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Supplementary Lecture D: Deriving the Kalman filter

Dr. Yee Wei Law 〈yeewei.law@unisa.edu.au〉

The purpose of this supplementary lecture is to provide a Bayesian perspective to the Kalman
filter and a derivation of the algorithm. The derivation should shed some useful insight into the
working of the algorithm.

1 State estimation as a Bayesian filtering problem
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Figure 1: State estimation in the presence of process noise w and measurement noise v.

State estimation (see Figure 1) is an area where control meets signal processing, machine learn-
ing, and other statistically based disciplines. In fact, state estimation can be viewed as a Bayesian
filtering problem. The Bayesian perspective of state estimation is especially useful because it
highlights the stochastic nature of the problem. The adjective “Bayesian” refers to one of the
most fundamental theorems in statistics: Bayes’ theorem. Given two random variables X and
Y , representing “cause” and “effect” respectively, Bayes’ theorem states

pX(x|Y = y) =
pY (y|X = x)pX(x)

pY (y)
, (1)

or in a more user-friendly way,

p(cause|effect) = p(effect|cause)p(cause)
p(effect)

,

where

• pX denotes the probability density function (pdf) of random variable X ;
• pX(x)

def
= pX(X = x) is called the prior pdf (note X is a random variable, x is a value);

• pY (y|X = x) is called the likelihood;
• pX(x|Y = y) is called the posterior pdf ;
• pY (y) is called the normalization constant.
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Detail: Prior and posterior

In the literature, it is common to use “posterior” and “prior” interchangeably with their
Latin equivalents, which are “a posteriori” and “a priori” respectively.

Essentially, Bayes’ theorem solves a statistical inverse problem (i.e., the statistical version of
Ax = b). For state estimation, we usually deal with vectors, in which case Eq. (1) is written
as

p(x|y) = p(y|x)p(x)
p(y)

, (2)

omitting the subscripts and the symbols for randomvectors, i.e., p(x|y) actuallymeans pX(x|Y =
y).

To apply Bayes’ theorem to state estimation, suppose we takex as a particular system state value,
and y as a particular observed output value, as shown in Figure 1. Then,

• The prior probability is the probability of having state x.
• The likelihood is the pdf of the observed output if the state is x.
• The posterior probability gives us the probability of having state x when the observed output

is y.

Eq. (2) allows us to calculate the pdf of the current state given the current observed output, if the
current observed output depends only on the current state, and the current state is independent
of all preceding states and inputs — this might not reflect reality.

Let us extend Eq. (2) to take into account the entire history of system input and output, we can
write

p(xk|y1:k,u1:k) =
p(y1:k|xk,u1:k)p(xk,u1:k)

p(y1:k,u1:k)
, (3)

where the subscript “1 : k” means “the first to the kth time interval”. Removing the condition
u1:k which is common to both sides of the equation above, we get

p(xk|y1:k) =
p(y1:k|xk)p(xk)

p(y1:k)
. (4)

Note thaty1:k is amatrix whose number of columns increases with time. At some point, thema-
trix will become so large that the calculation of the conditional probabilities become intractable.
Consequently, some assumptions need to be made to simplify the calculation of the posterior
pdf [Sär13, p. 10].
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Figure 2: Assumptions for simplifying the calculation of p(xk|y1:k).

For the assumptions, consider the discrete-time linear state equation: xk = Fk−1xk−1+Gk−1uk−1.
This equation suggests
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Assumption 1

The current state depends only on the previous state and previous input, i.e., the system
is Markovian.

Next, consider the discrete-time linear output equation: yk = Hkxk. This equation suggests

Assumption 2

The current output depends only on the current state.

The assumptions are illustrated in Figure 2, Applying the assumptions to Eq. (4), we get

p(xk|y1:k) =
p(y1:k|xk)p(xk)

p(y1:k)

=
p(yk,y1:(k−1)|xk)p(xk)

p(yk,y1:(k−1))
(splitting y1:k into yk,y1:(k−1))

=
p(yk|y1:(k−1),xk)p(y1:(k−1)|xk)p(xk)

p(yk|y1:(k−1))p(y1:(k−1))

=
p(yk|y1:(k−1),xk)p(xk|y1:(k−1))p(y1:(k−1))p(xk)

p(yk|y1:(k−1))p(xk)p(y1:(k−1))
(Bayes’ theorem)

=
p(yk|y1:(k−1),xk)p(xk|y1:(k−1))

p(yk|y1:(k−1))
(cancelling out common factors)

=
p(yk|xk)p(xk|y1:(k−1))∫
p(yk|xk)p(xk|y1:(k−1)) dxk

(∵ Assumption 2).

(5)

Above, the conditional probability p(xk|y1:(k−1)) is given by theChapman-Kolmogorov equation
[RAG04, p. 5]:

p(xk|y1:(k−1)) =

∫
p(xk|xk−1,uk−1)p(xk−1,uk−1|y1:(k−1)) dxk−1 (∵ Assumption 1)

=

∫
p(xk|xk−1,uk−1)p(xk−1|y1:(k−1)) dxk−1.

(6)

Eqs. (5)–(6) are called the Bayesian filtering equations [Sär13, Theorem 4.1]. The equations
show that p(xk|y1:k) can be calculated from p(xk|y1:(k−1)), which in turn can be calculated
from p(xk−1|y1:(k−1)), which in turn can be calculated from p(xk−1|y1:(k−2)), and so on and so
forth until the calculation reaches p(x0|y−1) = p(x0), since y−1 does not exist. Thus, there is
a recursive relationship between the posterior pdf p(xk|y1:k) and the prior pdf p(xk|y1:(k−1)),
that forms the basis of Bayesian (and hence Kalman) filtering. Once the posterior pdf is ob-
tained, there are several statistically meaningful ways of extracting an estimate of xk, denoted
x̂k from the posterior pdf:

• The conditional mean estimate [HL64] is defined as

x̂CM
k|k

def
= E

{
xk|y1:k

}
=

∫
xkp(xk|y1:k) dxk, (7)

where E is the expectation operator, and the subscript “k|k” means the “the kth state given k
observed outputs”.

• The maximum a posteriori estimate (MAP estimate) is defined as

x̂MAP
k|k

def
= argmax

xk

p(xk|y1:k). (8)
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x̂MAP
k|k corresponds to the mode of xk (see Figure 3). MAP estimation is problematic when

p(xk|y1:k) has multiple local maxima.

• The minimax estimate is defined as

x̂MM
k|k

def
= argmin

x̂k|k
max ‖xk − x̂k|k‖. (9)

x̂MM
k|k corresponds to the median of xk (see Figure 3).

• The maximum likelihood estimate is equivalent to the MAP estimate, except that the prior
distribution is assumed to be a uniform distribution.

• Other estimates include theminimumconditional inaccuracy,minimumconditionalKullback-
Leibler divergence, and minimum free energy estimates [Che03, p. 10].

𝒙𝑘

𝑝 𝒙𝑘|𝒚1:𝑘
MAP estimate

Conditional mean estimate
Minimax estimate

Local maximum makes MAP 
estimation problematic

Figure 3: Different estimates based on the posterior pdf.

Among the different kinds of estimates above, the conditional mean estimate is optimal in the
linear Gaussian model, in terms of the variance of the estimation error (equivalently, mean
squared error).

Linear Gaussian model [Sär13, p. 37]

• The system is linear and stochastic.
• The conditional probabilities p(xk|xk−1,uk−1) and p(yk|xk) are Gaussian, or equiv-

alently, the initial state x0, process noise w, and measurement noise v (see Figure 1)
follow some Gaussian distributions. Note the affine combination of Gaussian random
vectors is also Gaussian.

In other words, in the linear Gaussian model, the conditional mean estimate is also the the
minimum variance estimate or minimum mean squared error estimate (MMSE estimate):

x̂CM
k|k = x̂MMSE

k|k
def
= argmin

x̂k|k
E
{
‖xk − x̂k|k‖2|y1:k

}
. (10)

This model is exactly the basis of the Kalman filter, which provides MMSE estimates of system
states. Before we discuss the model in detail, let us revise some essential statistical concepts.

2 Deriving the Kalman filter

The Kalman filter algorithm provided in Lecture 7 is repeated below:
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Kalman filter
Initialization (k = 0):

x̂+
0 = E{x0}, P+

0 = E
{
(x0 − x̂+

0 )(x0 − x̂+
0 )

>
}
. (11)

Timeupdate / predictionupdate equations for propagating a priori estimates (k = 1, 2, . . .):

x̂−
k = Fk−1x̂

+
k−1 +Gk−1uk−1, (12)

P−
k = Fk−1P

+
k−1F

>
k−1 +Qk−1. (13)

Kalman gain update:

Kk = P−
k H

>
k (HkP

−
k H

>
k +Rk)

−1. (14)

Measurement update equations for updating a posteriori estimates:

x̂+
k = x̂−

k +Kk(yk −Hkx̂
−
k ) = (I−KkHk)x̂

−
k +Kkyk, (15)

Joseph stabilized version: P+
k = (I−KkHk)P

−
k (I−KkHk)

> +KkRkK
>
k . (16)

Standard form: P+
k = (I−KkHk)P

−
k . (17)

Information filter form: P+
k = [(P−

k )
−1 +H>

k R
−1
k Hk]

−1. (18)

In the linear Gaussian model,

• xk is Gaussian.
• Since xk and vk are Gaussian, yk = Hxk + vk is Gaussian.
• In fact, xk and yk are jointly Gaussian [AM79, p. 18].

Consequently, the conditional mean estimator, which is a linear estimator [AM79, Theorem
2.1], is also an MMSE estimator [AM79, Theorem 2.2]. Furthermore, the MMSE estimator is
unbiased [AM79, Theorem 2.3], i.e., the estimation error is zero on average.

Detail: Linear filter
While MMSE estimators are generally nonlinear in terms of the observations, it is im-
portant to realize that the Kalman filter is a linear (more accurately, affine) filter. In gen-
eral, for any jointly distributed random vectorsX andY , the conditional mean estimator
E{X|Y = y} can be expressed as some affine function of y:

Ay + b,

for some matrix A and vector b, which are functions of the means of X and Y , and
covariances between X and Y [AM79, Theorem 2.1].

The facts we have collected so far culminate in the following paramount theorem for the deriva-
tion of the Kalman filter:

Theorem 1: Projection theorem (aka orthogonality principle) [AM79, Theorem 2.5]

IfX andY are jointly Gaussian, and x̂ = E{X|Y = y} is a linear MMSE estimate, then
the error (X − x̂) and observation y are mutually orthogonal, i.e.,

E
{
(X − x̂)y>

}
= 0. (19)
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For deriving the Kalman filter, this is the strategy we are following:

1. We start by defining the posterior estimate x̂+
k as a linear MMSE estimate, and expressing it

as a linear combination of the prior estimate x̂−
k and the new measurement yk:

x̂+
k = Lkx̂

−
k +Kkyk, (20)

where the weights Lk and Kk are to be determined.

Quiz 1

Why is the input uk not included in Eq. (20)?

2. We then apply the orthogonality principle to determine Lk and Kk. The orthogonality prin-
ciple suggests

E
{
e+k y

>
i

}
= 0, ∀i = 1, 2, . . . , k − 1, (21)

where e+k
def
= xk − x̂+

k . In other words,

E
{
e+k y

>
i

}
= E

{(
xk − Lx̂−

k −KkHkxk −Kkvk

)
y>
i

}
= E

{
(I−KkHk − Lk)xky

>
i + Lk

(
xk − x̂−

k

)
y>
i

}
= (I−KkHk − Lk) E

{
xky

>
i

}
= 0.

For the preceding equation to hold for arbitrary values of xk and yi,

I−KkHk − Lk = 0 =⇒ Lk = I−KkHk. (22)

Substituting (22) into (20) gives us the time-update equation for x̂+
k :

x̂+
k = (I−KkHk) x̂

−
k +Kkyk = x̂−

k +Kk

(
yk −Hkx̂

−
k

)
, (23)

where Kk is called the Kalman gain; (yk −Hkx̂
−
k ) is called an innovation. We still need to

derive an expression for Kk.

Earlier when we invoked the orthogonality principle:

E
{
e+k y

>
i

}
= 0, ∀i = 1, 2, . . . , k − 1, (24)

we did not consider the case i = k, which we do now:

E
{
e+k y

>
k

}
= 0 and furthermore E

{
e+k ŷ

>
k

}
≈ 0, (25)

where ŷk
def
= Hkx̂

−
k is the predicted value of yk based on x̂−

k . Changing ≈ in Eq. (25) to
equality gives us

E
{
e+k ŷ

>
k

}
= E

{
e+k

(
Hkx̂

−
k

)>}
= 0. (26)

Therefore,

E
{
e+k y

>
k

}
− E

{
e+k ŷ

>
k

}
= E

{
e+k

(
Hke

−
k + vk

)>}
= 0, (27)

where e−k
def
= xk − x̂−

k . We can simplify the above expression further by expressing e+k in
terms of e−k :

e+k = xk − x̂−
k −Kkyk +KkHkx̂

−
k

= xk − x̂−
k −KkHkxk −Kkvk +KkHkx̂

−
k

= (I−KkHk) e
−
k −Kkvk.

(28)

6



Substituting (28) into (27) gives us

E
{
e+k (Hke

−
k + vk)

>
}
= E

{[
(I−KkHk)e

−
k −Kkvk

] [
(e−k )

>H>
k + v>

k

]}
= E

{
(I−KkHk)e

−
k (e

−
k )

>H>
k −Kkvkv

>
k

}
= (I−KkHk) E

{
e−k (e

−
k )

>
}
H>

k −Kk E
{
vkv

>
k

}
= (I−KkHk) E

{
e−k (e

−
k )

>
}
H>

k −KkRk

= 0.

(29)

At this point, we identify E
{
e−k (e

−
k )

>} as the prior error covariance, hence

(I−KkHk)P
−
k H

>
k −KkRk = P−

k H
>
k −Kk(HkP

−
k H

>
k +Rk) = 0. (30)

∴ Kk = P−
k H

>
k (HkP

−
k H

>
k +Rk)

−1. (31)

3. Having identified the gains Lk and Kk in Eq. (20), we can now relate the posterior state
estimate x̂+

k to the prior state estimate x̂−
k , and on top of that, the posterior error covariance

P+
k to the prior error covariance P−

k :

P+
k = E

{
e+k (e

+
k )

>
}
= E

{[
(I−KkHk)e

−
k −Kkvk

] [
(e−k )

>(I−KkHk)
> − v>

k K
>
k

]}
.

(32)

∴ P+
k = (I−KkHk)P

−
k (I−KkHk)

> +KkRkK
>
k . (33)

The above expression forP+
k is called the Joseph stabilized version or Joseph form of the co-

variance update equation, and it is more numerically robust than Eqs. (17) and (18). We now
have all the expressions necessary for computing posterior estimates from prior estimates.

4. We now look at computing prior estimates from posterior estimates, i.e., x̂−
k from x̂+

k−1; P
−
k

fromP+
k−1. Bear in mind for this, yk is not yet available. We simply apply the plant model to

obtain
x̂−
k = Fk−1x̂

+
k−1 +Gk−1uk−1. (34)

To relate P−
k to P+

k−1, we observe

e−k = xk − Fk−1x̂
+
k−1 −Gk−1uk−1

= Fk−1xk−1 +Gk−1uk−1 +wk−1 − Fk−1x̂
+
k−1 −Gk−1uk−1

= Fk−1e
+
k−1 +wk−1.

(35)

Consequently,

P−
k = E

{
e−k (e

−
k )

>
}
= Fk−1P

+
k−1F

>
k−1 +Qk−1. (36)

This concludes our derivation of the Kalman filter. References providing alternative derivatives
include [AM79, Sects. 3.1, 5.4], [IN01, Sect. 2.5.1], [Lin07, Sect. 4.5], [Hay09, Sect. 14.3],
[Gu12, Sect. 5.1.2].
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