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1 Introduction

In the previous lecture, we discussed observability and observer design. For observer design,
we now know how to design a Luenberger observer, which is a full-order closed-loop observer.
However, the Luenberger observer is susceptible tomeasurement noise. This iswhere theKalman
filter comes in.

The Kalman filter is an optimal observer, and is often referred to as a linear quadratic estimator,
because it minimizes a quadratic function of the estimation error for a linear dynamic system
with white measurement noise and white disturbance noise (the meaning of “white” will be
clarified later). The “filter” in “Kalman filter” refers to the solution of an inverse problem, where
we are given the values of the dependent variables to find the values of the independent vari-
ables. Figure 1 shows the distinction between prediction, filtering and smoothing. Whereas the
Kalman filter is a discrete-time estimator, the Kalman-Bucy filter, invented after the Kalman
filter, is a continuous-time filter. This lecture covers only the Kalman filter and its extension for
nonlinear processes, the extended Kalman filter.

The Kalman filter is one of the greatest achievements in engineering in the 20th century. As a
state estimation tool in control theory, the Kalman filter and its extensions are widely used in
the predictive design of estimation and control systems — these include system identification,
robotics, process control, power system control, and the tracking and navigation of all sorts of
vehicles. In fact, the earliest applications of the Kalman filter were found in aerospace [GA15,
p. 18], where it was used for the guidance and navigation of the Apollo spacecraft and the C-5A
transport aircraft (see Figure 2). In short, it led humankind into the Space Age.

Quiz 1

What are ArduPilot and PX4? Do they use the extended Kalman filter? If yes, what do
they use it for?
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10 Intr oduction

Figure 1.6: Stateestimation problems can be divided into optimal prediction, filtering
and smoothing depending on the time span of measurements available with respect to the
estimated state time span.
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Figure 1.7: The result of computing the filtering distributions for the discrete-time res-
onator model. Theestimatesare the posterior means of the filtering distributions and the
quantiles are the 95% quantiles of the filtering distributions.

• Kalman filter (KF) is a closed form solution to the discrete linear filtering
problem. Due to linear Gaussian model assumptions the posterior distribu-
tion is exactly Gaussian and no numerical approximations are needed.

• Rauch-Tung-Striebel smoother(RTSS) is the corresponding closed form smoother
to linear Gaussian state space models.
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Figure 1: Given samples from t = 1 to t = n,
“prediction” estimates the value of
the independent variable at t = i,
where i > n; “filtering” estimates
the value of the independent vari-
able at t = n; “smoothing” estimates
the value of the independent vari-
able at t = i, where i < n.

Figure 2: A C-5A military transport aircraft
(U.S. Air Force photo by Brett Snow
[Public domain], via Wikimedia
Commons).

As a signal processing and time series analysis tool in estimation theory, which is used in nearly
every branch of science or engineering, the Kalman filter and its extensions can be found in
a diverse range of applications, including global positioning, radars, communications, voice
recognition, speech enhancement, computer vision, video stabilization, surveying, economet-
rics, transportation planning, biomedical research, risk assessment, fault diagnosis, earthquake
prediction, condition-basedmaintenance, performance (or health or product quality) monitor-
ing, groundwater flow and contaminant transport modeling [Che12], [HRW12], [Gib11, p. 1],
[DDS14, Sect. 6.1]. The list of applications seems inexhaustible. In one of the course practicals,
we will learn how to apply Kalman filtering to attitude/orientation estimation.
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Figure 3: State estimation in the presence of process noise w and measurement noise v.

The problem we are trying to solve in this lecture is that of state estimation. Figure 3 shows a
process or plant taking input u and describable using states x. The states are subjected to pro-
cess noise w, and the output measurements are subjected to measurement noise v. This lecture
addresses the problem of estimating x in discrete time for the case where the process, w and
v satisfy the linear Gaussian model. The ensuing discussion will first cover the essential prob-
abilistic and statistical concepts to the point where we can explain the linear Gaussian model,
and then informally derive the Kalman filter algorithm. After that, we will introduce the steady-
state Kalman filter and some sample applications. This lecture ends by introducing the extended
Kalman filter.

2 Revision of essential probabilistic and statistical concepts

Noise is by definition probabilistic. The standard mathematical representation of a noise signal
is a random variable.
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Definition(s): Random variable [MC12, Definition 2.9]

A random variable is a real-valued function of the elements of a sample space. Given an
experiment with sample spaceS, a random variableX maps each possible outcome ξ ∈ S
to a real number X(ξ) as specified by some rule.
• If X maps to a finite number of values, then X is a discrete random variable.
• If X maps to an infinite number of values, then X is a continuous random variable.

In this lecture, we are only concerned with continuous random variables. X is written as X(t)
when it changes with time, so we can use X(t) to represent a noise signal. An example of a
continuous random variable can be defined for the random experiment of throwing a javelin
in a 100 m-long field. The sample space is S = [0, 100]. Define outcome ξ ∈ S as where
the javelin lands, then we can define a random variable X such that X(ξ) = x, where x = ξ
(this is an example of “some rule” in the definition above). Thus, a simpler (non-rigorous) way to
understand a random variable is a variable (X), rather than a function, that takes on a value that
is less than a certain value (x) at a certain probability — this probability is called a distribution
function.

Quiz 2

In the preceding discussion, why “takes on a value that is less than a certain value”, rather
than simply “takes on a certain value”?

Definition(s): Distribution function [GRG01, Sects. 2.1 and 2.3]

The distribution function of a random variableX is the function FX : R 7→ [0, 1] given by
FX(x) = Pr{X ≤ x}. If X is continuous, the function pX : R 7→ [0,∞] whose integral
gives the distribution function is called the probability density function (pdf), i.e.,

FX(x) =

∫ x

−∞
pX(u) du, x ∈ R.

We write X ∼ pX to mean X follows the pdf pX .

In this lecture, we are only concerned with pdfs and only Gaussian/normal pdfs. The pdf of a
random variable can be characterized by two parameters:

• mean: E{X}
• variance: Var{X} def

= E
{
(X − E{X})2

}
= E{X2} − E{X}2.

While the mean captures the expected value of the random variable, the variance captures the
“spread” of the pdf. If random variable X follows the Gaussian distribution with mean µ =
E{X} and variance σ2 = Var{X}, then we write X ∼ N (µ, σ2), and X has the pdf

pX(x) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
. (1)

When there are multiple noise signals, such as the case withw and v in Figure 3, we need to use
random vectors. A random vector is simply a vector of random variables. Whereas a random
variable follows a univariate pdf, a random vector follows a multivariate pdf. The multivariate
pdf of the random vector X = [X1 X2 · · · Xn]

> is given by the joint pdf of X1, X2, . . . , Xn,
denoted pX . The mean vector of pX is given by the means of the elements of X , i.e.,

E{X} =
[
E{X1} E{X2} · · · E{Xn}

]>
.
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However, for random vectors, the concept of variance is replaced by covariance matrix. If ran-
dom vector X follows the n-variate Gaussian distribution with mean vector µ and covariance
matrix Σ, then we write X ∼ N (µ,Σ), and X has the pdf

pX(x) =
1

(2π)n/2 det(Σ)1/2
exp

[
−1

2
(x− µ)>Σ−1(x− µ)

]
. (2)

In Sect. 2.1, we will see that a valid covariance matrix Σ ensures det(Σ) > 0. The Gaussian
distribution has some interesting and useful properties, the best known of which is that any
affine combination of Gaussian random vectors is also a Gaussian random vector.

Theorem 1: [KC14, Theorem 3.6]

Let X i ∼ N (µi,Σi), i = 1, . . . , N , be independent ni-dimensional random vectors. If
Y =

∑N
i=1(AiX i)+b, whereAi are n×ni constant matrices and b is an n-dimensional

constant vector, then

Y ∼ N

 N∑
i=1

Aiµi + b,
N∑
i=1

AiΣiA
>
i

 .

Quiz 3

If random variable X follows the standard normal distribution, what is the variance of
random variable 2X?

Quiz 4

Suppose X1 ∼ N (µ1,Σ1) and X2 ∼ N (µ2,Σ2) are mutually independent. If Y =
H1X1+H2X2, whereH1 andH2 are constant matrices of appropriate dimensions, then
what is the pdf of Y ?

In the ensuing subsection, we shall look at the definition and properties of the covariancematrix
in details.

2.1 Covariance matrix

Let us first define covariance before we define covariance matrix. The covariance between ran-
dom variables X and Y is defined as

Cov{X,Y } def
= E

{
(X − E{X})(Y − E{Y })

}
= E{XY } − E{X} E{Y }. (3)

Between two random variables, covariance measures their correlation, i.e., how much they
change together. Simplistically speaking, two variables are correlated if they wax and wane
together.

Definition(s): Covariance matrix

The covariancematrix between randomvectorsX = [X1 · · · Xn]
> andY = [Y1 · · · Yn]

>

is defined as

Cov{X,Y } def
= E

{
(X − E{X})(Y − E{Y })>

}
= E{XY >} − E{X} E{Y }>, (4)

that is, the (i, j)th element of Cov{X,Y } is Cov{Xi, Yj}.

The covariance matrix of a multivariate pdf pX , denoted ΣX , is the covariance matrix
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between the random vector X and itself, i.e.,

ΣX = Var{X} def
= Cov{X,X} = E{XX>} − E{X} E{X}>. (5)

Note:

• Whereas X>Y is an inner product (giving a scalar), XY > is an outer product (giving a
matrix).

• For zero-mean X and Y , Cov{X,Y } = E{XY >}, and when E{XY >} = 0, we say X
and Y are mutually orthogonal. Therefore between two zero-mean Gaussian random vec-
tors, orthogonality means zero covariance. The concept of orthogonality is essential for the
derivation of the Kalman filter.

Attention: Orthogonality

To be absolutely clear, between two vectors, orthogonality means zero inner product,
but between two zero-mean, random vectors, orthogonality means zero outer product
in expectation.

A useful property of the covariance matrix has to do with the effect of affine transformation on
a random vector:

Theorem 2: [MC12, Theorem 6.2]

Let X be a random vector, and Y = AX + b. Then,

E{Y } = A E{X}+ b,

Var{Y } = AVar{X}A>.

Another useful and actually fundamental property of covariance matrices is that

Theorem 3: [MC12, Theorem 6.1]

Covariance matrices are symmetric and positive definite.

This is an important consideration for robust numerical computation of the Kalman filter, as
we shall see later. For now, let us learn what positive definiteness means for a symmetric ma-
trix. We start by stating the structure of a matrix determines the nature of its eigenvalues. For
example, a symmetric matrix must have real eigenvalues. A symmetric matrix that is positive
semidefinite must additionally have nonnegative eigenvalues. Positive definiteness is a stronger
quality than positive semidefiniteness, in the sense that the eigenvalues are not just nonnegative,
but positive.

Definition(s): Positive definiteness (see [Mey01, p. 559], [Dei82], [Nah69])

For Hermitian matrix A, the following statements are equivalent, and any one can serve
as the definition of A as positive definite:
• x∗Ax > 0 for all x 6= 0. Note: x∗Ax is called a quadratic form.
• The eigenvalues of A are all positive.
• A can be put in the form A = B∗B or A = BB∗, where B is a nonsingular matrix.

Similarly, the following statements are equivalent, and any one can serve as the definition
of A as positive semidefinite:

• x∗Ax ≥ 0 for all x 6= 0.
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• The eigenvalues of A are all nonnegative.

It is exactly because the covariance matrix is positive definite that in Eq. (2) — the equation for
the multivariate Gaussian pdf — we can always find some nonsingular Q such that Σ = Q∗Q,
and thus

det(Σ) = det(Q∗) det(Q) = det(Q)2 > 0. (6)

The fact that the covariance matrix is positive definite can be used as a diagnostic mechanism
to ensure the computational robustness of the Kalman filter, as we shall see in Sect. 4.2.
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Figure 4: From Example 1: Sample 2-variate Gaussian distributions with different covariance
matrices. On the left, the two variables are uncorrelated. On the right, the two vari-
ables are correlated by a covariance of 0.9. The more correlated the two variables are,
the more linearly related they are.

Example 1

Figure 4, plotted using Listing 1, helps us visualize the effect of different covariance ma-
trices on a 2-variate Gaussian distribution. The covariance matrices are[

1 0
0 1

]
and

[
1 0.9
0.9 1

]
.

Note that we cannot use [
1 1
1 1

]
,

which is positive semidefinite rather than positive definite as required for any covariance
matrix.

Listing 1: Code for Example 1
Mu = [0 0];

figure; rotate3d on;

subplot(1,2,1)

Sigma = [1 0; 0 1];

data = mvnrnd(Mu, Sigma, 2500); p = mvnpdf(data, Mu, Sigma);

scatter3(data(:,1), data(:,2), p);

title('2-variate Gaussian with Sigma=[1 0; 0 1]');

subplot(1,2,2)

Sigma = [1 0.9; 0.9 1];
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data = mvnrnd(Mu, Sigma, 2500); p = mvnpdf(data, Mu, Sigma);

scatter3(data(:,1), data(:,2), p);

title('2-variate Gaussian with Sigma=[1 0.9; 0.9 1]');

At this point, we conclude our revision of essential probabilistic and statistical concepts. In the
next section, we will apply these concepts to an intuitive “derivation” of the Kalman filter. For
detailed discussion of topics not adequately covered in this section, please refer to [MC12] or
Khan Academy.

3 Intuitive derivation of the Kalman filter

This section is dedicated to an intuitive, nonrigorous “derivation” of the Kalman filter, adapted
from Faragher’s article [Far12]. This is by no means a replacement for a rigorous derivation,
which can be found in Supplementary Lecture D, but already this intuitive “derivation” allows
us to bring a few control and estimation concepts together.

Consider a train traveling in one dimension, as in Figure 5. By Newton’s second law, ignoring
friction, we can write down the train’s equation of motion as

ẍ =
1

m
f,

where x is the train’s position, and f is the force produced by the train’s engine. To make the
equation more useful, let us introduce the state s for speed, and apply discretization using the
forward rectangular version of Euler’s method, to get

Acceleration:
sk − sk−1

T
=

1

m
fk−1 =⇒ sk = sk−1 +

T

m
fk−1,

Speed: sk−1 =
xk − xk−1

T
=⇒ xk = xk−1 + Tsk−1.

In the equations above, T is the sample period. Define the state vector asx = [x s]>. Assuming
s can be measured (for example by the Doppler effect), but x cannot, we define the output as
the speed measurement. Then, we can form the discrete-time linear state-space equations

xk =

[
xk
sk

]
=

[
1 T
0 1

]
︸ ︷︷ ︸

Fk−1

[
xk−1

sk−1

]
+

[
0
T
m

]
︸︷︷︸
Gk−1

fk−1 +wk−1,

yk = Hkxk + vk.

(7a)

(7b)

Above,Hk ismeant to capture the physics relating the speed to speedmeasurement, but its exact
content does not concern us here. The noise termswk−1 and vk capture the uncertain and noisy
nature of the system: while vk captures measurement noise, wk−1 captures uncertainties (e.g.,
unaccounted friction) in the model, and disturbances (e.g., track irregularities, wind) acting on
the system.

The problem of state estimation is, at the kth sample period, to determine xk based only on the
system model in the form of Eq. (7), and knowledge of the input fk−1 and output measurement
yk, in the presence of noise wk−1 and vk. In what follows, we outline a solution for this state
estimation problem, based on the assumptions:

1. w and v are zero-mean Gaussian distributed with covariance matrices Q and R respec-
tively, and are mutually independent.
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(a) 𝑘 = 0

𝒙0
+

𝐏0
+

(b) 𝑘 = 1, before acquiring measurement 

(c) 𝑘 = 1, after acquiring measurement

(d) 𝑘 = 1, fusing probability density functions

Figure 5: A train of mass m traveling in one dimension described by state x = [x s]>, where x
represents position and s represents speed. Images adapted from [Far12].

2. x is Gaussian distributed.

Solution outline:

(a) At time k = 0 (see Figure 5(a)), suppose we have an initial state estimate, denoted x̂+
0 .

The accent �̂ denotes “estimate” by convention. The superscript + denotes “a posteriori”
or “posterior”, the meaning of which will become clearer through ensuing discussion. A
sensible value for x̂+

0 is the expected value of x0, i.e.,

x̂+
0 = E{x0}. (8)

The uncertainty in x̂+
0 can be captured by the initial error covariance:

P+
0 = E

{
(x0 − x̂+

0 )(x0 − x̂+
0 )

>
}
. (9)

Detail: Prior and posterior

In the literature, it is common to use “posterior” and “prior” interchangeably with
their Latin equivalents, which are “a posteriori” and “a priori” respectively. Alternat-
ing between prior and posterior estimates is a standard Bayesian filtering technique,
as can be seen in Supplementary Lecture D.
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(b) At time k = 1 (see Figure 5(b)), before we acquire measurement y1, we can make an “a
priori” or “prior” state estimate, by essentially making a prediction based on the initial state
estimate x̂+

0 and the model in the form of the state equation (7):

x̂−
1 = F0x̂

+
0 +G0f0. (10)

Without measurement y1, it should be understandable that the uncertaintyP+
0 would have

grown over the duration of a sample period. In fact, we can estimate the current uncertainty
P−

1 by applying the covariance operator to the difference between Eq. (7a) and Eq. (10):

x1 − x̂−
1 = F0(x0 − x̂+

0 ) +w0 =⇒ e−1 = F0e
+
0 +w0,

where e−k
def
= xk − x̂−

k and e+k
def
= xk − x̂+

k .

E
{
e−1 (e

−
1 )

>
}
= E

{
(F0e

+
0 +w0)(F0e

+
0 +w0)

>
}

noticing e+0 and w0 are independent

=⇒ P−
1 = E

{
F0e

+
0 (e

+
0 )

>F>
0

}
+ E{w0w

>
0 }

=⇒ P−
1 = F0P

+
0 F

>
0 +Q0, (11)

where P−
k

def
= E

{
e−k (e

−
k )

>} and P+
k

def
= E

{
e+k (e

+
k )

>}.
(c) Still at time k = 1 (see Figure 5(c)), after we acquire measurement y1, we can improve

our prior state estimate x−
1 using the additional information provided by y1. However,

y1 is noisy — although the measurement noise v1 has a mean of zero, it has a “spread”
represented by R1.

(d) Still at time k = 1 (see Figure 5(d)), our strategy is to somehow “fuse” the uncertainties rep-
resented by P−

1 and R1. While Faragher [Far12] proposed multiplying the pdfs associated
withH1x̂

−
1 and y1, the resultant function is Gaussian but not a pdf, because the unnormal-

ized function does not integrate to 1 [Ahr05]. Instead of fusing the pdfs, the approach here
is to express the posterior state estimate as

x̂+
1 = x̂−

1 +K1(y1 −H1x̂
−
1 ), (12)

where the second term on the right is a feedback term that is proportional to the difference
between the measured output and predicted output, not unlike the feedback term of the
Luenberger observer. Adding x1 to the negative of the preceding equation gives us

x1 − x̂+
1 = x1 − x̂−

1 −K1[H1(x1 − x̂−
1 ) + v1]

=⇒ e+1 = (I−K1H1)e
−
1 −K1v1 (13)

=⇒ E
{
e+1 (e

+
1 )

>
}
= E

{[
(I−K1H1)e

−
1 −K1v1

] [
(I−K1H1)e

−
1 −K1v1

]>}
noticing e−1 and v1 are independent

=⇒ P+
1 = (I−K1H1)P

−
1 (I−K1H1)

> +K1R1K
>
1 . (14)

The gain matrix K has yet to be determined, and for this, we need one last ingredient:

E
{
e+k
(
Hke

−
k + vk

)>}
= 0, (15)

which is a result of the orthogonality principle, as detailed in Supplementary Lecture D.
Substituting Eq. (13) into Eq. (15) for k = 1, and after some algebra, we can get

K1 = P−
1 H

>
1 (H1P

−
1 H

>
1 +R1)

−1. (16)

9



At this point, we have all the ingredients we need to assemble the Kalman filter (generalizing
subscript 1 to k):

• Eqs. (8) and (9) for initialization;
• Eqs. (10) and (11) for prior state estimation — this is called the time update or prediction

update step;
• Eq. (16) for updating the Kalman gain;
• Eqs. (12) and (14) for posterior state estimation— this is called themeasurement update step.

The prediction update and measurement update steps reflect the recursive nature of the algo-
rithm. Except for the “magic” Eq. (15), we were able to derive all the equations using the statis-
tical tools from the previous section.

4 The Kalman filter algorithm

The Kalman filter is based on the linear Gaussian model (see [Sim06, Sect. 5.1], [Hay09, Sect.
14.2], [Sär13, p. 37]):

• The discrete-time system is linear and stochastic:

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1, (17)
yk = Hkxk + vk, (18)

where F, G and H can be time-varying; w is the process noise; and v is the measurement
noise or observation noise. This notation is slightly different from the notation we have been
using for discrete-time systems so far, but this is more consistent with the notation used in
the Kalman filter literature.

• The process noise and measurement noise are

– additive, i.e., they corrupt the original signal by being added to (rather than multiplied
with) the signal;

– zero-mean Gaussian distributed;
– uncorrelated forward and backward in time.

In other words, they are additive white Gaussian noise. Note that we are dealing with discrete
white noise here which has constant power spectral density over a finite frequency range,
and a finite variance [GRG01, p. 384]; whereas continuous white noise has a constant power
spectral density over an infinite frequency range, and an infinite variance [Pri81, p. 235].
Furthermore, we assume the process noise is uncorrelated with the measurement noise.

In summary, for the process noise and measurement noise, we assume for all j, k,

wk ∼ N (0,Qk), vk ∼ N (0,Rk),

Cov{wk,wj} = Qkδk−j, Cov{vk,vj} = Rkδk−j,

Cov{vk,wj} = 0,

where Qk = E{wkw
>
k } and Rk = E{vkv

>
k } are covariance matrices; and δk−j is the

Kronecker delta, i.e.,

δk−j =

{
1 if k = j,

0 if k 6= j.

10
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Figure 6: From Example 2: two signals and their sample autocorrelation plots.

Example 2

The “whiteness” of a noise signal can be checkedusing the sample autocorrelation (“auto”
means “self ”) function. The function measures the correlation between samples sepa-
rated by l sample periods, where l is called the number of lags. Suppose we generate
two signals using Listing: v1 being a Gaussian white noise, and v2 being a sinusoid.

Listing 2: Code for Example 2
n = 1000;

v1 = randn(1, n);

v2 = sin(0:pi/10:n*pi/10);

figure;

subplot(2,2,1); plot(1:numel(v1), v1); subplot(2,2,2); autocorr(v1)

subplot(2,2,3); plot(1:numel(v2), v2); subplot(2,2,4); autocorr(v2)

Then as Figure 6 shows, the sample autocorrelation function of v1 returns small values
for nonzero lags, while the sample autocorrelation function of v2 returns about 1 for
lags that are some multiple of 20, because π/10× 20 = 2π.

The standard recursive form of the Kalman filter (see [Sim06, pp. 128-129], [CJ12, Table 3.1],
[Hay01, Table 1.1], [Jek00, Figure 7.1]) is given below:

Kalman filter
Initialization (k = 0):

x̂+
0 = E{x0}, P+

0 = E
{
(x0 − x̂+

0 )(x0 − x̂+
0 )

>
}
. (19)

Timeupdate / predictionupdate equations for propagating a priori estimates (k = 1, 2, . . .):

x̂−
k = Fk−1x̂

+
k−1 +Gk−1uk−1, (20)

P−
k = Fk−1P

+
k−1F

>
k−1 +Qk−1. (21)

Kalman gain update:

Kk = P−
k H

>
k (HkP

−
k H

>
k +Rk)

−1. (22)

11



Measurement update equations for updating a posteriori estimates:

x̂+
k = x̂−

k +Kk(yk −Hkx̂
−
k ) = (I−KkHk)x̂

−
k +Kkyk, (23)

Joseph stabilized version: P+
k = (I−KkHk)P

−
k (I−KkHk)

> +KkRkK
>
k . (24)

Standard form: P+
k = (I−KkHk)P

−
k . (25)

Information filter form: P+
k = [(P−

k )
−1 +H>

k R
−1
k Hk]

−1. (26)

xk

F B H

uk

zk

v

,Pk

0, R

0, Q

w

Observed

Supplied
by user

Hidden

Time= Time= Time=k k k-1 +1

k k

xk

F B H

uk

zk

v

,Pk

0, R

0, Q

wk k

xk

F B H

uk

zk

v

,Pk

0, R

0, Q

wk k

+1 +1-1-1

-1 -1

-1

-1

+1 +1

+1

+1

Figure 7: TheKalman filter illustrated. Squares representmatrices. Ellipses representmultivari-
ate Gaussian distributions (with the mean and covariance matrix enclosed). Unen-
closed values are vectors. Source: https://en.wikipedia.org/wiki/Kalman_
filter.

Several key points need to be highlighted about the algorithm given above:

• The Kalman filter is applicable to both time-invariant and time-varying problems, and gives
good results in practice due to its optimal formulation. It is also incremental, in the sense
that it does not need the entire data history.

• x̂+
k

def
= x̂k|k is the posterior estimate. x̂−

k
def
= x̂k|k−1 is the prior estimate. The new but

standard-compliant notation is meant to alleviate notational clutter.

Quiz 5

In theory, is x̂−
k or x̂+

k more accurate?

• In essence, the Kalman filter simplifies the Bayesian filtering equations (see Supplementary
Lecture D) by replacing the pdfs with conditional means, i.e.,

x̂+
k

def
= E{xk|y1:k}, x̂+

0
def
= E{x0} (user-specified);

x̂−
k

def
= E{xk|y1:(k−1)}, x̂−

0 is undefined.

The resultant conditional mean estimate is the MMSE estimate. The difference (yk−Hkx̂
−)

is called the innovation, and can be understood as a measure of compensation required to
improve/innovate the estimate. The measurement update equation (23) therefore makes in-
tuitive sense by this reasoning: the estimate x̂+

k is compensated more if the innovation is
more, and less if otherwise. At the same time updating the posterior and prior estimates
of the state, the Kalman filter updates the posterior and prior covariances of the estimation
error, defined as:

P+
k

def
= E{(xk − x̂+

k )(xk − x̂+
k )

>}, P+
0

def
= E{(x0 − x̂+

0 )(x0 − x̂+
0 )

>} (user-specified);

P−
k

def
= E{(xk − x̂−

k )(xk − x̂−
k )

>}, P−
0 is undefined.

• The general Kalman filter, as implemented in MATLAB, can deal with mutually correlated
process and measurement noise, although the algorithm given above cannot. For the general
algorithm, please refer to [Sim06, Sect. 7.1].
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Example 3

This example is adapted from [GA15, Example 5.4]. Consider the first-order discrete-time
system

x[k + 1] = x[k] + w[k],

y[k] = x[k] + v[k].

It is known that w ∼ N (0, 1), v ∼ N (0, 2), y[1] = 2, y[2] = 3, x̂+0 = 1, P+
0 = 10. Find

x̂+2 and the steady-state covariance matrix P+
∞ using Kalman filtering. Hint: In steady

state, set P+
k = P+

k−1.

Solution: Based on the given system model, we have

F = 1, G = 0, H = 1, Q = 1, R = 2.

From Eqs. (20) and (21), we get the time update equations:

x̂−k = x̂+k−1. (27)
P−
k = P+

k−1 + 1. (28)

From Eq. (22), we get the Kalman gain update equation:

Kk = P−
k (P

−
k + 2)−1. (29)

From Eqs. (25), (29) and (28), we get the measurement update equations:

x̂+k = x̂−k +Kk(yk − x̂−k ) = (1−Kk)x̂
−
k +Kkyk =

(
1−

P−
k

P−
k + 2

)
x̂−k +

P−
k yk

P−
k + 2

=
2x̂−k + P−

k yk
P−
k + 2

.

(30)

P+
k =

2P−
k

P−
k + 2

= 2
P+
k−1 + 1

P+
k−1 + 3

. (31)

Therefore,

x̂+1 =
2x̂−1 + P−

1 y1
P−
1 + 2

=
2x̂+0 + (P+

0 + 1)y1
P+
0 + 3

=
2 + 11× 2

13
=

24

13
.

P+
1 = 2

P+
0 + 1

P+
0 + 3

=
2× 11

13
=

22

13
.

x̂+2 =
2x̂−2 + P−

2 y2
P−
2 + 2

=
2x̂+1 + (P+

1 + 1)y2
P+
1 + 3

=
2(24/13) + (22/13 + 1)3

22/13 + 3
=

153

61
.

P+
∞ =

2(P+
∞ + 1)

P+
∞ + 3

=⇒ (P+
∞)2 + 3P+

∞ = 2P+
∞ + 2

=⇒ (P+
∞)2 + P+

∞ − 2 = 0

=⇒ P+
∞ = 1 (ruling out P+

∞ = −2).
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Example 4

This example is adapted from [Sim06, Example 5.1]. Consider a system with constant
acceleration:

ṙ = v,

v̇ = a,

ȧ = 0,

where r represents a 1D position, v represents velocity, and a represents acceleration.
Assume no input, and output is r. Express P−

k as

P−
k =

P
−
k(1,1) P−

k(1,2) P−
k(1,3)

P−
k(2,1) P−

k(2,2) P−
k(2,3)

P−
k(3,1) P−

k(3,2) P−
k(3,3)

 . (32)

Using the standard-form update equation: P+
k = P−

k −KkHkP
−
k , show that

Tr(P+
k ) = Tr(P−

k )−
(P−

k(1,1))
2 + (P−

k(1,2))
2 + (P−

k(1,3))
2

P−
k(1,1) + σ2

,

where Tr is the trace operator, which returns the sum of the diagonal elements of a ma-
trix, and σ2 is the variance of the observation noise. In other words, the posterior error
covariance is always smaller than the prior error covariance for the same time interval in
terms of their traces.

Solution: The system can be represented by the continuous-time state-space equations:ṙv̇
ȧ

 =

0 1 0
0 0 1
0 0 0

rv
a

 , r = [1 0 0]

rv
a

 . (33)

Discretizing the above with sampling interval T , we have

xk+1 = Fxk, yk = Hxk, (34)

where x = [r v a]>, F = exp(AT ), y = r, H = [1 0 0]. Since A is a nilpotent
matrix s.t. Ai = 0 for i ≥ 3, we can calculate the matrix exponential of A, and hence F,
as

F = exp(AT ) = I+AT +
1

2!
A2T 2 =

1 T T 2

2
0 1 T
0 0 1

 . (35)

Assuming there is no process noise, and the measurement noise has variance Rk = σ2,
we can derive a Kalman filter for the system as follows.

From Eqs. (20) and (21), we get the time update equations:

x̂−
k = Fx̂+

k−1. (36)
P−

k = FP+
k−1F

>. (37)
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From Eq. (22), we get the Kalman gain update equation:

Kk = P−
k H

>
k (HkP

−
k H

>
k +Rk)

−1 = P−
k

10
0


[1 0 0]P−

k

10
0

+ σ2


−1

=
1

P−
k(1,1) + σ2

P
−
k(1,1)

P−
k(2,1)

P−
k(3,1)

 =
1

P−
k(1,1) + σ2

P
−
k(1,1)

P−
k(1,2)

P−
k(1,3)

 .

(38)

Note that above, we have applied the fact that P−
k is symmetric:

P−
k =

P
−
k(1,1) P−

k(1,2) P−
k(1,3)

P−
k(2,1) P−

k(2,2) P−
k(2,3)

P−
k(3,1) P−

k(3,2) P−
k(3,3)

 =

P
−
k(1,1) P−

k(1,2) P−
k(1,3)

P−
k(1,2) P−

k(2,2) P−
k(2,3)

P−
k(1,3) P−

k(2,3) P−
k(3,3)

 .

From Eqs. (25) and (38), we get the measurement update equations:

x̂+
k = x̂−

k +Kk(yk −Hx̂−
k ) = (I−KkH)x̂−

k +Kkyk

=


1− P−

k(1,1)

P−
k(1,1)+σ2 0 0

− P−
k(1,2)

P−
k(1,1)+σ2 1 0

− P−
k(1,3)

P−
k(1,1)+σ2 0 1

 x̂−
k +

1

P−
k(1,1) + σ2

P
−
k(1,1)

P−
k(1,2)

P−
k(1,3)

yk;
(39)

P+
k = P−

k −KkHkP
−
k = P−

k − 1

P−
k(1,1) + σ2

P
−
k(1,1) 0 0

P−
k(1,2) 0 0

P−
k(1,3) 0 0

P−
k

= P−
k − 1

P−
k(1,1) + σ2

 (P−
k(1,1))

2 P−
k(1,1)P

−
k(1,2) P−

k(1,1)P
−
k(1,3)

P−
k(1,2)P

−
k(1,1) (P−

k(1,2))
2 P−

k(1,2)P
−
k(1,3)

P−
k(1,3)P

−
k(1,1) P−

k(1,3)P
−
k(1,2) (P−

k(1,3))
2

 .

(40)

Thus far, we have derived a Kalman filter for tracking the 1D position of an object moving
with constant acceleration. Applying the trace operator to both sides of Eq. (40) gives
us

Tr(P+
k ) = Tr(P−

k )−
(P−

k(1,1))
2 + (P−

k(1,2))
2 + (P−

k(1,3))
2

P−
k(1,1) + σ2

as required. Eqs. (37), (38) and (40) from Example 4 reflect a general and useful fact: the
Kalman gain and error covariances depend only on the system parameters and not the
observations. This means the Kalman gain and error covariances can be calculated offline
and stored in memory for efficient computations. For a resource-constrained embedded
system, this can make the difference between whether or not the system can perform
Kalman filtering in real time.

4.1 Steady-state Kalman filter

Most Kalman filter implementations exist in embedded systems for which memory is a pre-
mium. If the observed process is time-invariant, and the process andmeasurement noise are sta-
tionary, then a steady-state Kalman filter can be used [Sim06, Sect. 7.3]. A steady-state Kalman
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filter has a constant Kalman gain. Using a constant gain instead of a dynamic gain calculated
with Eq. (22) is not optimal, but the constant gain approaches optimality as k → ∞. In fact, for
many applications, the performance of the steady-state filter matches that of the time-varying
filter. Nevertheless, the accuracy and performance of a steady-state filter should be assessed
empirically before it is adopted for any application.

To determine an expression for the steady-state Kalman gain, observe in the Kalman update
equation (Eq. (22)), the Kalman gain depends on the prior error covariance. In turn, the prior
error covariance depends on the posterior error covariance in the prediction update equation
(Eq. (21)):

P−
k = FP+

k−1F
> +Q = F

[
(I−KkH)P−

k−1

]
F> +Q = FP−

k−1F
> − FKkHP−

k−1F
> +Q

= FP−
k−1F

> − FP−
k−1H

>(HP−
k−1H

> +R)−1HP−
k−1F

> +Q.

Suppose P−
k and Kk converge to P∞ and K∞ respectively, then

FP∞F> −P∞ +Q− FP∞H>(HP∞H> +R)−1HP∞F> = 0. (41)

Eq. (41) is called a discrete-time algebraic Riccati equation (DARE), and it can be solved using
the MATLAB function idare, which implements an algorithm similar to the Python function
scipy .linalg.solve_discrete_are1. In terms of solving DAREs by hand, we limit our-
selves to solving first-order DAREs here. In Lecture 8, we will learn how to solve higher-order
DAREs by hand.

Detail: Riccati equation

A Riccati equation is a first-order ordinary differential equation of the form

ẋ(t) = a2(t)x
2(t) + a1(t)x(t) + a0(t),

where a2(t) and a0(t) are nonzero. A DARE is a matrix-valued Riccati equation with the
derivative replaced by a difference. We will encounter algebraic Riccati equations again
when we discuss optimal control later in the course.

Upon solving the DARE that is Eq. (41) for P∞, the Kalman gain can be calculated through
Eq. (22) as

K∞ = P∞H>(HP∞H> +R)−1. (42)

K∞ is called a steady-state Kalman gain. Substituting Eqs. (42) and (20) into Eq. (23), we get

x̂+
k = (I−K∞H)x̂−

k +K∞yk = (I−K∞H)(Fx̂+
k−1 +Guk−1) +K∞yk.

∴ x̂+
k = (I−K∞H)Fx̂+

k−1 + (I−K∞H)Guk−1 +K∞yk. (43)

For the steady-state Kalman filter to be asymptotically stable, the matrix (I−K∞H)Fmust be
convergent / discrete-time Hurwitz, i.e., having eigenvalues whose magnitude is less than 1. The
first problem is not every system has a solvable DARE, but:

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_are.html
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Theorem 4: [Sim06, Theorem 26]

If (F,H) is detectable, then the DARE has at least one positive semidefinite solution.
Furthermore, at least one such solution results in a marginally stable steady-state Kalman
filter.

Even if a solution exists, it may lead to a different K∞ than that of Eq. (42), depending on P0.
Even if a solution exists and it leads to the same K∞ as that of Eq. (42) regardless of P0, it may
lead to an unstable Kalman filter. Thus, the detectability of (F,H) is not a sufficient condition.
The following theorem is crucial.

Theorem 5: [Sim06, Theorem 23]

If (F,H) is detectable, and (F,Gq) is stabilizable, where GqG
>
q = Q, then the DARE

has a unique positive semidefinite solution, and (I−K∞H)F is convergent.

For checking the condition of the theorem above, Gq can be obtained from Q by Cholesky
factorization (MATLAB functionchol). For positive definiteQ,Gq is a unique lower triangular
matrix with positive diagonal entries [Ber09, Fact 8.9.37]. If Q = diag(q1, . . . , qn), then Gq =
diag(√q1, . . . ,

√
qn).

Example 5

Consider the first-order discrete-time system of the form

x[k + 1] = Fx[k] +Gu[k] + w[k],

y[k] = Hx[k] + v[k],

whereH 6= 0,Q = Var{w} 6= 0,R = Var{v} 6= 0, determine the constraint on F for the
system to have a convergent steady-state Kalman filter.

Solution: Let us determine whether the conditions of Theorem 5 are satisfied.

• Detectability: The observability “matrix” of the first-order system (F,H) is H , so as
long as H 6= 0, the system is detectable.

• Stabilizability: The controllability “matrix” of the first-order system (F,
√
Q) is

√
Q, so

as long as Q > 0, the system is stabilizable.

Both conditions above are satisfied by the given system, hence the systemhas a convergent
steady-state Kalman filter regardless of the value of F .

vehicle dynamics estimation using kalman filters 173

2.1. Adaptive Cruise Control

Adaptive Cruise Control (ACC) involves longitudinal (throttle and brake) control of
the vehicle. It comprises the control of the vehicle speed depending on the road
course and distance behind preceding vehicles and obstacles. The required sensors
must be capable of detecting objects in the potential collision course with the vehicle.
The position of relevant targets in front of the vehicle are determined by means of
radar or laser range sensing. Kalman filters can be applied to smoothen the range
signals, or to determine the range rate if only ranging is possible. For optimal tracking
and filtering performance, the object-related states as well as the vehicle dynamics
states need to be integrated in one single Kalman filter.

The example here shows how longitudinal dynamics of target objects and the ACC
vehicle are lumped into one single Kalman filter. Assume a single target at a distance
d1 and azimuth φ1 in front of an ACC vehicle (Fig. 2).

d 1

d  = d  cos(φ  )x 1
1

d  = d  sin(φ  )y 1
1

φ

vx
1 a x

1,

vy
1 a y

1,

vx
0 a x

0,

1 1

1

Fig. 2. Geometry aspects of an ACC vehicle and a target.

The states of importance are the longitudinal and lateral position dx
1  and dy

1 , and
speed vx

1  and acceleration ax
1  of the target with respect to the ACC vehicle. The

longitudinal dynamics of this systems can be described quite easily by 5 equations of
motion

�x A x B G w= ⋅ + ⋅ + ⋅u (1)

where

A B G= −





















=





















=





















0 1 0 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 1
0 0 0 0 0

1
0
0
0
0

0 0
1 0
0 0
0 0
0 1

with state vector x  given by

[ ]x = v a d v ax x x x x
0 0 1 1 1 T

Tracking vehicle

Tracked vehicle

Figure 8: Parameters of Adaptive Cruise Control: v’s represent velocities, a’s represent acceler-
ations. vox is measured using the car’s own speedometer. d1 is measured using radar or
LIDAR. Image from [VN99, Fig. 2].

17



Example 6

We mentioned in the very beginning that Kalman filters are used in a broad range of in-
dustries, therefore it should not come as a surprise that it is widely used in the automotive
industry. For this example, we refer to an article published by some BMW engineers in
1999 [VN99], which describes the applications of Kalman filtering to Driver Assistance
Systems. The goal of a Driver Assistance System is to reduce the driver’s workload, and the
chance of accidents. An important part of this system is Adaptive Cruise Control, which
is responsible for longitudinal control (with inputs being throttle and brake), depending
on the distance behind the preceding vehicle or obstacle.

Referring to Figure 8, we can write down the following continuous-time state-space equa-
tions: 

v̇ox
ȧox
ḋ1x
v̇1x
ȧ1x

 =


0 1 0 0 0
0 0 0 0 0

−1 0 0 1 0
0 0 0 0 1
0 0 0 0 0



vox
aox
d1x
v1x
a1x

+


1
0
0
0
0

u+w, (44)

y =

[
1 0 0 0 0
0 0 1 0 0

]
vox
aox
d1x
v1x
a1x

+ ν, (45)

where

• the input u is the vehicle acceleration which can be determined from known engine
maps and brake characteristics;

• the process noise w and measurement noise ν are assumed to be additive white Gaus-
sian noise.

While ν can be determined from the speedometer’s and range sensor’s characteristics,
w is assumed to affect only ȧox and ȧ1x and can be determined experimentally. Using the
MATLAB code in Listing 3, we can discretize the continuous-time model into

1 T 0 0 0 T
0 1 0 0 0 0
−T −T 2/2 1 T T 2/2 −T 2/2
0 0 0 1 T 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0


. (46)

Using the same code,

• We can determine the system satisfies the condition of Theorem 5, and hence there is a
unique positive semidefinite solution to the associated DARE, and the resultant steady-
state Kalman filter is convergent.

• We can calculate the steady-state Kalman gain as

K∞ =


0.3617 −0.0062
7.9883 −0.0760

−0.0062 0.1815
0.0247 1.8123
0.1353 9.0468

 .
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• Looking at the norm of the eigenvalues of (I−K∞H)F, we can verify the steady-state
Kalman filter is convergent.

Listing 3: MATLAB code for Example 6
A = [ 0 1 0 0 0;

0 0 0 0 0;

-1 0 0 1 0;

0 0 0 0 1;

0 0 0 0 0];

B = [1; 0; 0; 0; 0];

C = [1 0 0 0 0;

0 0 1 0 0];

syms T t;

F = expm(A*T), G = int(expm(A*t)*B, 0, T), H = C;

F = double(subs(F, T, 0.01));

Q = diag([0 1 0 0 1]); R = diag([0.01 0.01]); % arbitrary

Gq = sqrt(Q); % because Q is diagonal

fprintf('(F, H) has rank %d\n', rank(obsv(F, H)));

fprintf('(F, Gq) has rank %d\n', rank(ctrb(F, Gq)));

[P, ~, eigs] = idare(F', H', Q, R)

K = P*H'/(H*P*H' + R)

Attention: MATLAB command idare

Note the syntax of idare that is used in Example 6: [X,G,L] = idare(A,B,Q,R).
Since we are designing an estimator rather than a controller, we apply the duality theorem
and substitute A with F', and B with H'.

The second output G is not used in Example 6 but it is worth mentioning what it means.
G is defineda as

G> = (HPH> +R)−1HP︸ ︷︷ ︸
K>

∞

F> = K>
∞F>,

where K∞ is the steady-state Kalman gain as per Eq. (42). The reason G is defined as
above (by MathWorks) is that

F>︸︷︷︸
A

− H>︸︷︷︸
B

G>

takes the form of A−B×(Gain), and

F> −H>G> = F> −H>K>
∞F> = (I−K∞H)>F>

has the same eigenvalues as (I−K∞H)F. Note that given any two square matrices M1

andM2, we can show through Silvester’s determinant theorem (see Lecture 4) thatM1M2

and M>
1 M

>
2 have the same eigenvalues.

ahttps://www.mathworks.com/help/control/ref/idare.html

4.2 Practical aspects

Kalman filter implementations are so ubiquitous that it is easy to take the implementation chal-
lenges for granted. Important considerations for practical implementations include the follow-
ing:

• Offline pre-computation and online lookup: As demonstrated in Example 4, the Kalman
gain and error covariances depend only on the system and noise models, and not on the
measurements yk, so their computation can be done offline, and their values looked up at
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run time; this canmake the difference to whether a resource-constrained system can perform
Kalman filtering in real time.

• Self-diagnostics: The Kalman filter is also capable of self-diagnostics: the innovation (yk −
Hkx̂

−
k ) is expected to be zero-mean and white with covariance (HkP

−
k H

>
k + Rk), so any

run-time observation that significantly contradicts this expectation suggests potential error
in the system model, noise model, or implementation [Sim06, p. 130].

• Square root filtering: Computing hardware has limited precision. Due to the finite precision
of a microcontroller, the error covariance, which is supposed to be positive semidefinite, may
become indefinite (having both positive and negative eigenvalues) or even nonsymmetric (re-
member only symmetric matrices and certain square matrices can be positive semidefinite).
This was especially a problem in the 1960s, when computers had short word lengths. Square
root filtering is a way tomathematically increase the precision of the Kalman filter when hard-
ware precision is challenged; this technique was in fact developed for Apollo [Sim06, Sect.
6.3]. The idea of square root filtering can be summarized as the observations below:

– Thepositive-semidefinite error covarianceP can be expressed asP = SS>, whereS can be
obtained using Cholesky factorization. Since P is positive semidefinite, S is a nonunique
lower triangular matrix with nonnegative diagonal entries [Ber09, Fact 8.9.37].

– The condition number of S equals the square root of the condition number of P [Sim06,
Eq. (6.48)]. In linear algebra, the condition number is a measure of how well or badly
conditioned a matrix equation is. It is the ratio of the largest singular value to the smallest
singular value of A in matrix equation Ax = �. The base-b logarithm of the condition
number provides a worst-case estimate of the number of base-b digits that are lost in solv-
ing the matrix equation2. The smaller the condition number, the wider range of numbers
(higher precision) can be accommodated.

– In the Kalman filter algorithm, every instance ofP is replaced with SS>; and instead ofP,
S is stored.

• Information filtering: The Kalman filter suffers from poor performance when P+
0 is large.

If we define the information matrix, I , as the inverse of the error covariance, i.e.,

I = P−1, (47)

then I+
0 = 0 corresponds toP+

0 = ∞, i.e., the case where there is absolute uncertainty with
x0 [Sim06, Sect. 6.2]. Furthermore, Eqs. (21), (22) and (26) can be respectively written as

I−
k = Q−1

k−1 −Q−1
k−1Fk−1(I+

k−1 + F>
k−1Q

−1
k−1Fk−1)

−1F>
k−1Q

−1
k−1, (48)

Kk = (I+
k )

−1H>
k R

−1
k , (49)

I+
k = I−

k +H>
k R

−1
k Hk. (50)

Replacing P−
k ,P

+
k with I−

k ,I
+
k , and replacing the corresponding update equations in the

Kalman filter with Eqs. (48)–(49), gives us the information filter. If H>
k R

−1
k Hk is time-

invariant, then it can be pre-computed offline, and Eq. (50) is just a summation operation
with a constant time complexity; this is a well-known advantage of the information filter that
is widely leveraged for simultaneous localization and mapping (SLAM) [TLK+04].

2http://mathworld.wolfram.com/ConditionNumber.html
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5 Extended Kalman filter

The Kalman filter was designed for linear systems expressible by Eqs. (17)–(18). Given a non-
linear model, the Kalman filter can be used with the linearized version of the model, but for
more accurate state estimation, the original nonlinear model should be used, and to estimate
the state of the nonlinear model, the extended Kalman filter can be used.

For discrete-time nonlinear systems of the form:

xk = f k−1(xk−1,uk−1) +wk−1, wk ∼ N (0,Qk), (51)
yk = hk(xk) + vk, vk ∼ N (0,Rk), (52)

wheref k−1 andhk are differentiable nonlinear functions, we can use the extendedKalman filter
(EKF),which is essentially theKalmanfilter for the first-order linearized version of Eqs. (51)–(52)
based on Taylor series expansion. The EKF, although not “optimal”, has been shown to be ef-
fective for a wide range of nonlinear systems, and by rule of thumb, it should be the first tool to
consider whenever a nonlinear filtering problem is encountered. The EKF for system (51)–(52)
is similar to the Kalman filter except theF andHmatrices are now Jacobians [Sim06, p. 409]:

Extended Kalman filter
Initialization (k = 0):

x̂+
0 = E{x0}, P+

0 = E
{
(x0 − x̂+

0 )(x0 − x̂+
0 )

>
}
. (53)

Timeupdate / predictionupdate equations for propagating a priori estimates (k = 1, 2, . . .):

x̂−
k = f k−1(x̂

+
k−1,uk−1), (54)

P−
k = Fk−1P

+
k−1F

>
k−1 +Qk−1, where Fk−1 =

∂f k−1

∂x

∣∣∣∣
x=x̂+

k−1
u=uk−1

. (55)

Kalman gain update:

Kk = P−
k H

>
k (HkP

−
k H

>
k +Rk)

−1, where Hk =
∂hk

∂x

∣∣∣∣
x=x̂−

k

. (56)

Measurement update equations for updating a posteriori estimates:

x̂+
k = x̂−

k +Kk(yk − hk(x̂
−
k )), (57)

Joseph stabilized version: P+
k = (I−KkHk)P

−
k (I−KkHk)

> +KkRkK
>
k . (58)

Standard form: P+
k = (I−KkHk)P

−
k . (59)

Information filter form: P+
k = [(P−

k )
−1 +H>

k R
−1
k Hk]

−1. (60)

The algorithm above is readily applicable to discrete-time nonlinear systems of the form in
Eqs. (51)–(52). However, many practical problems are governed by continuous-time dynamics,
even if the measurements are obtained at discrete time instants. To continuous-time nonlinear
systems with discrete-time measurements:

ẋ(t) = f(x(t),u(t)) +w(t), w(t) ∼ N (0,Q(t)), (61)
yk = hk(xk) + vk, vk ∼ N (0,Rk), (62)
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where f and hk are differentiable, we can apply the hybrid EKF [Sim06, p. 405], [CJ12, Table
3.7]:

Hybrid extended Kalman filter

Initialization (k = 0):

x̂+
0 = E{x0}, P+

0 = E
{
(x0 − x̂+

0 )(x0 − x̂+
0 )

>
}
. (63)

Timeupdate / predictionupdate equations for propagating a priori estimates (k = 1, 2, . . .):

x̂−
k = x̂(tk), (64)

where x̂(t) is the solution to ˙̂x(t) = f(x̂(t),u(t)), with boundary condition x̂(tk−1) =
x̂+
k−1.

P−
k = P(tk), (65)

where P(t) is the solution to Ṗ(t) = F(t)P(t) + P(t)F(t)> + Q(t), with boundary
condition P(tk−1) = P+

k−1, where

F(t) =
∂f

∂x

∣∣∣∣x=x̂(t)
u=u(t)

. (66)

Kalman gain update:

Kk = P−
k H

>
k (HkP

−
k H

>
k +Rk)

−1, where Hk =
∂hk

∂x

∣∣∣∣
x=x̂−

k

. (67)

Measurement update equations for updating a posteriori estimates:

x̂+
k = x̂−

k +Kk(yk − hk(x̂
−
k )), (68)

Joseph stabilized version: P+
k = (I−KkHk)P

−
k (I−KkHk)

> +KkRkK
>
k . (69)

Standard form: P+
k = (I−KkHk)P

−
k . (70)

Information filter form: P+
k = [(P−

k )
−1 +H>

k R
−1
k Hk]

−1. (71)

The EKF performs well if the first-order linearization error is small. Otherwise, the unscented
Kalman filter (“unscented” because it does not “stink”) or the particle filter should be consid-
ered.
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