicurL, S. Pyka, M. ScHAFHEUTLE, P. SErRF, E. Binawm,
E. Barkan, O. DuNKELMAN, dJ.-J. QuisQuaTERr, M. CieT, F. Sica, L. KNUDSEN, M. PARKER,
and H. Rappum, NESSIE Security Report, Deliverable D20, NESSIE Consortium,
February 2003, Version 2.0.

E. REscorra, The Transport Layer Security (TLS) Protocol Version 1.3, IETF RFC 8446,
August 2018. Available at https://www.rfc-editor.org/rfc/rfc8446.

P. Rocaway, Efficient instantiations of tweakable blockciphers and refinements to modes
ocb and pmac, in Advances in Cryptology - ASIACRYPT 2004 (P. J. Lgg, ed.), Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 16-31.

P. Rogaway, M. Woobing, and H. Zuanag, The security of ciphertext stealing, in Fast
Software Encryption (A. CANTEAUT, ed.), Springer Berlin Heidelberg, Berlin, Heidelberg,
2012, pp. 180-195.

J. Scuaap and R. HousLEy, Advanced Encryption Standard (AES) Key Wrap Algorithm,
IETF RFC 3394, 2002. Available at https://www.rfc-editor.org/rfc/rfc3394.

B. ScunEeigr, Applied Cryptography, Second Edition: Protocols, Algorithms, and Source
Code in C, 20th anniversary edition ed., Wiley, 2015. Available at https://learning.
oreilly.com/library/view/applied-cryptography-protocols/9781119096726.

N. P. Smart, Cryptography Made Simple, Information Security and Cryptography,
Springer International Publishing Switzerland, 2016. https://doi.org/10.1007/
978-3-319-21936-3.

H. C. van TiLBorG and S. Jasobia (eds.), Encyclopedia of Cryptography and Security,
Springer, Boston, MA, 2011. https://doi.org/10.1007/978-1-4419-5906-5.

https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://doi.org/10.1007/978-3-642-25385-0_20
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc3394
https://learning.oreilly.com/library/view/applied-cryptography-protocols/9781119096726
https://learning.oreilly.com/library/view/applied-cryptography-protocols/9781119096726
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.1007/978-1-4419-5906-5

	Introduction
	CBC
	CFB
	OFB
	CTR
	XTS-AES
	References

