
Block cipher modes of operation
Dr. Yee Wei Law ⟨yeewei.law@unisa.edu.au⟩

2023-10-17

Contents

1 Introduction 1

2 CBC 3

3 CFB 8

4 OFB 10

5 CTR 11

6 XTS-AES 14

7 References 19

List of acronyms

AEAD Authenticated encryption with asso-
ciated data

AES Advanced Encryption Standard
AXU Almost XOR universal
CBC Cipher block chaining
CCA Chosen-ciphertext attack
CCM Counter with CBC-MAC
CFB Counter feedback
CMAC Cipher-based message authentica-

tion code
CPA Chosen-plaintext attack
CTR Counter
ECB Electronic codebook
FIPS Federal Information Processing

Standard
FPE Format-preserving encryption
GCM Galois/counter mode
IETF Internet Engineering Task Force
IND Indistinguishability

IV Initialisation vector
LFSR Linear feedback shift register
LSB Least significant bits
MAC Message authentication code
MEE MAC-encode-encrypt
MSB Most significant bits
NIST National Institute of Standards

and Technology
NESSIE New European Schemes for Signa-

tures, Integrity and Encryption
PPT Probabilistic polynomial-time
PRF Pseudorandom function
PRP Pseudorandom permutation
SSL Secure Socket Layer
TLS Transport Layer Security
XOR Exclusive-or
XTS XEX tweakable block cipher with

ciphertext stealing

1 Introduction

Discussion of block ciphers in the previous lecture would not be complete without
discussion of the modes of operation as well.
According to NIST SP 800-175B [Bar20],

1

Definition 1: Mode of operation [Bar20]

An algorithm that uses a block cipher algorithm as a cryptographic primitive
to provide a cryptographic service, such as confidentiality or authentication.

A mode of operation
of a block cipher

• Specifies how to construct an encryption scheme using a
block cipher as a building block.

• Partitions a plaintext message into a series of blocks
which are then encrypted one block at a time with a block
cipher [PBO+03, Sec. 2.1].

The distinct advantage of separating block cipher design from the design of mode
of operation is that we can design block ciphers and modes of operation indepen-
dently [Sma16, Sec. 13.1]:
• Whereas the design goal for a block cipher is that it is a strong pseudorandom

permutation (PRP), the design goal of a mode of operation is one of indistin-
guishability or non-malleability goals, such as IND-CCA (see Lecture 2).

• A designer of a mode of operation tries to prove mathematically that the mode
satisfies the required security definition on the assumption that the block cipher
is a strong PRP.

NIST’s recommendations for block cipher models of operation can be found in their
SP 800-38 series of publications:
1.SP 800-38A [Dwo01] specifies the cipher block chaining (CBC), cipher

feedback (CFB), output feedback (OFB) and counter (CTR) modes, besides
the electronic codebook (ECB) mode (see previous lecture).

• These modes are also standardised in ISO/IEC 10116:2017 [ISO17].
• These modes are discussed in Secs. 2–5.

2.SP 800-38B [Dwo05] specifies the cipher-based message authentication code (CMAC)
mode, which achieves authentication through a block cipher.

• CMAC evolved from CBC-MAC.
• CMAC is not covered in this course.

3.SP 800-38C [Dwo04] specifies the counter with CBC-MAC (CCM)mode for achiev-
ing authenticated encryption.

• CCM combines the CTR mode for encryption with CBC-MAC for authentica-
tion.

• CCM is not covered in this course.

4.SP 800-38D [NIS07] specifies the Galois/counter mode (GCM), for AEAD, and
its specialisation, GMAC, for authentication of unencrypted data.

• GCM is not covered in this course.
• GMAC is not covered in this course.

5.SP 800-38E [Dwo10a] approves the specification of the XTS-AES mode of the
AES in IEEE Std 1619-2007, subject to one additional requirement.

• XTS = XOR-encrypt-XOR tweakable block cipher with ciphertext stealing.

2

• IEEE Std 1619-2007 has been revised to IEEE Std 1619-2018 [IEE19].
• Protects confidentiality of data at rest in block-oriented storage devices, when

CBC and CTR modes cannot.
• XTS-AES is discussed in Sec. 6.

6.SP 800-38F [Dwo12] specifies two deterministic authenticated-encryptionmodes
of operation based on the AES for key wrapping, i.e., the protection of the confi-
dentiality and integrity of cryptographic keys: the AES key wrap mode, and

the AES key wrap with padding mode.

• AES key wrap is also standardised in RFC 3394 [SH02] and implemented in
OpenSSL.

• AES key wrap with padding is also standardised in RFC 5649 [HD09]. This
eliminates the requirement that the length of the key to be wrapped be a mul-
tiple of 64 bits.

• In principle, these modes provide more security than regular authenticated
encryption schemes at the expense of throughput [Dwo12, Sec. 3.1].

• These modes are not covered in this course.

7.SP 800-38G [Dwo19] specifies two format-preserving encryption (FPE) modes
of the AES algorithm, namely FF1 and FF3-1.

• NIST does not have a definition for FPE, but “format-preserving” can be under-
stood as preserving the alphabet of the plaintext in the ciphertext [BRRS09],
e.g., a 16-decimal-digit credit card number encrypted to a 16-decimal-digit
number.

• Why? Classic scenario: integrating encryption into an existing database
does not require changing the type and size of the data field, e.g., the “credit
card number” field remains a string of 16 decimal digits.

• These modes are not covered in this course.

2 CBC

In the CBC mode, ciphertext blocks are chained as illustrated in Figure 1.
• The IV can be public and provided along with the ciphertext blocks, but must be

randomised/unpredictable.
• CBC encryption:

𝐶𝑖 = {
CIPH𝐾(𝑃𝑖 ⊕ IV) if 𝑖 = 1,
CIPH𝐾(𝑃𝑖 ⊕𝐶𝑖−1) otherwise,

where 𝐶𝑖 and 𝑃𝑖 denote the 𝑖th ciphertext block and plaintext block respectively.
• CBC decryption:

𝑃𝑖 = {
CIPH−1

𝐾 (𝐶𝑖) ⊕ IV if 𝑖 = 1,
CIPH−1

𝐾 (𝐶𝑖) ⊕ 𝐶𝑖−1 otherwise.

3

https://github.com/openssl/openssl/blob/master/crypto/modes/wrap128.c
https://github.com/openssl/openssl/blob/master/crypto/modes/wrap128.c

same ciphertext block. If this property is undesirable in a particular application, the ECB mode
should not be used.

The ECB mode is illustrated in Figure 1.

6.2 The Cipher Block Chaining Mode

The Cipher Block Chaining (CBC) mode is a confidentiality mode whose encryption process
features the combining (“chaining”) of the plaintext blocks with the previous ciphertext blocks.
The CBC mode requires an IV to combine with the first plaintext block. The IV need not be
secret, but it must be unpredictable; the generation of such IVs is discussed in Appendix C.
Also, the integrity of the IV should be protected, as discussed in Appendix D. The CBC mode is
defined as follows:

CBC Encryption: 	 C1 = CIPHK(P1 ⊕ IV);

Cj = CIPHK(Pj ⊕ Cj-1) for j = 2 … n.

CBC Decryption: 	 P1 = CIPH -1
(C1) ⊕ IV;K

Pj = CIPH -1
(Cj) ⊕ Cj-1	 for j = 2 … n.K

CIPHK

OUTPUT BLOCK 1

⊕

OUTPUT BLOCK 2

⊕

OUTPUT BLOCK n

⊕

PLAINTEXT 1 PLAINTEXT 2 INITIALIZATION
VECTOR

INPUT BLOCK 1 INPUT BLOCK 2 INPUT BLOCK n

PLAINTEXT n

E
N

C
R

Y
P

T
D

E
C

R
Y

P
T

⊕ ⊕ ⊕

INPUT BLOCK 1 INPUT BLOCK 2 INPUT BLOCK n

CIPH-1
K

PLAINTEXT 1 PLAINTEXT 2 PLAINTEXT n

OUTPUT BLOCK 1 OUTPUT BLOCK 2 OUTPUT BLOCK n

INITIALIZATION
VECTOR

CIPHERTEXT 1 CIPHERTEXT 2

CIPHERTEXT 1 CIPHERTEXT 2

CIPHERTEXT n

CIPHERTEXT n

CIPHK CIPHK

CIPH-1
K CIPH-1

K

Figure 2: The CBC Mode

In CBC encryption, the first input block is formed by exclusive-ORing the first block of the
plaintext with the IV. The forward cipher function is applied to the first input block, and the

10

Figure 1: CBC mode [Dwo01, Figure 2].

Quiz 1

If CIPH in Figure 1 is the AES algorithm, how many bytes long should the
IV be?

Security:
• Theorem 1 states, given the right conditions, the CBC mode is CPA-secure.

Theorem 1: [Sma16, Theorem 13.6], [KL21, Theorem 3.32]

Provided the underlying block cipher CIPH is a PRP, and the IV is random,
the CBC mode satisfies IND-CPA.
In particular, suppose 𝒜 denotes a PPT adversary against the 𝑛-bit CBC
mode that makes at most 𝑇 invocations of the block cipher through the
encryption oracle, then there exists a PPT adversary ℬ against CIPH such
that

Advind-cpaCBC (𝒜) ≤ AdvprpCIPH(ℬ) + 3𝑇2/2𝑛.

To appreciate Theorem 1 numerically, set block length 𝑛 = 128 bits and key
length = 128 bits.
Assuming the AES behaves as a PRP to any PPT ℬ,

AdvprpAES(ℬ) ≤ 2−128,
and thus

Advind-cpaCBC (𝒜) ≤ 2−128(1 + 3𝑇2).
Bounding𝒜’s advantage at 2−64 requires 𝑇 ≤ 231, which is more than 2.14 billion.
Best practice: refresh encryption keys periodically.

• Some IND-CPA proofs [BR05, Theorem 5.8.1] model the underlying block cipher
as a pseudorandom function (PRF) and provide a different advantage bound.

• Predictable IVs lead to attacks; see Example 1.

4

• Not CCA-secure [BR05, Sec. 5.10.2], and implementations must be guarded
against timing attacks; see Example 2.

• Watch Dan Boneh’s � “Modes of Operation: Many Time Key (CBC)”.

Example 1

TLS 1.0 and SSL 3.0 implemented a variant of the CBC mode called chained
CBC [KL21, p. 91] or CBC-chain [BR05, Problem 33].
Figure 2 depicts the scenario where the first plaintext is encrypted into 𝑐1, 𝑐2,
𝑐3, and the second plaintext is encrypted into 𝑐4, 𝑐5.

Private-Key Encryption 91

sequentially because the previous ciphertext block ci−1 is needed in order to
process the next plaintext block mi. Thus, if parallel processing is available,
CBC-mode encryption may not be the most efficient choice.

There is a stateful variant of CBC-mode encryption—called chained CBC
mode—in which the last block of the previous ciphertext is used as the IV
when encrypting the next message. This reduces the bandwidth, as a new
IV need not be sent each time. See Figure 3.7, where an initial message
m1,m2,m3 is encrypted using a uniform IV , and then subsequently a second
message m4,m5 is encrypted using the final ciphertext block of the previ-
ous ciphertext (i.e., c3) as the IV . (In contrast, encryption using standard
CBC mode would generate a fresh, random IV when encrypting the second
message.) Chained CBC mode was used in SSL 3.0 and TLS 1.0.

� �

� �

FIGURE 3.7: Chained CBC mode.

It may appear that chained CBC mode is as secure as CBC mode, since
the chained-CBC encryption of m1,m2,m3 followed by encryption of m4,m5

yields the same ciphertext blocks as CBC-mode encryption of the (single)
message m1,m2,m3,m4,m5. Nevertheless, chained CBC mode is vulnerable
to a chosen-plaintext attack. The basis of the attack is that the adversary
knows in advance the “initialization vector” c3 that will be used for the second
encrypted message. We describe the attack informally, based on Figure 3.7.
Assume the attacker knows that m1 ∈ {m0

1,m
1
1}, and observes the first ci-

phertext IV, c1, c2, c3. The attacker then requests an encryption of a second
message m4,m5 with m4 = IV ⊕m0

1 ⊕ c3, and observes a second ciphertext
c4, c5. One can verify that m1 = m0

1 if and only if c4 = c1, and so the attacker
learns m1. This example serves as a warning against making any modifications
to cryptographic schemes, even if those modifications seem benign.

Output Feedback (OFB) mode. The third mode we present can be viewed
as an unsynchronized stream-cipher mode, where the stream cipher is con-
structed in a specific way from the underlying block cipher. We describe the
mode directly. To encrypt a message m, first a uniform IV ∈ {0, 1}n is cho-
sen. Then, a pseudorandom stream is generated from IV in the following way:

Vulnerable

Figure 2: CBC mode using chained IVs [KL21, Figure 3.7].

IV unpredictability is destroyed when 𝑐3 is used as the IV for 𝑚4.
A sketch of a CPA:
1. Suppose the attacker 𝒜 knows that 𝑚1 is one of 𝑚0

1 and 𝑚1
1, e.g., “Yes” or

“No” for criminal record.
2.𝒜 eavesdrops on IV, 𝑐1, 𝑐2, 𝑐3.
3.Knowing 𝑐3 will be used as the IV for 𝑚4, 𝒜 crafts 𝑚4 ← IV⊕𝑚0

1 ⊕ 𝑐3 and
queries the encryption oracle with 𝑚4.

4. The encryption oracle returns 𝑐4 ← 𝐹𝑘(𝑐3 ⊕ IV⊕𝑚0
1 ⊕ 𝑐3) = 𝐹𝑘(IV⊕𝑚0

1).
5. If 𝑐1 == 𝐹𝑘(IV⊕𝑚0

1),𝒜 knows 𝑐1 is an encryption of𝑚0
1 . Otherwise,𝒜 knows

𝑐1 is an encryption of 𝑚1
1.

The vulnerability above has been assigned the ID CVE-2011-3389 in the
National Vulnerability Database and the associated attack is known as the
BEAST attack.

Error characteristics [Sch15, pp. 195-196]:
• Lack of error tolerance due to chaining.
• Ciphertext error: One erroneous ciphertext bit affects the entire current plain-

text block, and the corresponding bit of the next plaintext block.
� The phenomenon of error extension = Small ciphertext error causing large

plaintext error.
� Nevertheless, self-recovering because blocks after the next are not affected.

• Synchronisation error: Lost ciphertext blocks need to be re-transmitted to de-
crypt the next ciphertext block.

Practical aspects:

5

https://www.coursera.org/learn/crypto/lecture/wlIX8/modes-of-operation-many-time-key-cbc
https://nvd.nist.gov/vuln/detail/CVE-2011-3389

• Plaintext that is not an integer multi-
ple of blocks needs to be padded.
Standard for padding: Cryptographic
Message Syntax in RFC 5652 [Hou09]
derived from PKCS #7 version 1.5 in
RFC 2315 [Kal98].
� Pad is appended, not prepended.
� A one-byte pad is 0x01, a two-byte

pad is 0x0202, etc.
� Plaintext that is an integer multi-

ple of blocks is padded with a whole
block of 0x10 if the block length is
16 bytes.

� Rationale: If the last byte of the
last block happens to be 0x01, this
might be mistaken as a 1-byte pad.
A whole-block pad avoids the ambi-
guity.

However, padding can be exploited for
timing attacks; see Example 2.

• To avoid padding, use ciphertext steal-
ing:
� NIST SP 800-38A Adden-

dum [Dwo10b] specifies three
variants, namely CBC-CS1, CBC-
CS2 and CBC-CS3, as illustrated in
Figure 3.

� CBC-CS2 originated in [Sch15] and
is also described in RFC 2040 and
RFC 3962.

� IND-CPA security proof exists for
alll three variants [RWZ12].

� Not as popular [Aum21, p. 25] as
the CTR mode for avoiding padding.

• Block chaining precludes parallelisa-
tion of encryption and decryption.

• Implementated in OpenSSL:
crypto/modes/cbc128.c,
crypto/modes/cts128.c.

• The Python cryptography library by
default uses the AES in CBC mode.The Security of Ciphertext Stealing 181

C3

P3

EK EK

C4C3∗ ∗∗

∗P4P2

EK

C2

P1

EK

C1

IV

0∗

d b-d

d b-d

10 algorithm CBC-CS IV
K (P)

11 n← �|P |/b�
12 P1 · · ·Pn−1P

∗
n ← P where |P1| = · · · = |Pn−1| = b

13 Pn ← P ∗
n 0b−d where d← |P ∗

n |
14 C0 ← IV ;

15 C1 · · ·Cn ← CBC IV
K (P1 · · ·Pn) where |C1| = · · · = |Cn| = b

16 C∗
n−1 ← MSBd(Cn−1)

17-1 return C1 · · ·Cn−2C
∗
n−1Cn ⇐ for CS1

17-2 if d=b return C1· · ·Cn−2C
∗
n−1Cn else return C1· · ·Cn−2CnC

∗
n−1 ⇐ for CS2

17-3 return C1 · · ·Cn−2CnC
∗
n−1 ⇐ for CS3

20 algorithm CBC IV
K (P1 · · ·Pn) where |P1| = · · · = |Pn| = b

21 C0 ← IV
22 for i← 1 to n do Ci ← EK(Ci−1⊕Pi)
23 return C1 · · ·Cn

Fig. 1. Encryption under NIST modes CBC-CS1, CBC-CS2, and CBC-CS3.
The schemes differ only in which version of line 17 is used. The schemes depend on a
blockcipher E: K×{0, 1}b → {0, 1}b that determines the key space K, the IV space IV,
and the message space P = {0, 1}≥b. We insist that K ∈ K, IV ∈ IV , and P ∈ P .

random bits under an adaptive chosen-plaintext attack. The definition, easily
shown to imply all conventional formulations of CPA-style semantic security,
formalizes that a ciphertext C is indistinguishable from as many random bits.

Next we show that delayed versions of CBC-CS achieve an analogous IND$ no-
tion that we define for online security. The idea of delayed CBC is from Fouque,
Martinet, and Poupard [11]. Our formulation for online security generalizes their
and subsequent work (further history and credits coming shortly). In particu-
lar, prior definitional approaches were specific to blockcipher-based schemes of
a specified form—restrictions not in keeping with identifying a general notion of
security. We levy no such restrictions, but do imagine that the encryption scheme
is written to an incremental API (application programming interface). Each time
a user presents a piece of plaintext to encrypt she will get back a correspond-
ing chunk of ciphertext. The length of both is arbitrary. One can understand
our definition of online security as establishing that a specified incremental API
introduces no new security vulnerabilities. Technically, we reconceptualize an

Figure 3: Ciphertext stealing for a multiple of 𝑏-bit blocks and one 𝑑-bit
block [RWZ12, Fig. 1]. Ciphertext for
CBC-CS1: 𝐶1𝐶2𝐶∗

3𝐶4.
CBC-CS2: If 𝑑 = 𝑏 then 𝐶1𝐶2𝐶∗

3𝐶4 else 𝐶1𝐶2𝐶4𝐶∗
3 .

CBC-CS3: 𝐶1𝐶2𝐶4𝐶∗
3 .

6

https://github.com/openssl/openssl/blob/master/crypto/modes/cbc128.c
https://github.com/openssl/openssl/blob/master/crypto/modes/cts128.c
https://cryptography.io/en/latest/fernet/
https://cryptography.io/en/latest/fernet/

Example 2

TLS 1.1 and 1.2 supported
the MEE-TLS-CBC construc-
tion in Figure 4, where MEE =
MAC-encode-encrypt.

The MEE-TLS-CBC construc-
tion provides length-hiding au-
thenticated encryption security
provided MAC tags are ad-
equately long, decryption
does not reveal the cause of any
failure [PRS11].

The second condition is vio-
lated bymost implementations
for practical purposes.

MAC

HDR Payload

Padding

Encrypt

Ciphertext

MAC tag Payload

SQN

Figure 1. D(TLS) encryption process

encryption. The core encryption process is illustrated in

Figure 1 and explained in more detail below.

Data to be protected by TLS or DTLS is received from the

application and may be fragmented and compressed before

further processing. An individual record R (viewed as a byte

sequence of length at least zero) is then processed as follows.

The sender maintains an 8-byte sequence number SQN which

is incremented for each record sent2, and forms a 5-byte field

HDR consisting of a 2-byte version field, a 1-byte type field,

and a 2-byte length field. It then calculates a MAC over

the bytes SQN||HDR||R; let T denote the resulting MAC

tag. Note that exactly 13 bytes of data are prepended to the

record R here before the MAC is computed. The size of

the MAC tag is 16 bytes (HMAC-MD5), 20 bytes (HMAC-

SHA-1), or 32 bytes (HMAC-SHA-256). We let t denote

this size in bytes.

The record is then encoded to create the plaintext P
by setting P = R||T ||pad. Here pad is a sequence of

padding bytes chosen such that the length of P in bytes

is a multiple of b, where b is the block-size of the selected

block cipher (so b = 8 for 3DES and b = 16 for AES). In

all versions of TLS and DTLS, the padding must consist of

p + 1 copies of some byte value p, where 0 ≤ p ≤ 255.

In particular, at least one byte of padding must always be

added. So examples of valid byte sequences for pad are:

“0x00”, “0x01||0x01” and “0x02||0x02||0x02”. The padding

may extend over multiple blocks, and receivers must support

the removal of such extended padding.

In the encryption step, the encoded record P is encrypted

using CBC-mode of the selected block cipher. TLS 1.1 and

1.2 and both versions of DTLS mandate an explicit IV,

which should be randomly generated. TLS 1.0 and SSL use

a chained IV; our attacks work for either option. Thus, the

ciphertext blocks are computed as:

Cj = EKe
(Pj ⊕ Cj−1)

where Pi are the blocks of P , C0 is the IV, and Ke is the

key for the block cipher E. For TLS (and SSL), the data

2In fact, in DTLS, this 8-byte field is composed from a 16-bit epoch
number and a 48-bit sequence number. We will abuse terminology and
refer throughout to the 8-byte field as being the sequence number for both
TLS and DTLS.

transmitted over the wire then has the form:

HDR||C
where C is the concatenation of the ciphertext blocks Ci

(including or excluding the IV depending on the particular

SSL or TLS version). Note that the sequence number is

not transmitted as part of the message. In DTLS, the data

transmitted over the wire is the same as in TLS, except that

SQN is included as part of the record header and the CBC-

mode IV is always explicit.

Simplistically, the decryption process reverses this se-

quence of steps: first the ciphertext is decrypted block by

block to recover the plaintext blocks:

Pj = DKe
(Cj)⊕ Cj−1,

where D denotes the decryption algorithm of the block

cipher. Then the padding is removed, and finally, the MAC

is checked, using the header information (and, in TLS,

a version of the sequence number that is maintained at

the receiver). Finally, in DTLS, the sequence number is

optionally checked for replays.

In reality, much more sophisticated processing than this is

needed. The receiver should check that the ciphertext size is

a multiple of the block size and is large enough to contain

at least a zero-length record, a MAC tag of the required

size, and at least one byte of padding. After decryption, the

receiver should check that the format of the padding is one

of the possible patterns when removing it, otherwise attacks

are possible [17] (SSL allows a loose padding format, while

no specific padding checks are enforced during decryption in

TLS 1.0, so both are potentially vulnerable to the attacks in

[17]). Typically this is done by examining the last byte of the

plaintext, treating it as a padding length byte padlen, and

using this to dictate how many additional bytes of padding

should be removed. But care is needed here, since blindly

removing bytes could result in an underflow condition: there

needs to be sufficient bytes in the plaintext to remove a total

of padlen+1 bytes and leave enough bytes for at least

zero-length record and a MAC tag.

If all this succeeds, then the MAC can be recomputed

and compared to the MAC tag in the plaintext. If the

padding fails to be correctly formatted, then implementations

should continue to perform a MAC check anyway, to avoid

providing a timing side-channel of the type exploited in [5].

But since the padding format is incorrect in this case, it’s

not immediately clear where the padding ends and the MAC

tag is located: in effect, the plaintext is now unparseable.

The solution recommended in TLS 1.1 and 1.2 (and by

extension, also in DTLS 1.0 and 1.2) is to assume zero-

length padding, interpret the last t bytes of the plaintext as

a MAC tag, interpret the remainder as the record R and run

MAC verification on SQN||HDR||R. This has been adopted

in OpenSSL and elsewhere; GnuTLS on the other hand

removes padlen + 1 bytes from the end of the plaintext,

529

Authorized licensed use limited to: University of South Australia. Downloaded on September 13,2022 at 06:59:01 UTC from IEEE Xplore. Restrictions apply.

Figure 4: MEE-TLS-CBC performs the en-
cryption part of MAC-encode-encrypt in the
CBC mode, which requires padding, but
padding is not authenticated [AP13b, Figure
1].

The Lucky Thirteen [AP13b] is a distinguishing attack that exploits the unau-
thenticated padding and the reporting of MAC verification errors by TLS im-
plementations. “Thirteen” refers to the number of bytes in the message
header [AP13a].

Sketch of distinguishing attack:
1. Attacker 𝒜 prepares two 288-byte (18 blocks × 16 bytes/block) messages:

• 𝑚0 ← 32 arbitrary bytes (2 blocks) followed by 256 copies of 0xFF.
• 𝑚1 ← 287 arbitrary bytes (almost 18 blocks) followed by 0x00.

2.𝒜 sends 𝑚0 and 𝑚1 to the challenger.
3. Challenger returns HDR‖CBC𝑘(𝑚𝑏‖tag‖pad), where 𝑏 is either 0 or 1.
4. Since 𝑚𝑏 is an integer number of blocks, 𝒜 knows where to truncate the

ciphertext to get the ciphertext blocks for 𝑚𝑏. Denote these ciphertext
blocks by 𝑐𝑏.

5.𝒜 tricks the targeted TLS implementation into decrypting HDR‖𝑐𝑏.
6. Consider two cases:

Case 1: 𝑐𝑏 is an encryption of 𝑚0.
• Decrypting 𝑐𝑏 reveals 256 copies of

0xFF at the trailing end, which the
decryptor assumes to be a pad.

• Decryptor removes the 256-byte
pad and interprets the remaining
32 bytes as a 12-byte message and
a 20-byte MAC tag.

• Message authentication fails after
4 evaluations of the hash function.

Case 2: 𝑐𝑏 is an encryption of 𝑚1.
• Decrypting 𝑐𝑏 reveals a single 0x00

the trailing end, which the decryp-
tor assumes to be a pad.

• Decryptor removes the 1-byte pad
and interprets the remaining 287
bytes as a 267-byte message and a
20-byte MAC tag.

• Message authentication fails after
at least 8 evaluations of the hash
function.

7

7. For either case, an error message is returned to 𝒜, and the time difference
between the two cases was in the order of 𝜇s on a typical processor (in
2013). This timing difference was enough to launch a timing attack; see
Figure 5.

P
r
o
b
a
b
i
l
i
t
y

1.50�106 1.51�106 1.52�106 1.53�106 1.54�106 1.55�106 1.56�106 1.57�106
0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Hardware Cycles �Calculated by Attacker�

Figure 2. Distribution of timing values (outliers removed) for distinguish-
ing attack on OpenSSL TLS, showing faster processing time in the case of
M0 (in red) compared to M1 (in blue).

L Success Probability

1 0.756
2 0.769
4 0.858
8 0.914

16 0.951
32 0.983
64 0.992

128 1

Table I
OPENSSL TLS DISTINGUISHING ATTACK SUCCESS PROBABILITIES.

We used a simple threshold test to build a concrete attack:

we calculate a threshold value T based on profiling, gather

L timing samples, filter outliers, calculate the median of the

remaining timing samples, and then output 1 if the median

value is greater than T and 0 if it is less. Table I shows the

success probabilities for this concrete distinguishing attack;

it is evident that the attack is reliable even if only a moderate

number of samples are available. The attack already has a

significant advantage over guessing when L = 1, i.e. when

only one sample is available.

D. Plaintext Recovery Attacks for OpenSSL TLS

1) Partial plaintext recovery: Section IV describes an

attack where byte P ∗
15 can be recovered when P ∗

14 is known.

This involves setting Δ14 to force P ∗
14⊕Δ14 to equal 0x01,

and then trying all possible values of Δ15, identifying which

one forces P ∗
15⊕Δ15 to also equal 0x01. Figure 3 shows the

median server-side decryption time as a function of Δ15 for

the particular values of P ∗
14 = 0x01 (so Δ14 = 0x00) and

P ∗
15 = 0xFF. A clear reduction in processing time can be

seen for the expected value of Δ15, namely Δ15 = 0xFE.

Also notable is the stability in the processing time for other

byte values. These server-side times indicate that an attack

based on timing error message on the network has some

prospect of success. Figure 4 shows the corresponding distri-

bution of median network timings in our experimental setup.

Clearly, the data is noisier, but the “dip” at Δ15 = 0xFE is

H
a
r
d
w
a
r
e

C
y
c
l
e
s

�
C
a
l
c
u
l
a
t
e
d
o
n
S
e
r
v
e
r
�

�15 � 0xFE

0 50 100 150 200 250
12600

12800

13000

13200

13400

13600

13800

14000

�15

Figure 3. OpenSSL TLS median server timings (in hardware cycles) when
P ∗
14 = 0x01 and P ∗

15 = 0xFF. As expected, Δ15 = 0xFE leads to faster
processing time.

H
a
r
d
w
a
r
e

C
y
c
l
e
s

�
C
a
l
c
u
l
a
t
e
d
b
y
A
d
v
e
r
s
a
r
y
�

�15 � 0xFE

0 50 100 150 200 250
1.286�106

1.287�106

1.288�106

1.289�106

1.290�106

1.291�106

1.292�106

�15

Figure 4. OpenSSL TLS median network timings in terms of hardware
cycles when P ∗

14 = 0x01 and P ∗
15 = 0xFF. As expected Δ15 = 0xFE

leads to faster processing time.

clearly distinguishable.

Figure 5 shows success probabilities for the attack. Each

data-point in the figure is based on at least 64 experiments.

Each curve in the figure represents a different number of

total sessions consumed in the attack (corresponding to

different values for L, the number of trials for each Δ value).

The x-axis represents the percentile used in our statistical

test: if the percentile value is p, then we take as the correct

value for Δ15 the one for which the p-th percentile value

of the timing distribution (measured over L samples) is

minimised. It is evident that a range of percentiles work well,

including the median. As expected, the success probability

of the attack increases as L increases. We already reach

a success probability of 1 when L = 28, where the total

number of sessions needed is 216. Similarly, we have a

success probability of 0.93 when L = 27, where the total

number of sessions is 215.

Given these results, we anticipate that the attack would

extend easily to recovering 15 unknown bytes from a block,

given one of the last two bytes. We have not implemented

this variant.

2) Full plaintext recovery: The next step would be to

perform the full plaintext recovery attack from Section IV.

In this case, the attacker would need a total of L · 216 trials

535

Authorized licensed use limited to: University of South Australia. Downloaded on September 13,2022 at 06:59:01 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Distinguishable distribu-
tions of timing values for 𝑚0 and
𝑚1 [AP13b, Figure 2].

Following the disclosure of the at-
tack, countermeasures including
equalising running times and in-
troducing random waiting periods
were implemented in OpenSSL; see
ssl/record/tls_pad.c.

Several years later, Lucky Thirteen
was upgraded to Lucky Microsec-
onds [AP16], defeating the counter-
measures implemented in Amazon’s
implementation of TLS called s2n.

Starting with version 1.3, TLS no
longer supports CBC [Res18].

Attention: Best practice

Current best practice is replacing CBC-based encryption with authenticated
encryption.

3 CFB

The CFBmode in Figure 6 enables a block cipher to operate as a self-synchronising
stream cipher.
• The IV can be public and provided along with the ciphertext blocks, but must be

randomised/unpredictable.
• Parameterised by 𝑠, where 1 ≤ 𝑠 ≤ 𝑏 and 𝑏 is the block size of the block cipher.
𝑠 = 1 gives us a stream cipher although an inefficient one.

• 𝑠-bit CFB encryption:

𝐶#
𝑖 = 𝑃#𝑖 ⊕MSB𝑠 (CIPH𝐾(𝐼𝑖)) , 𝐼𝑖 = {

IV if 𝑖 = 1,
LSB𝑏−𝑠(𝐼𝑖−1)‖𝐶#

𝑖−1 otherwise,

where 𝐶#
𝑖 is the 𝑖th 𝑠-bit ciphertext segment, 𝑃#𝑖 is the 𝑖th 𝑠-bit plaintext segment,

MSB(⋅) = most significant bits of ⋅, LSB(⋅) = least significant bits of ⋅.
� CIPH is used for keystream generation.
� The plaintext is XORed with the keystream and never fed to CIPH.
� If the latest plaintext block is less than 𝑠 bits long, the resultant ciphertext is

less than 𝑠 bits long. No padding is required.
• 𝑠-bit CFB decryption:

𝑃#𝑖 = 𝐶#
𝑖 ⊕MSB𝑠 (CIPH𝐾(𝐼𝑖)) , 𝐼𝑖 = {

IV if 𝑖 = 1,
LSB𝑏−𝑠(𝐼𝑖−1)‖𝐶#

𝑖−1 otherwise.

8

https://github.com/openssl/openssl/blob/master/ssl/record/tls_pad.c
https://github.com/aws/s2n-tls

� Decryption uses CIPH rather than CIPH−1.

Oj = CIPHK(Ij) for j = 1, 2 … n;
P

= C#

j ⊕ MSB (Oj) for j = 1, 2 … n.j s

In CFB encryption, the first input block is the IV, and the forward cipher operation is applied to
the IV to produce the first output block. The first ciphertext segment is produced by exclusive-
ORing the first plaintext segment with the s most significant bits of the first output block. (The
remaining b-s bits of the first output block are discarded.) The b-s least significant bits of the IV
are then concatenated with the s bits of the first ciphertext segment to form the second input
block. An alternative description of the formation of the second input block is that the bits of
the first input block circularly shift s positions to the left, and then the ciphertext segment
replaces the s least significant bits of the result.

The process is repeated with the successive input blocks until a ciphertext segment is produced
from every plaintext segment. In general, each successive input block is enciphered to produce
an output block. The s most significant bits of each output block are exclusive-ORed with the
corresponding plaintext segment to form a ciphertext segment. Each ciphertext segment (except
the last one) is “fed back” into the previous input block, as described above, to form a new input
block. The feedback can be described in terms of the individual bits in the strings as follows: if
i1i2…ib is the jth input block, and c1c2…c is the jth ciphertext segment, then the (j+1)

th
 input blocks

is is+1is+2…ib c1c2…c .s

OUTPUT BLOCK 1
Select Discard
s Bits (b-s) Bits

INPUT BLOCK 1

OUTPUT BLOCK 1
Select Discard
s Bits (b-s) Bits

CIPHK

INITIALIZATION
VECTOR

⊕PLAINTEXT 1
s Bits

CIPHERTEXT 1
s Bits

INPUT BLOCK 1

⊕CIPHERTEXT 1
s Bits

PLAINTEXT 1
s Bits

E
N

C
R

Y
P

T
D

E
C

R
Y

P
T

OUTPUT BLOCK n
Select Discard
s Bits (b-s) Bits

INPUT BLOCK n
(b-s) Bits s Bits

OUTPUT BLOCK n
Select Discard
s Bits (b-s) Bits

⊕PLAINTEXT n
s Bits

CIPHERTEXT n
s Bits

INPUT BLOCK n
(b-s) Bits s Bits

⊕CIPHERTEXT n
s Bits

PLAINTEXT n
s Bits

OUTPUT BLOCK 2
Select Discard
s Bits (b-s) Bits

INPUT BLOCK 2
(b-s) Bits s Bits

OUTPUT BLOCK 2
Select Discard
s Bits (b-s) Bits

⊕PLAINTEXT 2
s Bits

CIPHERTEXT 2
s Bits

INPUT BLOCK 2
(b-s) Bits s Bits

⊕CIPHERTEXT 2
s Bits

PLAINTEXT 2
s Bits

INITIALIZATION
VECTOR

CIPHK CIPHK

CIPHKCIPHKCIPHK

Figure 3: The CFB Mode

In CFB decryption, the IV is the first input block, and each successive input block is formed as in
CFB encryption, by concatenating the b-s least significant bits of the previous input block with

12

Figure 6: CFB mode [Dwo01, Figure 3].

Security:
• Believed to provide IND-CPA provided the underlying block cipher is indisin-

guishable from a random permutation; see [vJ11, p. 793] and [Mau91].
• Not CCA-secure [Sma16, Table 13.2].
• Best practice is to refresh the key after 2𝑛/2−10 𝑛-bit blocks.

Error characteristics [Sch15, p. 201]:
• Ciphertext error: One errorneous ciphertext bit affects the corresponding bit in

the current plaintext block and the entire next plaintext block.
Like CBC, suffers from error extension but is also self-recovering.

• Synchronisation error: Lost ciphertext blocks need to re-transmitted to decrypt
the next ciphertext block.

Practical aspects:
• Encryption must be serial, while decryption can be parallelised since decryption

of the current ciphertext block does not depend on the decryption of any preced-
ing ciphertext block [vJ11, p. 791].

• Rarely used because it offers little advantage over the CTR mode (see Sec. 5).
• Implemented in OpenSSL: crypto/modes/cfb128.c.

9

https://github.com/openssl/openssl/blob/master/crypto/modes/cfb128.c

4 OFB

The OFB mode in Figure 7 enables a block cipher to operate as a synchronous
stream cipher.
• The IV can be public and provided along with the ciphertext blocks, but must be

randomised/unpredictable [Sma16, Theorems 13.8-13.9].

Attention: Nonce-based IV

NIST’s recommendation [Dwo01, Appendix C] that the IV can be a nonce –
unique for each execution of the mode under a given key but not necessarily
unpredictable — is not strong enough.

• OFB encryption:

𝐶𝑖 = {
𝑃𝑖 ⊕ CIPH(𝑖)

𝐾 (IV) if 𝑖 < 𝑛,
𝑃𝑖 ⊕MSBᵆ (CIPH(𝑖)

𝐾 (IV)) otherwise,
(1)

where CIPH(𝑖)
𝐾 (IV) means applying the block cipher to IV 𝑖 number of times, 𝑢

is the number of bits in the final plaintext block. The OFB mode does not
require an integer multiple of blocks and hence padding.

• OFB decryption:

𝑃𝑖 = {
𝐶𝑖 ⊕ CIPH(𝑖)

𝐾 (IV) if 𝑖 < 𝑛,
𝐶𝑖 ⊕MSBᵆ (CIPH(𝑖)

𝐾 (IV)) otherwise.
(2)

output block. The first output block is exclusive-ORed with the first ciphertext block to recover
the first plaintext block. The first output block is then transformed by the forward cipher
function to produce the second output block. The second output block is exclusive-ORed with
the second ciphertext block to produce the second plaintext block, and the second output block is
also transformed by the forward cipher function to produce the third output block. Thus, the
successive output blocks are produced from applying the forward cipher function to the previous
output blocks, and the output blocks are exclusive-ORed with the corresponding ciphertext
blocks to recover the plaintext blocks. For the last block, which may be a partial block of u bits,
the most significant u bits of the last output block are used for the exclusive-OR operation; the
remaining b-u bits of the last output block are discarded.

OUTPUT BLOCK 1

INPUT BLOCK 1

OUTPUT BLOCK 1

CIPHK

INITIALIZATION
VECTOR

⊕PLAINTEXT 1

CIPHERTEXT 1

INPUT BLOCK 1

⊕CIPHERTEXT 1

PLAINTEXT 1

E
N

C
R

Y
P

T
D

E
C

R
Y

P
T

OUTPUT BLOCK n

INPUT BLOCK n

OUTPUT BLOCK n

⊕PLAINTEXT n

CIPHERTEXT n

INPUT BLOCK n

⊕CIPHERTEXT n

PLAINTEXT n

OUTPUT BLOCK 2

INPUT BLOCK 2

OUTPUT BLOCK 2

⊕PLAINTEXT 2

CIPHERTEXT 2

INPUT BLOCK 2

⊕CIPHERTEXT 2

PLAINTEXT 2

INITIALIZATION
VECTOR

CIPHK CIPHK

CIPHKCIPHKCIPHK

Figure 4: The OFB Mode

In both OFB encryption and OFB decryption, each forward cipher function (except the first)
depends on the results of the previous forward cipher function; therefore, multiple forward cipher
functions cannot be performed in parallel. However, if the IV is known, the output blocks can be
generated prior to the availability of the plaintext or ciphertext data.

The OFB mode requires a unique IV for every message that is ever encrypted under the given
key. If, contrary to this requirement, the same IV is used for the encryption of more than one
message, then the confidentiality of those messages may be compromised. In particular, if a
plaintext block of any of these messages is known, say, the jth plaintext block, then the jth output
of the forward cipher function can be determined easily from the jth ciphertext block of the
message. This information allows the jth plaintext block of any other message that is encrypted

14

Figure 7: OFB mode [Dwo01, Figure 4]. The last plaintext block can be less than
one-block long, say 𝑢-bit long.

Security:

10

• Believed to provide IND-CPA provided the underlying block cipher is indistin-
guishable from a random permutation [vJ11, p. 791].

• Not CCA-secure [Sma16, Table 13.2].
• Best practice is to refresh the key after 2𝑛/2−10 𝑛-bit blocks.

Error characteristics [Sch15, p. 204]:
• Ciphertext error: One errorneous ciphertext bit affects the corresponding bit in

the current plaintext block.
Therefore, unlike CBC and CFB, OFB does not suffer from error extension .

• Synchronisation error: Lost ciphertext blocks do not need to be re-transmitted
but the encrypted IV in Eqs. (1)-(2) must be resynchronised to decrypt subse-
quent ciphertext blocks, e.g., by trying subsequent encrypted values of the IV
until decryption produces a valid plaintext; see Example 3.

Example 3

For the 𝑖th ciphertext block, Figure 7 shows the encrypted IV is IV𝑖 = CIPH(𝑖)
𝐾 (IV).

Suppose the 2nd and 3rd ciphertext blocks are lost.
When the 4th ciphertext block 𝐶4 arrives, decrypting 𝐶4 with IV2 or IV3 pro-
duces an invalid plaintext, whereas IV4 produces a valid plaintext. This
achieves resynchronisation of the encrypted IV.

Practical aspects:
• Both encryption and decryption can be parallelised since the block cipher is never

applied to the plaintext or ciphertext directly.
The encrypted IVs must be generated in sequence, but they can be generated

before encryption/decryption begins.
• Rarely used because it offers little advantage over the CTR mode (see Sec. 5).
• Implemented in OpenSSL: crypto/modes/ofb128.c.

5 CTR

The CTR mode in Figure 8 enables a block cipher to operate as a synchronous
stream cipher.
• Instead of an IV, a typically increasing counter sequence is used. This se-

quence can be public and predictable, but must be unique for each execution of
the mode under a given key [Dwo01, Appendix B].
Example 4 provides two examples of how counters can be generated.

• CTR encryption:

𝐶𝑖 = {
𝑃𝑖 ⊕ CIPH𝐾(𝑇𝑖) if 𝑖 < 𝑛,
𝑃𝑖 ⊕MSBᵆ(CIPH𝐾(𝑇𝑖)) otherwise,

(3)

where 𝑇𝑖 is the 𝑖th counter, and 𝑢 is the number of bits in the final plaintext block.
Thus, like OFB, CTR does not require an integer multiple of blocks and hence
padding.

11

https://github.com/openssl/openssl/blob/master/crypto/modes/ofb128.c

• CTR decryption:

𝑃𝑖 = {
𝐶𝑖 ⊕ CIPH𝐾(𝑇𝑖) if 𝑖 < 𝑛,
𝐶𝑖 ⊕MSBᵆ(CIPH𝐾(𝑇𝑖)) otherwise.

(4)

OUTPUT BLOCK 1

INPUT BLOCK 1

OUTPUT BLOCK 1

CIPHK

COUNTER 1

⊕PLAINTEXT 1

CIPHERTEXT 1

INPUT BLOCK 1

⊕CIPHERTEXT 1

PLAINTEXT 1

E
N

C
R

Y
P

T
D

E
C

R
Y

P
T

COUNTER 1

OUTPUT BLOCK 2

INPUT BLOCK 2

OUTPUT BLOCK 2

COUNTER 2

⊕PLAINTEXT 2

CIPHERTEXT 2

INPUT BLOCK 2

⊕CIPHERTEXT 2

PLAINTEXT 2

COUNTER 2

.CIPHK

CIPHKCIPHK

INPUT BLOCK n

OUTPUT BLOCK n

COUNTER n

⊕PLAINTEXT n

CIPHK

OUTPUT BLOCK n

CIPHERTEXT n

INPUT BLOCK n

⊕CIPHERTEXT n

COUNTER n

. CIPHK

PLAINTEXT n

Figure 5: The CTR Mode

The CTR mode is illustrated in Figure 5.

16

Figure 8: CTR mode [Dwo01, Figure 5].

Example 4

Two examples of counter generation methods can be found in [Dwo01, Sec.
B.2]:
1.Generate a random string as wide as a block and reserve 𝑚 number of bits

for counting, e.g.,
1 1 0 1 0 0 1 0
1 1 0 1 0 0 1 1
1 1 0 1 1 0 0 0
1 1 0 1 1 0 0 1
1 1 0 1 1 0 1 0
1 1 0 1 1 0 1 1
1 1 0 1 0 0 0 0
1 1 0 1 0 0 0 1

Sample initial counter.
𝑚 = 3.

2. Partition a counter block into a nonce segment and an 𝑚-bit counter seg-
ment, e.g.,

12

Nonce Counter
1 1 0 1 0 0 0 1
1 1 0 1 0 0 1 0
1 1 0 1 0 0 1 1
1 1 0 1 0 1 0 0
1 1 0 1 0 1 0 1
1 1 0 1 0 1 1 0
1 1 0 1 0 1 1 1

Sample initial counter.
𝑚 = 3.
Instead of an incrementing function, an LFSR
can also be used, but the counter bits cannot be
all zero in the latter case.

Security:
• Theorem 2 states, given the right conditions, the CTR mode is CPA-secure.

Theorem 2: [Sma16, Theorem 13.11]

Provided the underlying block cipher CIPH is a PRP, and each counter is
unique, the CTR mode satisfies IND-CPA.
In particular, suppose 𝒜 denotes a PPT adversary against the 𝑛-bit CTR
mode that makes at most 𝑇 invocations of the block cipher through the
encryption oracle, then there exists a PPT adversary ℬ against CIPH such
that

Advind-cpaCTR (𝒜) ≤ AdvprpCIPH(ℬ) + 𝑇2/2𝑛.

• Some IND-CPA proofs such as [BR05, Theorem 5.7.1] and [KL21, Theorem 3.33]
model the underlying block cipher as a PRF and provide a different advantage
bound.

• Not CCA-secure [BR05, Sec. 5.10.1].
• Best practice is to refresh the key after 2𝑛/2−10 𝑛-bit blocks [vJ11, p. 791].
• Watch Dan Boneh’s � “Modes of Operation: Many Time Key (CTR)”.

Error characteristics same as those of the OFBmode, except the resynchronisation
of the counter for CTR mode is more efficient than the resynchronisation of the
encrypted IV for the OFB mode.

Practical aspects:
• Both encryption and decryption can be parallelised since the block cipher is never

applied to the plaintext or ciphertext directly.
Counters are not bound by serial generation, unlike the chain of encrypted

IVs in the OFB mode.
• Implemented in OpenSSL: crypto/modes/ctr128.c.

Quiz 2

Referring to the OpenSSL code for the CTR mode summarised in Listing 1,
1. In the function ctr128_inc, what is the variable c mainly used for?
2. In the function CRYPTO_ctr128_encrypt, what does the argument block point

to?
3.What is the effect of the check for n===0?

13

https://www.coursera.org/learn/crypto/lecture/5wL84/modes-of-operation-many-time-key-ctr
https://github.com/openssl/openssl/blob/master/crypto/modes/ctr128.c

Listing 1: CRYPTO_ctr128_encrypt.
static void ctr128_inc(unsigned char *counter)

{

u32 n = 16, c = 1;

do {

---n;

c += counter[n];

counter[n] = (u8)c;

c >>>= 8;

} while (n);

}

/*

* The input encrypted as though 128bit counter mode is being used. The

* extra state information to record how much of the 128bit block we have

* used is contained in *num, and the encrypted counter is kept in

* ecount_buf. Both *num and ecount_buf must be initialised with zeros

* before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes

* that the counter is in the x lower bits of the IV (ivec), and that the

* application has full control over overflow and the rest of the IV. This

* implementation takes NO responsibility for checking that the counter

* doesn't overflow into the rest of the IV when incremented.

*/

void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out,

size_t len, const void *key,

unsigned char ivec[16],

unsigned char ecount_buf[16], unsigned int *num,

block128_f block)

{

unsigned int n; size_t l = 0; n = *num;

while (l < len) {

if (n === 0) {

(*block) (ivec, ecount_buf, key);

ctr128_inc(ivec);

}

out[l] = in[l] ^ ecount_buf[n];

+++l;

n = (n + 1) % 16;

}

*num = n;

}

6 XTS-AES

As introduced in Sec. 1, XTS-AES is specifically designed for protecting the confi-
dentiality of data at rest [Dwo10a, BGH+12].

14

• Designed for data stored on hard disks where there
is no additional space for integrity or authentication
tags.

� Detail: Track, sector, block

As shown in Figure 9, a hard disk has tracks.
The smallest accessible subdivision of a track is
a sector.
A sector is further divided into configurable log-
ical blocks.
On a Linux system, get block size by running
command:

sudo blockdev ---getbsz -v /dev/sda

Block size can be configured to be 16 bytes, the
block size of the AES.

• Not designed for data in transit.
• No authenticationmechanism, but provides more pro-

tection than the other approved confidentiality-only
modes against unauthorised manipulation of the en-
crypted data.

• Where storage blocks can have variable sizes, such as
with tape drives, an AEAD scheme should be used in-
stead.

A

B
C

D

Figure 9: A = track, B
= geometrical sector, C =
disk sector, D = cluster.
Image from Wikipedia.

� Detail: Why not CBC or CTR? [IEE19, Sec. D.2]

Why not CBC?
• Using CBC, an adversary can flip any bit of the plaintext

by flipping the corresponding ciphertext bit of the previous
block, with the side-effect of “randomizing” the previous
block. See Figure 1.

• Using CBC, an adversary with read/write access to the encrypted disk can
copy a ciphertext sector from one position to another, and an application
reading the sector off the new locationwill still get the same plaintext sector
(except perhaps the first 16 bytes).

Why not CTR?
• Using CTR without authentication tags is trivially malleable, and an ad-

versary with write access to the encrypted media can flip any bit of the
plaintext simply by flipping the corresponding ciphertext bit. See Figure 8.

To see how XTS-AES works, we first explain how a tweakable block cipher works:
• A tweakable block cipher is a block cipher that encrypts a plaintext using a key

and a tweak; and a tweak plays the role of an IV or nonce [LRW02], i.e., a fixed-
length string that makes a block cipher less deterministic.

15

https://en.wikipedia.org/wiki/Disk_sector

Liskov et al. [LRW02] used the name “tweak” to differentiate it from IV and
nonce:
� Unlike an IV, a tweak does not have to be random [Mar10].
� Unlike a nonce, reuse of a tweak is not fatal.
Formally, a tweakable block cipher is a map ̃Enc ∶ 𝒦×𝒯 × {0, 1}𝑛 → {0, 1}𝑛, where
each ̃Enc𝑇𝐾(⋅) = Enc𝐾(𝑇, ⋅) is a permutation, 𝒯 is the set of tweaks, and 𝑛 is the
block length [Rog04].

Why tweakable block ciphers? Modes of operation can be easier to design and
prove for tweakable block ciphers than for conventional block ciphers [LRW02].

• Liskov et al. [LRW02] proposed a tweakable block cipher construction called the
LRW construction:

̃Enc𝐾(𝑇,𝑀) = Enc𝐾(𝑀 ⊕ ℎ(𝑇)) ⊕ ℎ(𝑇), (5)

where 𝐾 is a key, 𝑇 is a tweak, 𝑀 is a plaintext, ℎ is a hash function.
The LRW construction is CCA-secure [LRW02, Theorem 2] if ℎ is from an 𝜖-
almost 2-xor-universal (𝜖-AXU2 for short) family of hash functions.
A hash function familyℋ is 𝜖-AXU2 if Pr{ℎ(𝑥)⊕ℎ(𝑦) = 𝑧} ≤ 𝜖, ∀𝑥, 𝑦, 𝑧, and for any
ℎ chosen uniformly at random (through a key) from ℋ.

� Detail: AXU
AXU is a historical security definition traceable back to [Kra94] proposed
for the purpose of hashing and authentication.
Suppose for message𝑀, the authentication tag is 𝑡 = ℎ(𝑀)⊕ 𝑟, where 𝑟 is a
nonce. An adversary that sees 𝑀 and 𝑡 but not ℎ or 𝑟 succeeds in breaking
the authentication if it finds 𝑀′ (≠ 𝑀) and 𝑡′ = ℎ(𝑀′) ⊕ 𝑟.
How? One way: if the adversary can find 𝑧 = ℎ(𝑀)⊕ℎ(𝑀′), then it can forge
the authentication tag

𝑡′ = 𝑡 ⊕ 𝑧 = ℎ(𝑀) ⊕ 𝑟 ⊕ ℎ(𝑀) ⊕ ℎ(𝑀′) = ℎ(𝑀′) ⊕ 𝑟.

If ℎ is from an AXU hash function family, then the probability of finding 𝑧
is negligible.

• Rogaway [Rog04] proposed the XOR-encrypt-XOR (XEX) tweakable block cipher
construction:

̃Enc𝐾(𝑇,𝑀) = Enc𝐾(𝑀 ⊕ 𝑇) ⊕ 𝑇, (6)

where 𝑇 = Enc𝐾(𝑁)𝛼
𝑗1
1 ⋯𝛼𝑗𝑘𝑗 , 𝑁 is an 𝑛-bit nonce, 𝛼1,… , 𝛼𝑘 are primitive elements

of the Galois field GF(2𝑛), 𝑗1,… , 𝑗𝑘 are integers. There are 𝑘 + 1 tweaks here,
as opposed to one tweak in the LRW construction in Eq. (5).
The XEX construction is also CCA-secure.

XTS-AES is a specialisation of the XEX construction that
• Uses two keys, namely 𝐾1 and 𝐾2 in Eqs. (7)–(8).

This is not for boosting security but rather to appeal to the perception of com-
mercial users that two keys provide more security than one.

16

Quiz 3

According to [IEE19], which two key lengths are supported? These two key
lengths determine the two variants of the AES that are supported – which
are these variants?

• Limits the number of tweaks to two:
1. the 128-bit Data Unit Sequence Number (i.e., sector number) denoted by 𝑖 in

(7)–(8); and
2. the Block Sequence Number (i.e., block number) denoted by 𝑗 in (7)–(8).
𝑖 is nonnegative and is assigned consecutively, starting from an arbitrary non-
negative integer [IEE19, Sec. 5.1].
𝑗 starts at zero and is at most 20-bit long because themaximumnumber of blocks
with a data unit is 220 [IEE19, Sec. 5.1].

Quiz 4

When encrypting a tweak value using AES, the tweak is first converted into
a little-endian byte array [IEE19, Sec. 5.1].
If a tweak value is 0xCCBBAA, how should the byte array be represented
in Python?

• Uses GF(2128) with irreducible polynomial: 𝑥128 + 𝑥7 + 𝑥2 + 𝑥 + 1.
𝛼 in (7)–(8) is 2 or equivalently polynomial 𝑥 in GF(2128).
In Listing 2, look for the code commented with alpha^j for the Galois-field multi-
plication.

• Uses ciphertext stealing to cater for the situations where a sector size is not an
integer multiple of the AES block size, because some hard disk implementations
include an 8-byte non-cryptographic checksum at the end of a sector, which like
normal content also needs to be encrypted [BGH+12, Sec. 2].
See Figures 12–13.

XTS-AES encryption and decryption:

To encrypt plaintext block 𝑃 in data unit
𝑖, block 𝑗 into ciphertext block 𝐶:

𝐶 = Enc(𝐾1, 𝑃 ⊕ 𝑇) ⊕ 𝑇, where
𝑇 = Enc(𝐾2, 𝑖) ⊗ 𝛼𝑗.

(7)

See Figure 10.

To decrypt ciphertext block 𝐶 in data
unit 𝑖, block 𝑗 into plaintext block 𝑃:

𝑃 = Dec(𝐾1, 𝐶 ⊕ 𝑇) ⊕ 𝑇, where
𝑇 = Enc(𝐾2, 𝑖) ⊗ 𝛼𝑗.

(8)

See Figure 11.

17

IEEE Std 1619-2018
IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices

13
Copyright © 2019 IEEE. All rights reserved.

Figure 1—Diagram of XTS-AES blockEnc procedure

5.3.2 XTS-AES encryption of a data unit

The XTS-AES encryption procedure for a data unit of plaintext of 128 or more bits is modeled with
Equation (2):

C Key P i← ()XTS-AES-Enc , , (2)

where

Key is the 256 or 512 b XTS-AES key
P is the plaintext
i is the value of the 128-b tweak (see 5.1)
C is the ciphertext resulting from the operation, of the same bit-size as P

The plaintext data unit is first partitioned into m +1 blocks, as follows:

P P P Pm m= … −0 1 |

where m is the largest integer such that 128 m is no more than the bit-size of P , the first m blocks P Pm0 1, ,… −
are each exactly 128 b long, and the last block Pm is between 0 and 127 b long (Pm could be empty, i.e., 0 b
long). The key is parsed as a concatenation of two fields of equal size called Key1 and Key2 such that:
Key Key Key= 1 2| . The ciphertext C is then computed by the following or an equivalent sequence of steps:

a) for q ← 0 to m-2 do

1) Cq ← XTS-AES-blockEnc(Key, Pq, i, q)

b) b ← bit-size of Pm

c) if b = 0 then do the following

Authorized licensed use limited to: University of South Australia. Downloaded on September 11,2022 at 23:10:43 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1619-2018
IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices

15
Copyright © 2019 IEEE. All rights reserved.

i is the value of the 128-b tweak (see 5.1)
j is the sequential number of the 128-b block inside the data unit
P is the 128-b block of plaintext resulting from the operation

The key is parsed as a concatenation of two fields of equal size called Key1 and Key2 such that:
Key Key Key= 1 2| . The plaintext shall then be computed by the following or an equivalent sequence of steps
(see Figure 3):

a) T ← AES-enc(Key2, i) ⊗ αj

b) CC ← C ⊕ T

c) PP ← AES-dec(Key1, CC)

d) P ← PP ⊕ T

AES-dec K C,() is the procedure of decrypting ciphertext C using AES algorithm with key K , according to
NIST FIPS-197. The multiplication and computation of power in step a) is executed in GF(2128), where α is
the primitive element defined in 4.2 (see 5.2).

Figure 3—Diagram of XTS-AES blockDec procedure

5.4.2 XTS-AES decryption of a data unit

The XTS-AES decryption procedure for a data unit ciphertext of 128 or more bits is modeled with Equation (4).

P Key C i← ()XTS-AES-Dec , , (4)

where

Key is the 256 or 512-b XTS-AES key
C is the ciphertext corresponding to the data unit

Authorized licensed use limited to: University of South Australia. Downloaded on September 11,2022 at 23:10:43 UTC from IEEE Xplore. Restrictions apply.

Figure 10: Encrypting a plaintext block
𝑃 using XTS-AES [IEE19, Figure 1].

Figure 11: Decrypting a ciphertext block
𝐶 using XTS-AES [IEE19, Figure 3].

Listing 2: OpenSSL implementation of XEX in crypto/modes/xts128.c. This is a sani-
tised, little-endian, encryption-only version of function CRYPTO_xts128_encrypt. Ci-
phertext stealing is implemented in crypto/modes/cts128.c.

1 int CRYPTO_xts128_encrypt(const XTS128_CONTEXT *ctx,

2 const unsigned char iv[16],

3 const unsigned char *inp, unsigned char *out,

4 size_t len, int enc)

5 {

6 DECLARE_IS_ENDIAN;

7 union {

8 u64 u[2];

9 u32 d[4];

10 u8 c[16];

11 } tweak, scratch;

12 unsigned int i;

14 if (len < 16) return -1;

16 memcpy(tweak.c, iv, 16);

17 (*ctx->-block2) (tweak.c, tweak.c, ctx->-key2);

19 if (!enc &&& (len % 16)) len -= 16;

21 while (len >>= 16) {

22 scratch.u[0] = ((u64_a1 *)inp)[0] ^ tweak.u[0];

23 scratch.u[1] = ((u64_a1 *)inp)[1] ^ tweak.u[1];

24 (*ctx->-block1) (scratch.c, scratch.c, ctx->-key1);

25 ((u64_a1 *)out)[0] = scratch.u[0] ^^= tweak.u[0];

26 ((u64_a1 *)out)[1] = scratch.u[1] ^^= tweak.u[1];

28 inp += 16; out += 16; len -= 16;

30 if (len === 0) return 0;

32 unsigned int carry, res;

34 /* alpha^j */

35 res = 0x87 & (((int)tweak.d[3]) >>> 31); /* 0x87 = 135 = x^7+x^2+x+1 */

36 carry = (unsigned int)(tweak.u[0] >>> 63);

37 tweak.u[0] = (tweak.u[0] <<< 1) ^ res;

38 tweak.u[1] = (tweak.u[1] <<< 1) | carry;

39 }

18

https://github.com/openssl/openssl/blob/master/crypto/modes/xts128.c
https://github.com/openssl/openssl/blob/master/crypto/modes/cts128.c

41 if (enc) {

42 for (i = 0; i < len; +++i) {

43 u8 c = inp[i];

44 out[i] = scratch.c[i];

45 scratch.c[i] = c;

46 }

47 scratch.u[0] ^^= tweak.u[0];

48 scratch.u[1] ^^= tweak.u[1];

49 (*ctx->-block1) (scratch.c, scratch.c, ctx->-key1);

50 scratch.u[0] ^^= tweak.u[0];

51 scratch.u[1] ^^= tweak.u[1];

52 memcpy(out - 16, scratch.c, 16);

53 } else {

54 /* decryption code omitted */

55 }

57 return 0;

58 }

IEEE Std 1619-2018
IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices

14
Copyright © 2019 IEEE. All rights reserved.

1) Cm–1 ← XTS–AES-blockEnc(Key, Pm–1, i, m–1)

2) Cm ← empty

d) else do the following:

1) CC ← XTS-AES-blockEnc(Key, Pm–1, i, m–1)

2) Cm ← first b bits of CC

3) CP ← last (128–b) bits of CC

4) PP ← Pm | CP

5) Cm–1 ← XTS-AES-blockEnc(Key, PP, i, m)

e) C ← C0|… |Cm–1|Cm

An illustration of encrypting the last two blocks P Pm m�1 in the case that Pm is a partial block (b > 0) is
provided in Figure 2.

Figure 2—XTS-AES encryption of last two blocks when last block is 1 b to 127 b

NOTE—If the size of the data unit within a particular key scope is defined as a non-multiple of 128 b, then each data unit
within the key scope uses ciphertext stealing.

5.4 XTS-AES decryption procedure

5.4.1 XTS-AES-blockDec procedure, decryption of a single 128-b block

The XTS-AES decryption procedure of a single 128-b block is modeled with Equation (3):

P Key C i j← ()XTS-AES-blockDec , , , (3)

where

Key is the 256- or 512-b XTS-AES key
C is the 128-b block of ciphertext

Authorized licensed use limited to: University of South Australia. Downloaded on September 11,2022 at 23:10:43 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1619-2018
IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices

17
Copyright © 2019 IEEE. All rights reserved.

Figure 4—XTS-AES decryption of last two blocks when last block is 1 b to 127 b

6. Using XTS-AES-128 and XTS-AES-256 for encryption of storage
The encryption and decryption procedures described in 5.3 and 5.4 use AES as the basic building block. If
the XTS-AES key consists of 256 b, the procedures use 128-b AES; if the XTS-AES key consists of 512 b,
the procedures use 256-b AES. For completeness, the first mode shall be referred to as XTS-AES-128 and the
second as XTS-AES-256. To be compliant with the standard, the implementation shall support at least one of
the above modes.

Key scope defines the range of data encrypted with a single XTS-AES key. The key scope is represented by the
following three values:

a) Value of the tweak associated with the first data unit in the sequence of data units encrypted by this key

b) The size in bits of each data unit

c) The number of units to be encrypted/decrypted under the control of this key

An implementation compliant with this standard may or may not support multiple data unit sizes.

In an application of this standard to sector-level encryption of a disk, the data unit typically corresponds to a
logical block, the key scope typically includes a range of consecutive logical blocks on the disk, and the tweak
value associated with the first data unit in the scope typically corresponds to the Logical Block Address (LBA)
associated with the first logical block in the range.

An XTS-AES key shall not be associated with more than one key scope.

NOTE—The reason for the previous restriction is that encrypting more than one block with the same key and the same
index introduces security vulnerabilities that might potentially be used in an attack on the system.

Authorized licensed use limited to: University of South Australia. Downloaded on September 11,2022 at 23:10:43 UTC from IEEE Xplore. Restrictions apply.

Figure 12: Ciphertext stealing during
encryption [IEE19, Figure 2].

Figure 13: Ciphertext stealing during
decryption [IEE19, Figure 4].

7 References
[AP16] M. R. Albrecht andK. G. Paterson, LuckyMicroseconds: A Timing Attack on Amazon’s

s2n Implementation of TLS, in Advances in Cryptology – EUROCRYPT 2016 (M. Fis-
chlin and J.-S. Coron, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2016,
pp. 622–643.

[AP13a] N. AlFardan and K. Paterson, Lucky Thirteen: Breaking the TLS and DTLS Record
Protocols, web site, February 2013. Available at http://www.isg.rhul.ac.uk/tls/

Lucky13.html.
[AP13b] N. J. AlFardan andK. G. Paterson, Lucky thirteen: Breaking the TLS andDTLS record

protocols, in 2013 IEEE Symposium on Security and Privacy, 2013, pp. 526–540. https:
//doi.org/10.1109/SP.2013.42.

[Aum21] J.-P. Aumasson, Crypto Dictionary: 500 Tasty Tidbits for the Curious Cryptographer, No
Starch Press, 2021.

[BGH+12] M. V. Ball, C. Guyot, J. P. Hughes, L. Martin, and L. C. Noll, The XTS-AES disk en-
cryption algorithm and the security of ciphertext stealing, Cryptologia 36 no. 1 (2012),
70–79. https://doi.org/10.1080/01611194.2012.635115.

19

http://www.isg.rhul.ac.uk/tls/Lucky13.html
http://www.isg.rhul.ac.uk/tls/Lucky13.html
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1080/01611194.2012.635115

[Bar20] E. Barker, Guideline for Using Cryptographic Standards in the Federal Government:
Cryptographic Mechanisms, Special Publication 800-175B Revision 1, NIST, 2020.
https://doi.org/10.6028/NIST.SP.800-175Br1.

[BRRS09] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers, Format-preserving encryption,
in Selected Areas in Cryptography (M. J. Jacobson, V. Rijmen, and R. Safavi-Naini, eds.),
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 295–312.

[BR05] M. Bellare and P. Rogaway, Introduction to modern cryptography, 2005. Available at
https://cseweb.ucsd.edu/~mihir/papers/br-book.pdf.

[Dwo01] M. Dworkin, Recommendation for block cipher modes of operation: Methods and tech-
niques, NIST Special Publication 800-38A, 2001. Available at https://csrc.nist.gov/
publications/detail/sp/800-38a/final.

[Dwo04] M. Dworkin, Recommendation for block cipher modes of operation: The CCM
mode for authentication and confidentiality, NIST Special Publication 800-38C, May
2004, updated in 2007. Available at https://csrc.nist.gov/publications/detail/

sp/800-38c/final.
[Dwo05] M. Dworkin, Recommendation for block cipher modes of operation: The CMAC mode

for authentication, NIST Special Publication 800-38B, May 2005. https://doi.org/
10.6028/NIST.SP.800-38B.

[Dwo10a] M. Dworkin, Recommendation for block cipher modes of operation: The XTS-AES mode
for confidentiality on storage devices, NIST Special Publication 800-38E, 2010. Avail-
able at https://csrc.nist.gov/publications/detail/sp/800-38e/final.

[Dwo10b] M. Dworkin, Recommendation for block cipher modes of operation: Three variants of
ciphertext stealing for CBC mode, Addendum to NIST Special Publication 800-38A,
October 2010, under revision by NIST as of 13 Sep 2022.

[Dwo12] M. Dworkin, Recommendation for block cipher modes of operation: Methods for key
wrapping, NIST Special Publication 800-38F, 2012. Available at https://csrc.nist.
gov/publications/detail/sp/800-38f/final.

[Dwo19] M. Dworkin, Recommendation for block cipher modes of operation: Methods for format-
preserving encryption, Draft NIST Special Publication 800-38G Revision 1, February
2019. https://doi.org/https://doi.org/10.6028/NIST.SP.800-38Gr1-draft.

[Hou09] R. Housley, Cryptographic Message Syntax (CMS), IETF RFC 5652, 2009, derived
from PKCS #7 version 1.5 in RFC 2315. Available at https://www.rfc-editor.org/
rfc/rfc5652.

[HD09] R. Housley and M. Dworkin, Advanced Encryption Standard (AES) Key Wrap with
Padding Algorithm, IETF RFC 5649, August 2009.

[IEE19] IEEE, IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage
Devices, IEEE Std 1619-2018 (Revision of IEEE Std 1619-2007), 2019. https://doi.
org/10.1109/IEEESTD.2019.8637988.

[ISO17] ISO/IEC, Information technology — security techniques — modes of operation for
an n-bit block cipher, ISO/IEC 10116:2017, 2017. Available at https://www.iso.org/
standard/64575.html.

[Kal98] B. Kaliski, PKCS #7: Cryptographic Message Syntax Version 1.5, IETF RFC 2315,
1998. Available at https://www.ietf.org/rfc/rfc2315.txt.

[KL21] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 3rd ed., CRC Press,
2021. Available at https://ebookcentral.proquest.com/lib/unisa/detail.action?
docID=6425020.

[Kra94] H. Krawczyk, LFSR-based hashing and authentication, in Advances in Cryptology —
CRYPTO ’94 (Y. G. Desmedt, ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, 1994,
pp. 129–139.

[LRW02] M. Liskov, R. L. Rivest, and D. Wagner, Tweakable block ciphers, in Advances in Cryp-
tology — CRYPTO 2002 (M. Yung, ed.), Springer Berlin Heidelberg, Berlin, Heidelberg,
2002, pp. 31–46.

[Mar10] L. Martin, XTS: A mode of AES for encrypting hard disks, IEEE Security & Privacy 8
no. 3 (2010), 68–69. https://doi.org/10.1109/MSP.2010.111.

20

https://doi.org/10.6028/NIST.SP.800-175Br1
https://cseweb.ucsd.edu/~mihir/papers/br-book.pdf
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38c/final
https://csrc.nist.gov/publications/detail/sp/800-38c/final
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-38B
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://csrc.nist.gov/publications/detail/sp/800-38f/final
https://csrc.nist.gov/publications/detail/sp/800-38f/final
https://doi.org/https://doi.org/10.6028/NIST.SP.800-38Gr1-draft
https://www.rfc-editor.org/rfc/rfc5652
https://www.rfc-editor.org/rfc/rfc5652
https://doi.org/10.1109/IEEESTD.2019.8637988
https://doi.org/10.1109/IEEESTD.2019.8637988
https://www.iso.org/standard/64575.html
https://www.iso.org/standard/64575.html
https://www.ietf.org/rfc/rfc2315.txt
https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=6425020
https://ebookcentral.proquest.com/lib/unisa/detail.action?docID=6425020
https://doi.org/10.1109/MSP.2010.111

[Mau91] U. M. Maurer, New approaches to the design of self-synchronizing stream ciphers, in
Advances in Cryptology — EUROCRYPT ’91 (D. W. Davies, ed.), Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1991, pp. 458–471.

[NIS07] NIST, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, NIST Special Publication 800-38D, 2007, under review as of 6 Aug
2021. Available at https://csrc.nist.gov/publications/detail/sp/800-38d/final.

[PRS11] K. G. Paterson, T. Ristenpart, and T. Shrimpton, Tag size does matter: Attacks and
proofs for the TLS record protocol, in Advances in Cryptology – ASIACRYPT 2011 (D. H.
Lee and X. Wang, eds.), LNCS 7073, Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 372–389. https://doi.org/10.1007/978-3-642-25385-0_20.

[PBO+03] B. Preneel, A. Biryukov, E. Oswald, B. V. Rompay, L. Granboulan, E. Dottax, S. Mur-
phy, A. Dent, J. White, M. Dichtl, S. Pyka, M. Schafheutle, P. Serf, E. Biham,
E. Barkan, O. Dunkelman, J.-J. Quisquater, M. Ciet, F. Sica, L. Knudsen, M. Parker,
and H. Raddum, NESSIE Security Report, Deliverable D20, NESSIE Consortium,
February 2003, Version 2.0.

[Res18] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3, IETF RFC 8446,
August 2018. Available at https://www.rfc-editor.org/rfc/rfc8446.

[Rog04] P. Rogaway, Efficient instantiations of tweakable blockciphers and refinements tomodes
ocb and pmac, in Advances in Cryptology - ASIACRYPT 2004 (P. J. Lee, ed.), Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 16–31.

[RWZ12] P. Rogaway, M. Wooding, and H. Zhang, The security of ciphertext stealing, in Fast
Software Encryption (A. Canteaut, ed.), Springer BerlinHeidelberg, Berlin, Heidelberg,
2012, pp. 180–195.

[SH02] J. Schaad and R. Housley, Advanced Encryption Standard (AES) Key Wrap Algorithm,
IETF RFC 3394, 2002. Available at https://www.rfc-editor.org/rfc/rfc3394.

[Sch15] B. Schneier, Applied Cryptography, Second Edition: Protocols, Algorithms, and Source
Code in C, 20th anniversary edition ed., Wiley, 2015. Available at https://learning.
oreilly.com/library/view/applied-cryptography-protocols/9781119096726.

[Sma16] N. P. Smart, Cryptography Made Simple, Information Security and Cryptography,
Springer International Publishing Switzerland, 2016. https://doi.org/10.1007/

978-3-319-21936-3.
[vJ11] H. C. van Tilborg and S. Jajodia (eds.), Encyclopedia of Cryptography and Security,

Springer, Boston, MA, 2011. https://doi.org/10.1007/978-1-4419-5906-5.

21

https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://doi.org/10.1007/978-3-642-25385-0_20
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc3394
https://learning.oreilly.com/library/view/applied-cryptography-protocols/9781119096726
https://learning.oreilly.com/library/view/applied-cryptography-protocols/9781119096726
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.1007/978-1-4419-5906-5

	Introduction
	CBC
	CFB
	OFB
	CTR
	XTS-AES
	References

