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Figure 1: These companies have one thing in common: they are among the world’s five dominant
vendors of PID control hardware [LAC06].

1 Introduction
In the previous lecture, we were introduced to the the proportional-integral-derivative controller —
PID controller in short — a controller with two zeros for improving stability and transient response,
and one pole at the origin for eliminating steady-state error. These controllers — also known as
three-mode controllers — are of fundamental importance. This importance is reflected in a 2002
study done by Honeywell [DM02] which reported:

Based on a survey of over eleven thousand controllers in the refining, chemicals and
pulp and paper industries, 97% of regulatory controllers utilize a PID feedback control
algorithm.
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PID controllers are intuitive, easy to tune, and can even be used without knowledge of the plant
model (although the plant should be SISO LTI). In fact, they (especially the PI variant) are by far the
most widely adopted controllers in industry due to their advantageous cost/benefit ratio [VV12].
When not used by itself, a PID controller is often a part of a more sophisticated control system. For
example, in Lecture 1, we saw how a PID controller can be used in the speed control loop of a direct
torque controller for variable-speed drives.

Detail: History

The PID controller is also one of the earliest types of controllers to appear:
• In 1911, the first PID controller was used in Elmer Sperry’s ship autopilot.
• In 1922, Nicholas Minorsky presented the first rigorous analysis of PID control.
• In the 1930s, general-purpose PID controllers became commercially available. The first

theoretical papers on process control were published in the same period.
• In 1942, Ziegler and Nichols proposed their tuning rules, further propelling the develop-

ment of PID control.
• By the 1980s, digital PID controllers have becomewidespread. Since the 1980s, digital hard-

ware has been used on a routine basis and has had a tremendous impact on process control.
Figure 1 shows the major industry players.

The fact that advances in PID control are tightly linked to developments in the process control
industry explains why this lecture has a heavier process control flavor than the other lectures.

In this lecture, we shall look at PID control more closely in terms of
• The properties of proportional action, integral action, and derivative action: Knowing the

properties/roles/effects of each of these actions is very useful in practice because it tells us how to
troubleshoot and fine-tune a PID controller.

• The forms/structures of PID controllers: Different forms/structures have different pros and
cons, and different commercial controllers support different forms/structures. Knowledge in this
area helps us choose between products and use them efficiently.

• Implementation of a PID controller: This includes software and hardware implementations. The
discussion on hardware implementation introduces lag, lead and lag-lead compensators.

• Limitations of PID control: PID controllers are simple, second-order (at most) controllers for
SISO LTI systems, and naturally have limitations. Knowing this limitations helps us understand
when we should not expect PID control to work well, if at all; and appreciate the need for more
advanced control.

2 Proportional action
The proportional control action u(t) is proportional to the current control error e(t), i.e.,

u(t) = Kpe(t), (1)

where Kp is the proportional gain. The control error is defined as e(t) def
= r(t) − y(t), where r(t) is

the reference input or set-point, and y(t) is the system output. In the process control literature, r(t)
and y(t) are often denoted by SP (“Set-Point”) and PV (“Process Variable”) respectively. The transfer
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function of the proportional action is simply

U(s)

E(s)
= Kp. (2)
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Figure 2: The definition of the proportional band origi-
nates in the observation that proportionality is
restricted to a finite range of the control input.

In the process control industry, the proportional gain is frequently expressed as a percent propor-
tional band (PB). In fact, some commercial controllers have a PB rather than a proportional gain
setting [SMEDI10, p. 137]. The definition of the PB originates in the observation that due to actu-
ator saturation, the control output (u) is only proportional to the control input (e) for a finite range
of the control input (see Figure 2).

Definition: Proportional band

... is the minimum change required in the control input to drive a full-range change in the
control output, expressed as a percentage of the control output range [Lip06, p. 116]. Using
the symbols in Figure 2,

PB def
=

emax − emin

umax − umin
× 100% =

100%
umax−umin

emax−emin

=
100%
Kp

. (3)

The term “wide band” is associated with a high PB value (lowKp). Likewise, the term “narrow band”
is associated with a low PB value (high Kp).

Quiz 1

Is a P controller with a PB of 100% more or less sensitive than a P controller with a PB of
1000%?

2.1 Effects of proportional action
Consider the first-order plant G(s) = b/(s + a), where a, b ∈ R+, and a proportional controller
C(s) = K in series withG(s) in the unity feedback configuration. The closed-loop transfer function
is

C(s)G(s)

1 + C(s)G(s)
=

Kb

s+ a+Kb
.

The rise time, settling time and step-response steady-state error are

tr ≈
2.2

a+Kb
, ts ≈

4

a+Kb
, estep(∞) =

1

1 + lims→0C(s)G(s)
=

a

a+Kb
respectively.
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Hence, by increasing K, we can reduce the rise time, settling time and steady-state error, but the
steady-state error is nonzero.

To generalize our understanding of the effects of proportional action to second- and higher-order
systems, we shall make some empirical observations of these effects on the test systems in Table 1.
The systems have been chosen for the variety of their root loci, as shown in Figure 3.

Table 1: Test systems.
Test system Description Plant transfer function
1 2nd-order system with two real poles and no zero G1(s) =

1

(s+ 2)(s+ 3)

2 3rd-order system with three real poles and no zero G2(s) =
1

(s+ 2)(s+ 3)(s+ 4)

3 2nd-order system with two complex poles and one
zero

G3(s) =
s+ 2

(s2 + 2s+ 2)

4 3rd-order system with two complex poles, one in-
tegrator pole and one zero

G4(s) =
s+ 2

s(s2 + 2s+ 2)
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Figure 3: Root loci of the test systems in Table 1.

By connecting a P controller to each of the test systems and varying the gain, we can get the plots
in Figure 4. From the plots, we can see the general effects of increasing the proportional gain (see
also Table 2):
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Figure 4: Plots of performance characteristics versus proportional gain for the test systems in Table 1.

• The rise time decreases.
• The settling time may increase or decrease, depending on the system.
• The overshoot may increase or decrease, depending on the system.
• The steady-state error decreases.

2.2 Manual reset
As seen in the preceding subsection, proportional action has the main drawback where by itself, it
leaves a residual steady-state error, commonly called an offset in short. Even if the plant is a type 1
system, a nonzero offset will occur as a result of a step disturbance. This steady-state error can be re-
duced by increasing the gain, but this may destabilize the system (imagine the root locus branching
into the right half plane). The exceptions are very slow processes, such as float-type valves, ther-
mostats and humidostats [Lip06, p. 116].

The residual error motivates the addition of a bias term, ū, that is manually adjusted to eliminate
the steady-state error:

u(t) = Kpe(t) + ū. (4)

The process of adjusting ū is calledmanual reset. Since the bias term is independent of the controller
gain, it is an open-loop input to the plant.

Example 1

Consider the unity feedback system with plant G(s) and controller C(s):

G(s) =
1

(s+ 2)(s+ 3)
, C(s) = 60.

Calculate the steady-state error, er=10(∞), corresponding to a step input of 10. Furthermore,
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Zero steady-state error for 𝑟 𝑡 = 10
Nonzero steady-state error for 𝑟 𝑡 ≠ 10

Figure 5: Block diagram and time responses of a P-controlled system with manual reset targeted at
a set-point of 10.

determine the bias term ū that reduces er=10(∞) to zero.

Solution: Prior to manual reset,

E(s) =
1

1 + C(s)G(s)
R(s) (see Lecture 3).

For r(t) = 10,

er=10(∞) = lim
s→0

sE(s) = lim
s→0

s
1

1 + C(s)G(s)

10

s
=

10

1 + lims→0C(s)G(s)
=

10

1 + 60
2·3

= 0.9091,

which is small relative to the input but nonzero. To reduce estep(∞) to zero, we must have
yss(∞) = 10, based on the Simulink model which doubles as the block diagram in Figure 5,
we have

yss(∞) = lim
s→0

sY (s) = lim
s→0

sG(s)

(
C(s)E(s) +

ū

s

)
= ū lim

s→0
G(s) =

ū

2 · 3
= 10 =⇒ ū = 60.

Figure 5 shows that manual reset can eliminate the steady-state error only for a fixed input.
This is why we need integral control, to be discussed in the next section.

Nevertheless, for control applications where offsets can be tolerated, proportional-only control is
adequate. For example, in some level control problems, maintaining the liquid level close to the set
point is not as important as merely ensuring that the storage tank does not overflow or run dry.
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3 Integral action
The integral control action u(t) is proportional to the integral of the control error, i.e.,

u(t) = Ki

∫ t

0

e(τ)dτ, (5)

where Ki is the integral gain. The transfer function of the integral action is

U(s)

E(s)
=

Ki

s
. (6)

Recall from Lecture 3 that a type 1 system has a pole at the origin, which allows it to track step
inputs with zero steady-state error, even in the presence of step disturbances. Therefore, integral
action plays the role of the bias term in proportional action in eliminating steady-state error, without
needing manual adjustment; this is why integral action is often called automatic reset.

Integral action is rarely used by itself, because the control action will remain small before the con-
trol error accumulates to a sizeable level. In contrast, proportional action is immediate, so integral
action is normally used in conjunction with proportional action in the form of the proportional-
integral (PI) controller, the most used controller in the industry. The PI controller is often written
in the form:

U(s)

E(s)
= Kp

(
1 +

1

Tis

)
, (7)

where Ti is called the integral time or reset time. In process control terminology, Ti is also called
seconds per repeat if the time unit is seconds, or minutes per repeat if the time unit is minutes. The
inverse of seconds/minutes per repeat, T −1

i , is called repeats per second/minute.

Detail: Seconds/minutes per repeat

To understand the rationale behind the terminology, consider a step change in e(t), i.e., e(t) =
h for some constant h. At any time t, the proportional action isKph, which is a constant value,
while the integral action is Kp

Ti

∫ t

τ=0
hdτ = Kp

Ti
ht, which is a linear function of t. At time instants

t = Ti, 2Ti, . . . , nTi, the integral action becomes

Kph, 2Kph, . . . , nKph,

which are respectively 1 time the proportional action, 2 times the proportional action, . . ., n
times the proportional action. In other words, Ti measures the time taken for the integral
action to match the proportional action, and this matching repeats every Ti seconds/min-
utes [SMEDI10, p. 138].

Quiz 2

A flow controller is known to have a proportional band of 500% and 0.05 seconds per repeat.
What are the proportional gain and integral gain of this controller?
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Example 2

Consider again the first-order plant G(s) = b/(s + a), where a, b ∈ R+, and two types of
controllers:
1. Integral controller C(s) = K/s: The closed-loop transfer function is

C(s)G(s)

1 + C(s)G(s)
=

Kb

s2 + as+Kb
.

When the closed-loop system is underdamped, the settling time and step-response steady-
state error are

ts =
8

a
and estep(∞) = 0 respectively.

Compared to the the proportional-only controller, the integral controller is able to eliminate
the steady-state error but at the expense of worse settling time (compared to 4/a of the open-
loop system). Moreover, this settling time cannot be reduced by increasing the gain. It is
exactly for this reason that we combine “proportional action” and “integral action” in the
form of a PI controller.

2. Proportional-integral (PI) controller C(s) = K(s+ z)/s: The closed-loop transfer function
is

C(s)G(s)

1 + C(s)G(s)
=

Kb(s+ z)

s2 + (a+Kb)s+Kbz
.

When the closed-loop system is underdamped, the settling time and step-response steady-
state error are

ts =
8

a+Kb
and estep(∞) = 0 respectively.

This is a clear improvement over the proportional controller and the integral controller,
because it is able to eliminate the steady-state error and yet allows the settling time to be
reduced by increasing the gain.

3.1 Effects of integral action
As in Sect. 3.1, let us make some empirical observations of the effects of integral action on the test
systems in Table 1. By connecting a PI controller (rather than a pure I controller) to each of the test
systems and varying the integral gain, we can get the plots in Figure 11. From the plots, we can see
the general effects of increasing the integral gain (see also Table 2):

• The rise time decreases.
• The settling time may increase or decrease, depending on the system.
• The overshoot increases.
• The steady-state error disappears.

3.2 Integrator windup
Besides being less responsive than proportional action, integral action has one more drawback: reset
windup, also known as integrator windup. In the practical on voltage-based DC motor position
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Figure 6: Plots of performance characteristics versus integral gain for the test systems in Table 1.

control, we have witnessed the actuator saturation phenomenon, where the input to the motor has
to be limited to a certain voltage range. Actuator saturation then leads to integrator windup if the
controller has an integral mode. Here, let us look at integrator windup in more detail.

1

L*M.s  +R*M+L*D/Kt.s  +R*D/Kt+Kt.s3 2

DC motor
Step input

R*m*r*g/(Kt*Rg)

Constant

Voltage limiter Saturation
switch

Scope

Step disturbance
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1
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0

Disturbance
switch

0

[IAction]

[Error]

Responses

[Error]

[IAction]

Figure 7: Simulink model of a DC motor position control system.

In the Simulink model in Figure 7, if we (i) enable the PI controller, (ii) disable the voltage limiter,
and (iii) set the back-calculation gain (to be defined later) to zero, we will observe the responses in
Figure 8. In this case, which is free of actuator saturation, themotor reaches the desired angle rapidly,
and the integral error dies away quickly, butmeeting the input voltage demand of a few hundred volts
is impractical.

Now, if we enable the voltage limiter, we get the responses in Figure 9, which shows that actuator
saturation causes the control error e(t) to decrease linearly rather than exponentially. This causes
the integral error and hence integral action to increase negative-quadratically (because the integral
of a linear function is a quadratic function). Even after reaching the desired angle, the motor keeps
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Figure 8: Responses of the system
in Figure 7 to a step input
of 800, in the absence of
actuator saturation.

Large positive error causes the input voltage to saturate at the maximum.

Even after the set-point is reached, the motor keeps spinning, causing a large 
overshoot, because of the high integral error.

Large negative error 
causes the input voltage 
to saturate at 0. 

Zero crossings correspond to 
maxima/minima of integral 
action.

Out of saturationOut of saturation

Figure 9: Responses of the system
in Figure 7 to a step in-
put of 800, in the pres-
ence of actuator satura-
tion but no integrator
anti-windup.

Figure 10: Responses of the system
in Figure 7 to a step in-
put of 800, in the pres-
ence of actuator satura-
tion and integrator anti-
windup.

spinning because the integral action remains large. Once e(t) becomes negative, the integral action
starts decreasing. At some point when the control action (proportional action + integral action)
becomes small enough, the system comes out of saturation. It is only then can the magnitude of the
integral error start decreasing exponentially to zero. This is the reset windup or integrator windup
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phenomenon that was alluded to at the beginning of this subsection.
The remedy is anti-reset windup or integrator anti-windup. We know that as a remedy, we need

to suppress integration of e(t) during actuator saturation. One of the most widely used anti-windup
schemes is back-calculation anti-windup, which is exactly the anti-windup scheme implemented in
Figure 7. Instead of disabling integration, back-calculation resets integration dynamically at a time
constant called the tracking time constant, denoted Tt [ÅH06, Ch. 3]. The shorter Tt is, the faster
the integral error is reset once saturation commences. The inverse of Tt, denoted Ka, is called the
tracking gain or back-calculation gain.

Detail: Tracking time constant

From Figure 7, we can see the integral action is

Ui(s) =
KiE(s) +Ka[Usat(s)− U(s)]

s
, (8)

where Usat(s) is the saturated control action, defined as

Usat(s) =


umin

s
if u(t) < umin,

U(s) if umin ≤ u(t) ≤ umax,
umax

s
if umax < u(t).

(9)

In the absence of saturation, the integral action is the normal integral action defined in Eq. (5).
When u(t) saturates at umin,

Ui(s) =
Ki

s
E(s)− Ka

s
[Up(s) + Ui(s)] +

Kaumin

s2

=⇒
(
1 +

Ka

s

)
Ui(s) =

Ki

s
E(s)− Ka

s
Up(s) +

Kaumin

s2

=⇒ Ui(s) =
KiE(s)−KaUp(s)

s+Ka
+

Kaumin

s(s+Ka)

=⇒ ui(t) = L−1

{
KiE(s)−KaUp(s)

s+Ka

}
+ umin

(
1− e−t/Tt

)
,

whereUp(s) andUi(s) represent the proportional and integral actions respectively. The second
term of the equation above approaches umin (a negative value) at a time constant of Tt, thereby
validating our earlier statement about how Tt determines the response of the anti-windup.

Back to the system in Figure 7. Once we set the back-calculation gain to a suitable value, we can
get the responses in Figure 10, which shows the integral action is two orders of magnitude smaller
than the previous case without anti-windup. More importantly, overshoot has been flattened out.
Other anti-windup schemes such as the integrator clamp and conditional integration schemes will
be introduced in a later practical — these other schemes are not covered here because they are more
ad hoc. As some of youmight find out in EEET4071AdvancedControl, state-spacemethods provide
a more integrated approach to anti-windup.
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4 Derivative action
The derivative control action u(t) is proportional to the rate of change of the control error, i.e.,

u(t) = Kdė(t), (10)

where Kd is the derivative gain. To see why/how derivative action works, observe:
• Large positive rate of change indicates y(t) is falling fast below r(t), and the need for a strong

positive control action.
• Large negative rate of change indicates y(t) is growing fast above r(t), and the need for a strong

negative control action.
The transfer function of the derivative action is

U(s)

E(s)
= Kds. (11)

Derivative action is often paired with proportional action because a proportional action based on
the predicted error at time t+ Td can be expressed as

Kpe(t+ Td) = Kp

[
e(t) + Tdė(t) +

T 2
d

2!
ë(t) + · · ·

]
≈ Kp[e(t) + Tdė(t)], (12)

by first-order Taylor series approximation [Vis06, p. 6]. The right-hand side of the equation above is
the sum of a proportional term and a derivative term. The constant Td is called the derivative time.

4.1 Effects of derivative action
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Figure 11: Plots of performance characteristics versus derivative gain for the test systems in Table 1.

As before, we shall make some empirical observations of the effects of derivative action on the test
systems in Table 1, By connecting a PD controller (rather than a pure D controller) to each of the
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test systems and varying the derivative gain, we can get the plots in Figure 11. From the plots, we
can see the general effects of increasing the derivative gain (see also Table 2):

• The rise time generally decreases.
• The settling time may increase or decrease, depending on the system.
• The overshoot decreases.
• The steady-state error does not change.

4.2 Noise and time delay
As mentioned in the previous lecture, differentiation amplifies noise, so derivative action by itself
does not work well with noisy signals. For example, derivative action is seldom used for flow control,
because flow control loops respond quickly and flow measurements tend to be noisy. For noise
suppression, derivative action is typically paired with a derivative (mode) filter which is typically a
first-order low-pass filter:

U(s)

E(s)
= Kp

(
1 +

Tds

αTds+ 1

)
, α < 1. (13)

Detail: Derivative filter

Alternative equivalent forms of the derivative filter 1

αTds+ 1
include

• 1

Tds/N + 1
, where N > 1 and is typically between 8 and 16 [ACL05];

• 1

Tfs+ 1
, which is the form used by the MATLAB function pid.

For plants with time delay (also called transport lag, transport delay, or dead time, as mentioned
in Lecture 2), the derivative gain needs to be carefully tuned, because certain values of the gain can
destabilize these systems [ACL05]. This is why derivative control is not widely used in the pro-
cess control industry, where time-delay processes are common; for example, whenever some fluid is
transported through a pipe, there is a notable time delay. In fact, a survey [ACL05] shows that 80%
of the PID controllers in use have their derivative action disabled.

5 PID actions in a nutshell
At this point, it is clear that a PID controller is essentially a controller that acts on past, present and
future/predicted control errors.

Following our observations in Sect. 2.1, 3.1 and 4.1, Table 2 summarizes the effects of P/I/D ac-
tions. The saying “too much of a good thing” is applicable to the gain values, because despite the
performance benefits,

• Increasing Kp/Ki/Kd does not necessarily improve the settling time.

• Increasing Kp or Ki generally decreases the stability margins (to be defined rigorously in a later
lecture).
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Table 2: Summary of effects of P/I/D actions.
PID gain Rise time Settling time % Overshoot Steady-state error
Increasing Kp Decreases Depends Depends Decreases
Increasing Ki Decreases Depends Increases Disappears
Increasing Kd Generally decreases Depends Decreases Does not change

• Increasing Kd may increase or reduce the stability margins depending on the system, and the
current PD gains [ACL05].

Naturally, determining the right gains (called tuning) is important and will be discussed in subse-
quent lectures.

Example 3

To visualize the impact of excessive Kp or Ki, run the MATLAB demo sm_backhoe by typing
“sm_backhoe” on a MATLAB Command Window. Double click the “PID Controller Bucket”
block (see Figure 12) to modify the PID gains.
(a) Increase Kp to 4000, and observe the angle response of the bucket. Figure 13 shows the

bucket suffers a high-frequency ringing (i.e., oscillation) around 150◦ that renders the
backhoe useless.

(b) Set Kp back to its default value, increase Ki to 2000, and observe the angle response of
the bucket. Figure 14 also shows the bucket suffers excessive oscillations.

Figure 12: The MATLAB demo called sm_backhoe uses PID control to control the movement of the
bucket. Watch out for the animation of the backhoe.
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Figure 13: The angle response of the backhoe’s
bucket in Example 3, whenKp = 4000,
Ki = 2, Kd = 3. Black line is the re-
sponse; blue line is the set-point.

Figure 14: The angle response of the backhoe’s
bucket in Example 3, when Kp = 50,
Ki = 2000, Kd = 3. Black line is the
response; blue line is the set-point.

Quiz 3

State ‘true’ or ‘false’ for each of the statements below:
• Proportional action generally improves rise time and settling time.

• Integral action can reduce steady-state error to zero in spite of actuator saturation, as long
as the actuator is able to get out of saturation.

• A PD controller can not only improve the transient response but also the stability of a delay-
free LTI system.

• A PID controller without a derivative filter is physically unrealizable because of noise.

6 Forms/structures of PID controllers
A PID controller can combine proportional action, integral action and derivative action in various
forms/structures. The terms “forms” and “structures” are used interchangeably in the literature (e.g.,
[ACL05, Vis06, O’D09]), and can be understood as (i) different ways of writing the basic PID control
law; or (ii) variants/extensions of the basic PID control law. The next two subsections introduce
some common PID forms using the nomenclature from [ÅH95] and [ÅH06], informally classified
into “simple” and “advanced”.

6.1 Simple forms
The simple forms are those that use only the control error as input.

• Parallel form: This is also called the textbook form. A PID control law in this form is written as

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kdė(t), (14)

with the associated transfer function

C(s) = Kp +
Ki

s
+Kds, (15)

which we have already seen. Note:
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– MATLAB provides the function pid that supports the creation of PID controllers in the parallel
form coupled with a derivative filter:

C(s) = Kp +
Ki

s
+

Kds

Tfs+ 1
. (16)

– Some authors call this the “expanded form” [SMEDI10, p. 140], but this is unconventional.

• Ideal form: This is also known as the noninteracting/noninteractive form, the ISA form, or the
standard form [ÅH06, Sect. 3.2]. Although the parallel form of PID controllers seems to offer
the flexibility of tuning individual gains independently, most of the established tuning rules apply
to the ideal form and series form. Paired with a derivative filter, a PID controller in the ideal form
has the transfer function

C(s) = Kp

(
1 +

1

Tis
+

Tds

αTds+ 1

)
, α < 1, (17)

where Ti is the integral time, and Td is the derivative time. Note:
– MATLAB provides the function pidstd for converting a PID transfer function of any other

form to the standard form.
– Some authors call this the “parallel form” [SMEDI10, p. 140], but this is unconventional.

• Internalmodel control form: This is obtained by applying the derivative filter to the whole trans-
fer function rather than just the derivative term in the ideal form:

C(s) = Kp

(
1 +

1

Tis
+ Tds

)(
1

Tfs+ 1

)
. (18)

This form is so-called because the internal model control tuning rule [SMEDI10, Sect. 12.2.2]
generates controllers of this form, but this tuning rule is not covered in this course.

• Series form: This is also known as the interacting/interactive form or classical form [ÅH06,
Sect. 3.2]. Paired with a derivative filter, a PID controller in the series form has the transfer
function

C(s) = Kp

(
1 +

1

Tis

)(
Tds+ 1

αTds+ 1

)
, α < 1. (19)

The series form, being a PI controller and a PD controller (filtered or unfiltered) connected in
series, was historically the first to be implemented. Implementations of the series form can be
found in early analog controllers as well as contemporary digital control systems. However, the
ideal form is more general/flexible than the series form because it supports complex conjugate
zeros. Recall from the previous lecture how essential complex conjugate zeros are for stabilizing
systems with oscillatory modes.

Quiz 4

Can the series form be converted to the ideal form? Can the ideal form be converted to the
series form?

Traditionally, a process automation system is either a network of Programmable Logic Controllers
(PLCs) or a Distributed Control System (DCS, see Figure 15) [Sie07]. For PLCs, Ladder Logic is the
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Figure 15: The Distributed Control System architecture. “Distributed” is a bit of a misnomer, and
“hierarchical” is a more appropriate adjective. Image by Daniele Pugliesi - Own work,
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31527335.

standard configuration language, while for DCS, Function Block Diagram is the norm. In either lan-
guage, PID control functionalities are typically available through dedicated Function Blocks. Some
Function Blocks support both the ideal form and series form, but some support only the ideal form.
For example, in Honeywell’s Experion LX1 Control Builder software, the PID Function Block sup-
ports only the ideal form [Hon14].

6.2 Advanced forms
Looking at the description of the PID block in the Control Builder manual (as in Figure 16), we can
see that the block takes an argument called CTLEQN, which selects the equation/form of the PID
controller [Hon14, pp. 380-382]:

• Equation A is the ideal form.
• Equations B and C are the advanced forms that we shall now discuss.

The advanced forms exist because of the following problems with the simple forms:

• “Derivative kick”: This refers to a spike in the derivative error caused by a jump (i.e., step change)
in the set-point. Mathematically, since

e(t) = r(t)− y(t) =⇒ ė(t) = ṙ(t)− ẏ(t),

a spike in ṙ(t) creates a spike in ė(t), which in turn creates a spike in the derivative action.

1https://youtu.be/HoT7SEthuLA
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13.8 PID Block 
Description 
The PID block is a regulatory control block that operates as a proportional-integral-
derivative (PID) controller. It supports the Ideal form of calculating the PID terms. The 
Ideal form is often called the digital-computer version of the PID controller. The PID 
block looks like this graphically: 

 

 
 

The PID block has two analog inputs - a process variable (PV) and a set point (SP). The 
difference between PV and SP is the error and this block calculates a control output (OP) 
that should drive the error to zero. 

The following equations are supported: 

• Proportional, Integral, and Derivative (PID) on the error 

• Proportional and Integral (PI) on the error and Derivative (D) on changes in PV 

• Integral (I) on the error and Proportional and Derivative (PD) on changes in PV 

Figure 16: The PID block in Honeywell’s Experion LXControl Builder
library [Hon14, p. 347].

• “Proportional kick”: This refers to a large change in the control error caused by a step change in
the set-point. The large change in control error triggers a large change in the proportional action.

The “kicks” are undesirable because they inflict excessive wear and tear on the actuators; for example,
valves deteriorate rapidly with time if exposed to high-pressure pulses repeatedly. The advanced
forms are improvements to the basic PID forms because they can buffer the actuators from these
“kicks”. The advanced forms include

• The Type B or PI-D controller, which takes −ẏ(t) instead of ė(t) as input to the derivative term:

u(t) = Kp

[
e(t) +

1

Ti

∫ t

0

e(τ)dτ − Tdẏ(t)

]
. (20)

This controller softens the derivative kick.

• TheTypeC or I-PD controller, which takes−y(t) instead of e(t) as input to the proportional term,
and −ẏ(t) instead of ė(t) as input to the derivative term:

u(t) = Kp

[
−y(t) +

1

Ti

∫ t

0

e(τ)dτ − Tdẏ(t)

]
. (21)

This controller softens both the derivative kick and proportional kick.

• The beta-gamma controller, which takes ep(t) instead of e(t) as input to the proportional term,
and ėd(t) instead of ė(t) to the derivative term:

u(t) = Kp

[
ep(t) +

1

Ti

∫ t

0

e(τ)dτ + Tdėd(t)

]
, (22)

where

ep(t)
def
= βr(t)− y(t), 0 ≤ β ≤ 1;

ed(t)
def
= γr(t)− y(t), 0 ≤ γ ≤ 1.

The tunable parameters β and γ enable set-point weighting, i.e., striking different trade-offs be-
tween responsiveness and suppression of derivative kicks and proportional kicks:
– Setting β = 1 and γ = 1 reduces the beta-gamma controller to the ideal-form PID controller.
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– Setting β = 1 and γ = 0 reduces the beta-gamma controller to the PI-D controller.
– Setting β = 0 and γ = 0 reduces the beta-gamma controller to the I-PD controller.
The beta-gamma controller is also called the parallel PID controller with proportional and deriva-
tive mode weighting [SMEDI10, Sect. 8.3.1]. In the Laplace domain, Eq. (22) is equivalent to

U(s) = Kp

(
β +

1

Tis
+ γTds

)
R(s)−Kp

(
1 +

1

Tis
+ Tds

)
Y (s).

Coupled with a derivative filter, the equation above becomes

U(s) = Cr(s)R(s)− Cy(s)Y (s), (23)

where

Cr(s) = Kp

(
β +

1

Tis
+ γ

Tds

αTds+ 1

)
, (24)

Cy(s) = Kp

(
1 +

1

Tis
+

Tds

αTds+ 1

)
. (25)

Eq. (23) is known as the two degree-of-freedom PID (2DOF PID) control law, an implementation
of the beta-gamma controller. Figure 17 shows how Cr(s) and Cy(s) are connected in a block
diagram. From the block diagram,

Y (s) =
Cr(s)G(s)

1 + Cy(s)G(s)︸ ︷︷ ︸
Servo control transfer function

R(s) +
G(s)

1 + Cy(s)G(s)︸ ︷︷ ︸
Regulatory control transfer function

D(s). (26)

Closed-loop stability with respect to disturbance depends only on Cy(s), and not on the set-point
weighting factors β and γ inCr(s). Thus, when tuning the beta-gamma controller,Cy(s) should be
tuned first for good regulatory control performance (i.e., disturbance rejection), then β and γ can
be tuned for good servo control performance (i.e., good reference tracking with quick transient
response) [AV16]. The servo control transfer function in Eq. (26) is also called a set-point filter
or reference filter in Lecture 3.

𝑅(𝑠)

𝑌(𝑠)
+

−

𝑈(𝑠)
𝐺(𝑠)

𝐶𝑟(𝑠)

𝐶𝑦(𝑠)𝑌(𝑠)

Disturbance 𝐷(𝑠)

+

+

Figure 17: A system with a beta-gamma controller in the two degree-of-freedom configuration,
where Cr(s) and Cy(s) are as defined in Eqs. (24) and (25).
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Example 4

To visualize set-pointweighting, run the Simulink demo sldemo_pid2dofby typing “sldemo_pid2dof”
on a MATLAB Command Window (see Figure 18). The plots in Figure 19 are obtained by set-
ting β = 1, γ = 1, thereby disabling the beta-gamma controller. Observe the spikes in the
control action. The plots in Figure 20 are obtained by setting β = 0, γ = 0, thereby suppress-
ing proportional kicks and derivative kicks to the fullest.

Copyright 2009-2012 The MathWorks, Inc.

Two degree-of-freedom PID Control Demonstration

Setpoint

Setpoint changes
between 

(60-25 rad/s)

PID(s)
Ref

PID Controller (2DOF)

Load Torque

DC Motor

u(t)

d(t)

r(t)
y(t)

Figure 18: Block diagram of the Simulink demo sldemo_pid2dof, which uses the tunable built-in
block “PID Controller (2DOF)”.

Figure 19: Plots for Example 4 with β = 1, γ = 1. Figure 20: Plots for Example 4 with β = 0, γ = 0.

7 Software implementation
So far, we have seen various forms of the PID control law, all in continuous time, but in software,
these laws have to be implemented in discrete time.

When implementing a PID controller in software, we expect it to be given in the parallel form. If
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given in another form, say the series form, we can readily convert it to the parallel form:

Cpid(s) = Kpid

(
s+ zpi

s

)
(s+ zpd) = Kp +

Ki

s
+Kds, (27)

where Kp = Kpid(zpi + zpd) is the proportional gain, Ki = Kpidzpizpd is the integral gain, and Kd =

Kpid is the derivative gain. Thus in continuous time, a PID control law in the parallel form looks like

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kdė(t), (28)

where u(t) is the control signal, and e(t) is the control error (reference input minus output). In
discrete time, the above translates to the following so-called positional algorithm [Vis06, Eq. (1.36)]:

u[k] = Kpe[k] +KiT

k∑
i=0

e[i]︸ ︷︷ ︸
ui[k]

+Kd
e[k]− e[k − 1]

T︸ ︷︷ ︸
ud[k]

, (29)

where T is the sample period, andwe have applied the backward rectangular version of Euler’s method
[FPW98, p. 69] to approximate differentiation:

ė(t = kT ) ≈ e[k]− e[k − 1]

T
, for small T.

Note that by convention, wewrite e[k] tomean e(t = kT ) to emphasize we are dealingwith a discrete-
time value. Clearly, both integration and differentiation are approximations. By subtracting u[k− 1]

from u[k], we get the following so-called incremental/velocity algorithm [Vis06, Eq. (1.37)]:

u[k] = u[k − 1] +

(
Kp +KiT +

Kd

T

)
e[k]−

(
Kp +

2Kd

T

)
e[k − 1] +

Kd

T
e[k − 2],

which can be used to derive the controller transfer function in the z domain (detail omitted).
In practice, the PID controller is often implemented as a hybrid of the positional and velocity

algorithms, where the proportional term is positional, while the integral and derivative terms (ui[k]
and ud[k]) are incremental. Furthermore,
• ui[k] is coupled with an anti-windup scheme for suppressing integrator windup, whereas
• ud[k] is coupled with a derivative filter, i.e., a low-pass filter for suppressing noise.

To implement back-calculation anti-windup, the integral action in discrete time is readily deriv-
able from Eq. (8) as

ui[k] = ui[k − 1] + T
{
Kie[k] +Ka(usat[k]− u[k])

}
, (30)

whereKa is the back-calculation gain, usat[k] is the saturated version of u[k], and u[k] is as defined in
Eq. (29).

To implement a derivative filter, consider the transfer function

Ud(s)

E(s)
=

KpTds

Tfs+ 1
=⇒ Ud(s)(Tfs+ 1) = KpTdsE(s)

=⇒ Tf u̇d(t) + ud(t) = KpTdė(t),

(31)
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where ud(t) denotes derivative action, and e(t) denotes control error. To implement Eq. (31), we
need to discretize the derivatives, for which we can apply the backward rectangular version of Euler’s
method again. Discretizing Eq. (31) accordingly, we have

Tf
ud[k]− ud[k − 1]

T
+ ud[k] = KpTd

e[k]− e[k − 1]

T
=⇒ (Tf + T )ud[k] = Tfud[k − 1] +KpTd(e[k]− e[k − 1]).

(32)

Therefore, the filtered derivative action in discrete time is

ud[k] =
Tf

Tf + T
ud[k − 1] +

KpTd
Tf + T

(e[k]− e[k − 1]). (33)

8 Hardware implementation
Improper transfer functions are not physically realizable, for example, a PD controller is not phys-
ically realizable. Any physically unrealizable transfer function is naturally not practically realizable
in hardware. For example, A PD controller is physically unrealizable because it has an improper
transfer function; and not practically realizable in hardware because it requires pure differentiation.

Pure differentiation requires an ideal differentiator, but the gain of the ideal differentiator increases
with frequency, and past some high enough frequency, nevermind the noise completely overwhelms
the differentiated output, the differentiator also becomes oscillatory [BG10, Sect. 2.32.4]. This is
the reason why the practical differentiator, rather than the ideal differentiator, is used in practice,
providing the basis for the lead compensator. A lead compensator has transfer function of the form

C(s) =
K(s+ z)

s+ p
, where z < p and z, p ∈ R+, (34)

which has a negative zero, and a pole to the left of the zero (see Figure 21). A lead compensator is in
fact a PD controller with integrated first-order low-pass filtering.

PI controller Lag compensator

PD controller Lead compensator

Figure 21: PD controller vs. lead compensator in terms of pole and zero.

On top of that, some physically realizable transfer functions are not practically realizable in hard-
ware; for example, any transfer function with an integrator pole (i.e., pole at the origin) is not prac-
tically realizable in hardware because that requires pure integration.

Pure integration requires an ideal integrator, but the “bandwidth” of an ideal integrator is so small
that it can only be used for a small input frequency range [SB08, p. 205]; this limitation makes the
ideal integrator impractical. The result of approximating pure integration in hardware is the practical
integrator (aka lossy integrator) [SB08, p. 205], which provides the basis for the lag compensator. A
lag compensator has transfer function of the form

C(s) =
K(s+ z)

s+ p
, where z > p and z, p ∈ R+, (35)
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which has a small negative pole, and a zero to the left of the pole (see Figure 22). Therefore, a lag
compensator is a PI controller with its pole slightly left-shifted from origin. When connecting a lag
compensator and a lead compensator in series, we get a lag-lead compensator.

PI controller Lag compensator

Figure 22: PI controller vs. lag compensator in terms of pole and zero.

In summary,

• A P controller is both physically realizable and practically realizable in hardware.
• A PI controller is physically realizable but not practically realizable in hardware. As a solu-

tion, it can be implemented as a lag compensator in hardware, which has a small negative
rather than zero pole.

• A PD controller is not physically realizable. As a solution, it can be implemented as a lead
compensator in hardware, which is essentially a PD controller with a derivative filter.

• A PID controller is not physically realizable. As a solution, it can be implemented as a lag-
lead compensator in hardware.

• A PIDF controller is physically realizable but not practically realizable in hardware. As a
solution, it can be implemented as a lag-lead compensator in hardware.

In terms of hardware components, lag, lead and lag-lead compensators can be implemented using
operational amplifiers (op-amps). There are two types of op-amps: inverting and noninverting —
the primary difference between the two is that the inverting type inverses the polarity of the input
voltage at the output. Figure 23 shows a Simscape model consisting of an inverting op-amp and a
noninverting op-amp. Notice for both types of op-amps, the output voltage is fed back to the negative
input. We shall discuss inverting and noninverting op-amps in turn.

Voltages

Z2
10e3	Ohm

Z1
1e3	Ohm

Inverting	op-amp Z4
10e3	Ohm

Z3
1e3	Ohm

Noninverting	op-amp

S
PS

S
PS

S
PS

[Vi]

[Vi]

[Voi]

[Voi]

[Von] [Von]

f(x)	=	0
Vi

Vo1

Vo2

Figure 23: A Simscape model consisting of an inverting op-amp and a noninverting op-amp.

Based on the derivation in [SS15, Sect. 2.2.1], the transfer function of the inverting op-amp in
Figure 23 is
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Voi(s)

Vi(s)
= −Z2(s)

Z1(s)
. (36)

We can implement a lag or lead compensator using an inverting op-ampby implementing impedances
Z1(s) and Z2(s) as parallel RC circuits. The impedances are given by

Zj(s) =
1

1
Rj

+ Cjs
=

Rj

RjCjs+ 1
, where j = 1, 2. (37)

Therefore,
Voi(s)

Vi(s)
= −Z2(s)

Z1(s)
= −

R2

R2C2s+1
R1

R1C1s+1

= −
(
C1

C2

)
s+ (R1C1)

−1

s+ (R2C2)−1
. (38)

By choosing R1C1 smaller than R2C2, we get a lag compensator; otherwise, we get a lead compen-
sator. However, inverting op-amps have the disadvantage of having a low input impedance.

Based on the derivation in [SS15, Sect. 2.3.1], the transfer function of the noninverting op-amp
in Figure 23 is

Von(s)

Vi(s)
= 1 +

Z4(s)

Z3(s)
. (39)

We can implement a lag or lead compensator using a noninverting op-amp by implementing Z3(s)

and Z4(s) as parallel RC circuits, but the detail is omitted here. Noninverting op-amps have the
advantage of having a high input impedance, but Eq. (39) implies they cannot implement a gain of
less than 1.

9 Limitations of PID control
We first discuss PI controllers, then PID controllers.

PI control is adequate for all processes whose dynamics is essentially of the first order [ÅH06,
Sect. 3.6], e.g., level control for single tanks, a car’s brake system. However, it cannot control double
integrating processes, i.e., processes with two poles at the origin — for these processes, derivative
action is necessary. An example of a double integrating process is the ball and beam system (see
Figure 24).

Figure 24: The ball and beam system, where the objective
is to balance the ball on the beam, is a double
integrating process and a classic test system for
control schemes. Model and image available at
http://ctms.engin.umich.edu/CTMS/index.php?

example=BallBeam&section=SystemModeling.

PID controllers are second-order (at most) controllers, so there exist unstable plants that cannot
be stabilized by anymember of the PID family. In particular, PID controllers are problematic [Cor04,
Sect. 4.4.2] for
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• systems with substantial time delay;
• systems with oscillatory modes (poles on the imaginary axis);
• systems with large parameter variations.
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