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1 Introduction
We design controllers that are stable and that exhibit desirable transient response characteristics.
These transient response characteristics include

• whether the system response will converge to a steady-state value,
• how long the system takes to get there, and
• how much overshoot the system typically undergoes to get there.

For this, we need to evaluate the transient response (“pre-steady-state response”) of our systems,
under various inputs. The most common inputs are

• Impulse input: δ(t), which is an infinitely large spike at t = 0.
• Step input: u(t), which is 1 for t ≥ 0, but 0 elsewhere.

This sounds incredibly difficult because systems can be arbitrarily complex. Fortunately, the nature
of linear systems and the beauty of transfer functions make this task relatively easy, as explained
below.

Detail: Impulse

In continuous time, an impulse is represented by the Dirac delta function, which has the prop-
erty ∫ a+ε

a−ε

f(t)δ(t− a)dt = f(a) for ε > 0.
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In discrete time, a unit impulse is represented by the Kronecker delta function:

δ[k] =

{
1 for k = 0;

0 for k 6= 0.

In the previous lectures, we learnt how to model systems using transfer functions, and then de-
termine the stability of these transfer functions. In the ensuing discussion, think of a system as a
transfer function, which can have a order of one, two, or more.

• If it is a first-order or second-order system, there are readily available formulas for calculating its
transient response characteristics.

• If it is a higher-order system, we can often express it as a sumof first- and second-order subsystems;
the transient response characteristics of the higher-order system can then be approximated by
those of the dominant second-order subsystem.

This lecture follows the directions of [Nis15, Ch. 4].

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.
Fig_4-14

Figure 1: Characteristics of a transient re-
sponse [Nis15, FIGURE 4.14].
Tr = rise time. Tp = peak time.
Ts = settling time.

2 Transient response characteristics
The metrics we use to characterize the transient response of a system are defined as follows (see
Figure 1):

Rise time is the time for a system response to rise from 10% to 90% of its steady-state value.
• This is the same definition used by MATLAB function stepinfo.
• This is sometimes defined as the time from 0 to steady-state value [Bol13], but some systems

approach the steady-state value asymptotically, and never reach it.

Setting time is the time for a system response to reach and remain within ±2% of its steady-state
value.
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• Strictly speaking, this is the “2% settling time”.
• This is the same definition used by MATLAB function stepinfo.
• The “5% settling time” is sometimes used.

Peak time is the time for a system response to reach the first, or maximum, peak.

Percent overshoot is defined as

max{cmax − cfinal, 0}
cfinal − cinit

× 100%, (1)

where cmax is the peak value, cfinal is the steady-state value, cinit is the initial value (see Figure 1).

In the next two sections, we will learn how to calculate the transient response characteristics of
first-order and second-order systems.

3 First-order systems
First-order systems are systems with one pole. In the previous lecture, we briefly learnt about poles
and zeros. While poles determine the stability of a system, both poles and zeros shape the transient
response of the system.

Consider the strictly proper first-order system

G(s) =
1

s+ a
, a ∈ R \ {0}. (2)

In this case, the system has a pole at −a, and no zero.

3.1 Impulse response
The impulse response of system (2) is the system’s response to impulse input r(t) = δ(t):

Y (s) = G(s)R(s) =
1

s+ a
· 1 =⇒ y(t) = e−at. (3)

Note: The fact that the transfer function and impulse response of a system are equivalent has been
mentioned in the previous lecture. It is clear that

• When the pole is negative (a > 0), the impulse response is a decaying exponential that converges
to 0.

• When the pole is positive (a < 0), the impulse response is a growing exponential that diverges to
∞.

This confirms the fact mentioned in the previous lecture that a stable system must have poles with
negative real parts.
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Quiz 1

In Eq. (2), why did we not consider the case where a is complex?

If we add a zero at −b to the system, the impulse response becomes

Y (s) =
s+ b

s+ a
= 1 +

b− a

s+ a
=⇒ y(t) = δ(t) + (b− a)e−at. (4)

Therefore we observe that while the zero does not affect stability, it does together with the pole shape
the response.

3.2 Step response
The step response of system (2) is the system’s response to step input r(t) = u(t):

Y (s) = G(s)R(s) =
1

s+ a
· 1
s
=

1

a

(
1

s
− 1

s+ a

)
= =⇒ y(t) =

1

a

(
1− e−at

)
. (5)

The constant term 1/a is the forced response (as well as the steady-state response), whereas the expo-
nential term−(1/a)e−at is the natural response. Again, we can see the pole must be negative (a > 0)
for the natural response to die away, i.e., for the system to be stable.

Definition: Time constant

In Eq. (5), a is called the exponential frequency, whereas its inverse, denoted τ
def
= 1/a, is called

the time constant of the response. In the duration of a time constant, the step response in-
creases from 0 to 1− e−1 ≈ 63% of its steady-state value.

If we add a zero at −b to the system, the step response becomes

Y (s) =
s+ b

s+ a
· 1
s
=

1

a

(
b

s
+

a− b

s+ a

)
=⇒ y(t) =

b

a
+

a− b

a
e−at. (6)

Again, we observe that while the zero does not affect stability, it plays a role in shaping the response.
The step response of a first-order system is representative of many step responses we observe in

the real world. Fortunately, the rise time and settling time of the step response of a first-order system
are readily quantifiable:

Rise time, tr Denote by t10 (t90) the time when 10% (90%) of the steady-state value is reached.
Then,

1− e−t10/τ = 0.1 =⇒ t10 = −τ ln 0.9,

1− e−t90/τ = 0.9 =⇒ t90 = −τ ln 0.1,

∴ tr = t90 − t10 = τ(− ln 0.1 + ln 0.9) = τ ln 9,

∴ tr ≈ 2.2τ. (7)

Settling time, ts By definition,
1− e−ts/τ = 0.98,
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∴ ts = −τ ln 0.02 = τ ln 50 ≈ 4τ. (8)

Peak time is not applicable.

Percent overshoot is 0%.
14 Signals and Systems

C

R

x(t) y(t)

Figure 2.1: An electrical circuit with resistor and capacitor in series, otherwise
known as an RC circuit.

mass M

K BB

p(t)f(t)

Figure 2.2: A mechanical mass-spring-damper system

that is in the form of (2.0.1).
As another example, consider the mass-spring-damper in Figure 2.2. A

force represented by the signal f is externally applied to the mass, and
the position of the mass is represented by the signal p. The spring exerts
force −Kp that is proportional to the position of the mass, and the damper
exerts force −BD(p) that is proportional to the velocity of the mass. The
cumulative force exerted on the mass is

fm = f −Kp−BD(p)

and by Newton’s law the acceleration of the mass D2(p) satisfies

MD2(p) = fm = f −Kp−BD(p).

We obtain the differential equation

f = Kp+BD(p) +MD2(p) (2.0.3)

that is in the form of (2.0.1) if we put x = f and y = p. Given p we can
readily solve for the corresponding force f . As a concrete example, let the
spring constant, damping constant and mass be K = B = M = 1. If the
position satisfies p(t) = e−t

2
, then the corresponding force satisfies

f(t) = e−t
2
(4t2 − 2t− 1).

i

Figure 2: RC circuit for Example 1.

Example 1

In the previous lecture, we derived the transfer function for the RC circuit in Figure 2, which
is a first-order system, as

G(s) =
1

τs+ 1
,

where τ def
= RC. Since tr ≈ 2.2τ = 2.2RC and ts ≈ 4τ = 4RC, by picking suitable values of R

and C, we can change the rise time and settling time of the step response of the RC circuit.

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.
Fig_4-6
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0.45

Figure 3: The observed step response of a system
to be identified [Nis15, FIGURE 4.6].

Example 2

In this example, we will perform system identification on a supposedly first-order system,
whose step response is shown in Figure 3. Suppose the system transfer function is

G(s) =
K

τs+ 1
,

in the so-called time constant form. Further suppose the step input is A, then the output re-
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sponse is

Y (s) =
K

τs+ 1
· A
s
= KA

(
1

s
− τ

τs+ 1

)
=⇒ y(t) = KA(1− e−t/τ ).

Figure 3 shows the steady-state value is 0.72, so if A = 1, then

K = 0.72.

Since τ is the time for the response to reach 63% of its steady-state value, τ is the time corre-
sponding to 0.72× 0.63 ≈ 0.45, so by inspecting Figure 3,

τ = 0.15.

Therefore, we estimate
G(s) =

0.72

(0.15)s+ 1
=

4.8

s+ 6.67
.

In fact, the curve in Figure 3 was generated for 5

s+ 7
, so our estimation is close.

4 Second-order systems
Second-order systems are systems with two poles. They are important because

• Many important systems are approximately second-order.

• They are of the lowest order that exhibit oscillations and overshoot, like what most physical pro-
cesses do.

• A higher-order system can often be expressed as a sum of first- and second-order subsystems; and
the transient response characteristics of the higher-order system can be approximated by those of
the dominant second-order subsystem, i.e. the second-order subsystem with poles closest to the
imaginary axis. Suppose

G(s) =
sm + b1s

m−1 + · · ·+ bm
sn + a1sn−1 + · · ·+ an

=
c1

s+ p1
+ · · ·+ c2s+ d2

s2 + 2ζ2ω2s+ ω2
2︸ ︷︷ ︸

Dominant subsystem

+ · · · ,

and further suppose s2+2ζ2ω2s+ω2
2 has complex conjugate roots that are closest to the imaginary

axis, then the corresponding second-order subsystem is dominant; and the time response of G(s)

can be approximated by the time response of that subsystem.

Quiz 2

Can you think of a sample higher-order system that cannot be decomposed into a sum of first-
and second-order subsystems?
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The canonical form of a second-order system is

G(s) =
K

s2 + 2ζωns+ ω2
n
, (9)

where ζ (read “zeta”) is the damping ratio, and ωn (read “omega n”) is the natural frequency. The
natural frequency is the system’s frequency of oscillation in the absence of damping (ζ = 0).

14 Signals and Systems

C

R

x(t) y(t)

Figure 2.1: An electrical circuit with resistor and capacitor in series, otherwise
known as an RC circuit.

mass M

K BB

p(t)f(t)

Figure 2.2: A mechanical mass-spring-damper system

that is in the form of (2.0.1).
As another example, consider the mass-spring-damper in Figure 2.2. A

force represented by the signal f is externally applied to the mass, and
the position of the mass is represented by the signal p. The spring exerts
force −Kp that is proportional to the position of the mass, and the damper
exerts force −BD(p) that is proportional to the velocity of the mass. The
cumulative force exerted on the mass is

fm = f −Kp−BD(p)

and by Newton’s law the acceleration of the mass D2(p) satisfies

MD2(p) = fm = f −Kp−BD(p).

We obtain the differential equation

f = Kp+BD(p) +MD2(p) (2.0.3)

that is in the form of (2.0.1) if we put x = f and y = p. Given p we can
readily solve for the corresponding force f . As a concrete example, let the
spring constant, damping constant and mass be K = B = M = 1. If the
position satisfies p(t) = e−t

2
, then the corresponding force satisfies

f(t) = e−t
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(4t2 − 2t− 1).

Force Position

Kp B(dp/dt)

Figure 4: Mass-spring-damper system for Example 3.

Example 3

In the previous lecture, we derived the differential equation for the mass-spring-damper in
Figure 4, which is a second-order system, as

Mp̈+Bṗ+Kp = f.

Applying Laplace transformation, we get the transfer function

G(s) =
P (s)

F (s)
=

1

M

1

s2 + B
M s+ K

M

, (10)

whereP (s) andF (s) are the Laplace transforms for p(t) and f(t) respectively. Upon inspecting
G(s), intuition suggests
• IfB is small relative toM and themass oscillates, then the oscillation frequency is related to

K (a stiffer spring oscillates more) and M (a smaller inertia changes direction more easily).
In fact, based on Eqs. (9)–(10), the natural frequency is

ωn =

√
K

M
,

consistent with our physical understanding.

• Provided the viscous damper has high enough damping B relative to the mass M , the mass
does not oscillate. In fact, based on Eqs. (9)–(10), the damping ratio is

ζ =
B

2ωnM
=

B

2
√
KM

,

which is, again, consistent with our physical understanding. If B is really small, the mass-
spring-damper will oscillate at a frequency close to ωn =

√
K/M .
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It is extremely important to understand the effect of ζ on

• the location of the poles of the second-order system (see Figure 5); and

• the time response of the second-order system (see Figure 6).

𝜁
0 1

𝑝1,2 have positive 
real parts

𝑝1,2

= −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2

𝑝1,2 = ±𝑗𝜔𝑛 𝑝1,2 = −𝜔𝑛

𝑝1, 𝑝2 ∈ ℝ
−,

𝑝1 ≠ 𝑝2

𝜁

1 − 𝜁2

1

𝜙

Figure 5: The location of the poles, denoted p1 and p2, depends the value of ζ .

The poles of the second-order system are readily calculable using the formula for solving quadratic
equations:

p1,2 =
1

2

(
−2ζωn ±

√
4ζ2ω2

n − 4ω2
n

)
= −ζωn ± ωn

√
ζ2 − 1

=



has a positive real part if ζ < 0 (unstable);
±jωn if ζ = 0 (undamped);
−ζωn ± jωn

√
1− ζ2 if 0 < ζ < 1 (underdamped);

−ωn if ζ = 1 (critically damped);
−ζωn ± ωn

√
ζ2 − 1 if 1 < ζ (overdamped).

(11)

Quiz 3

Which case in Eq. (11) does not apply to the mass-spring-damper?

For each of the cases in Eq. (11), a sample time response is sketched in Figure 6. Of particular interest
is the underdamped case, where the control designer often specifies a nonzero percent overshoot, i.e.,
a value between 0 and 1 for ζ , in exchange for a shorter settling time than what critical damping or
overdamping provides. The rest of this section is the most important part of this lecture, where we
calculate the transient response characteristics of the second-order system.

Our starting point is an algebraic expression for the system’s step response:

Y (s) =
K

s2 + 2ζωns+ ω2
n
· A
s
=

c1
s
− c2s+ c3

s2 + 2ζωns+ ω2
n
. (12)

Performing partial fraction expansion, we have

c1s
2 + 2ζωnc1s+ c1ω

2
n − c2s

2 − c3s = KA

=⇒ c1 = c2, 2ζωnc1 = c3, c1ω
2
n = KA

=⇒ c1 =
KA

ω2
n
, c2 =

KA

ω2
n
, c3 =

2ζωnKA

ω2
n

.
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Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.
Fig_4-11

Figure 6: Step responses of second-order systems [Nis15, FIGURE 4.11].

Therefore,

Y (s) =
KA

ω2
n

{
1

s
− s+ 2ζωn

s2 + 2ζωns+ ω2
n

}
=

KA

ω2
n

1

s
−

(s+ ζωn) +
ζ√
1−ζ2

ωn

√
1− ζ2

(s+ ζωn)2 + ω2
n(1− ζ2)


=

KA

ω2
n

1

s
− s+ ζωn

(s+ ζωn)2 + ω2
n(1− ζ2)

−

(
ζ√

1− ζ2

)
ωn

√
1− ζ2

(s+ ζωn)2 + ω2
n(1− ζ2)


=⇒ y(t) =

KA

ω2
n

{
1− e−ζωnt cos(ωn

√
1− ζ2t)− ζ√

1− ζ2
e−ζωnt sin(ωn

√
1− ζ2t)

}

=
KA

ω2
n

1− e−ζωnt

[
cos(ωn

√
1− ζ2t) +

ζ√
1− ζ2

sin(ωn

√
1− ζ2t)

] .

(13)
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We shall simplify the equation above by combining the cosine and sine terms into
a single cosine term. Since 0 < ζ < 1, we can draw a right-angle triangle
with two orthogonal sides of lengths ζ and

√
1− ζ2, and a hypotenuse of length√

ζ2 + (
√

1− ζ2)2 = 1. Then,

tanφ =
ζ√

1− ζ2
and cosφ =

√
1− ζ2. (14)

𝜁
0 1

𝑝1,2 have positive 
real parts

𝑝1,2

= −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2

𝑝1,2 = ±𝑗𝜔𝑛 𝑝1,2 = −𝜔𝑛

𝑝1, 𝑝2 ∈ ℝ
−,

𝑝1 ≠ 𝑝2

𝜁

1 − 𝜁2

1

𝜙

cos(ωn

√
1− ζ2t) +

ζ√
1− ζ2

sin(ωn

√
1− ζ2t) =

cosφ cos(ωn

√
1− ζ2t) + sinφ ζ√

1−ζ2
sin(ωn

√
1− ζ2t)

cosφ

=
cos(ωn

√
1− ζ2t− φ)√
1− ζ2

.

(15)

Therefore, finally, the step response of the second-order system of Eq. (9) is

y(t) =
KA

ω2
n

{
1− e−ζωnt√

1− ζ2
cos
(
ωn

√
1− ζ2t− φ

)}
, where φ = arctan ζ√

1− ζ2
. (16)

In Eq. (16), we can see the natural response is an exponentially damped sinusoid.

• The term ζωn = |<(p1,2)| determines how fast the exponential factor decays, hence it is called the
exponential damping frequency.

• The term ωn

√
1− ζ2 = =(p1,2) is the frequency of the exponentially damped sinusoid, hence it is

called the damped frequency of oscillation.

Note: < represents the real part, whereas = represents the imaginary part of a complex number.
With Eq. (16), we now derive formulas for the rise time, settling time, peak time, and overshoot.

Rise time, tr There is no exact formula, but

tr ≈ 1.8/ωn, (17)

or based on [DB11, Eq. (5.17)],
tr ≈ (2.16ζ + 0.60)/ωn. (18)

These formulas are not as useful as the formula for settling time.

Settling time, ts After the settling time, y(t) is constrained within a sinusoid of amplitude 0.02, so

e−ζωnts√
1− ζ2

= 0.02 =⇒ ts ≈
4

ζωn
. (19)

You will derive Eq. (19) in the tutorial under guidance.
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Peak time, tp To find the peak, we determine when ẏ(t) = 0. Instead of differentiating in the time
domain, it is easier to perform the equivalent in the Laplace domain.

L{ẏ(t)} = sY (s) = s · K

s2 + 2ζωns+ ω2
n
· 1
s
=

K

s2 + 2ζωns+ ω2
n

=
K

ωn

√
1− ζ2

ωn

√
1− ζ2

(s+ ζωn)2 + ω2
n(1− ζ2)

∴ ẏ(tp) = 0 =⇒ K

ωn

√
1− ζ2

e−ζωntp sin(ωn

√
1− ζ2tp) = 0

=⇒ sin(ωn

√
1− ζ2tp) = 0

=⇒ ωn

√
1− ζ2tp = nπ, where n = 0,±1,±2, . . .

(20)

Since tp > 0, we can rule out negative n and zero n, hence,

tp =
π

ωn

√
1− ζ2

. (21)

Percent overshoot, %OS At peak time, the step response reaches the peak overshoot:

y(tp) =
KA

ω2
n

{
1− e−ζωntp√

1− ζ2
cos(ωn

√
1− ζ2tp − φ)

}
=

KA

ω2
n

{
1− e−ζπ/

√
1−ζ2√

1− ζ2
cos(π − φ)

}
=

KA

ω2
n

{
1 + e−ζπ/

√
1−ζ2

}
.

(22)

Since the steady-state value is 1, the percent overshoot is simply

%OS = exp

(
− ζπ√

1− ζ2

)
× 100%. (23)

Notice how the overshoot depends only on the damping ratio. When designing a controller, it is
common practice to determine the damping ratio from a specified percent overshoot. With just
some simple algebra, we can get

ζ = − ln(OS)√
π2 + ln2

(OS)

, (24)

where OS is in fraction, not percentage.

Now, we have all the formulas we need to

• calculate ζ , ωn from the desired transient response characteristics (usually overshoot and settling
time); and

• calculate the pole locations from ζ , ωn using Eq. (11).
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Note: When designing a closed-loop system, the pole locations are the locations of the closed-loop
poles.

4.1 Linking pole locations to performance
When designing a controller, there is usually flexibility in placing the poles. It is essential to develop
an understanding of how moving the poles in the s plane affects the performance. Recall the poles
of an underdamped second-order system with damping ratio ζ and natural frequency ωn are

p1,2 = −ζωn ± jωn

√
1− ζ2 = ωne

j(π±θ), where θ = arctan
√

1− ζ2

ζ
. (25)

Thus,

• The settling time is related to the real part of the poles through Eqs. (19) and (25):

ts ≈
4

ζωn
=

4

|<(p1,2)|
. (26)

This means poles at the same distance away from the imaginary axis of the s plane provide the
same amount of settling time (see Figure 7(a)).

Quiz 4

To decrease the settling time, should the poles be moved horizontally to the left or right?

• The peak time is related to the imaginary part of the poles through Eqs. (21) and (25):

tp =
π

ωn

√
1− ζ2

=
π

=(p1,2)
. (27)

This means poles at the same distance away from the real axis of the s plane provide the same
amount of peak time (see Figure 7(b)).

Quiz 5

To decrease the peak time, should the poles bemoved vertically from or toward the real axis?

• The overshoot is related to the angle of the poles through Eqs. (23) and (25):

OS = exp

(
− ζπ√

1− ζ2

)
= exp

(
− π

tan θ

)
. (28)

Thismeans poles at the same direction from the origin provide the same amount of overshoot (see
Figure 7(c)). This is why radial lines (i.e., lines radiating from the origin) on the s plane are called
overshoot lines or damping ratio lines.

Quiz 6

To decrease the overshoot, should θ be increased or decreased?
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Quiz 7

By the polar representation of the poles in Eq. (25), what do all the poles distributed on the
same circle centered at the origin have in common?

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.
Fig_4-19

Figure 7: Step responses of second-
order underdamped sys-
tems as poles move (a)
vertically, (b) horizon-
tally, (c) radially in the s

plane.

When designing a controller,

1. It is customary to start with a desired percent overshoot, which determines the overshoot line
(equivalently, damping ratio line) on the s plane. There are actually two overshoot lines, that are
symmetrical about the real axis (see Figure 7(c)), but we usually just talk about the one above the
real axis; the one below is implied.

2. Then on the overshoot line, the designer picks a pole that gives a satisfactory settling time; the
other pole is implied. The further away the poles are from the origin, the shorter the settling time
and peak time. However, the poles cannot be arbitrarily far away, because correspondingly these
require arbitrarily large controller gains, which saturate the actuators earlier, use more energy,
cause more wear and tear, and may in the worst case destabilize the system.

Figure 8 shows now that we can calculate the locations of closed-loop poles, we are close to being
able to design controllers.
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Desired overshoot, 
settling time, etc.

Closed-loop poles𝜁, 𝜔𝑛

We covered this
(independent of system configuration)

Controller 
parameters

Desired steady-
state error

Methodologies: root locus, frequency response
(dependent on system configuration)

Figure 8: Controller design starts with the specification of desired transient response characteristics.

Example 4

This example is taken from [DB11, Example 5.1]. Suppose for the system

G(s) =
K

s2 + as+K
,

we need to select the gain K and parameter a such that the step response has
• an overshoot of less than e−π ≈ 4.3214%; and
• a settling time of less than 4 seconds.
Solution: The damping ratio, ζ , for an overshoot of less than e−π must satisfy

ζ > − ln(e−π)√
π2 + ln2

(e−π)

=
π√
2π2

=
1√
2
.

Since the settling time ts ≈ 4
ζωn

,

4

ζωn
< 4 =⇒ ζωn > 1 =⇒ ωn >

1

ζ
.

Graphically, the poles ofG(s)must lie in the shaded region in Figure 9. Consequently, wemust
have

a = 2ζωn > 2, and K = ω2
n >

1

ζ2
, for any ζ >

1√
2
.

5 System responses with zeros
So far in the discussion of second-order systems, we have not considered the effect of zeros. Given
system response Yo(s), where the subscript “o” denotes “original”, how will it change if we add a zero
to the system, as such: (s+ a)Yo(s)? Observe the modified system response:

Y (s) = (s+ a)Yo(s) = sYo(s) + aYo(s). (29)

• sYo(s) is the Laplace transform of ẏ(t), i.e., Laplace transform of the rate of change of yo(t).
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Figure 9: Region in which the poles of Example 4 must lie.

• If a is large, Y (s) ≈ aYo(s), i.e., Y (s) is approximately an a-multiple of Yo(s) (see Figure 10(a)).

• If a is small, Y (s) ≈ sYo(s), i.e., Y (s) is a differentiated version of Yo(s), and consequently has
more overshoot than Yo(s) (see Figure 10(b)).

The case where a < 0 is equivalent to having a zero in the open right-half plane.

Definition: Nonminimum-phase system [DB11, p. 570]

A systemwith one ormore zeros in the open right-half plane is called a nonminimum-phases
system.

Nonminimum-phase systems are so-called because they have more phase than systems with only
left-half-plane zeros; this will become evident once we study frequency response later. Undershoot is
characteristic of nonminimum-phase systems. Figs. 10(c) and 10(d) show the closer the right-half-
plane zero is to the imaginary axis, the larger is the undershoot. Undershoot is problematic because
the system response always starts by going in the wrong direction before recovering in the right
direction, rendering the system inefficient. The inherent performance deficiency of nonminimum-
phase systemsmakes themundesirable, and even unfit for some control schemes such as feedforward
control and feedback linearization, but their unavoidable existence in the real worldmeanswe should
develop some good understanding of these systems. As a start, let us study a classic example of a real-
world nonminimum-phase system in Example 5. We will encounter nonminimum-phase systems
in later lectures again.

Example 5

Consider the aircraft in Figure 11, which is initially cruising at an altitude of h = h0. To
increase its altitude, the aircraft rotates the elevator by an angle of E, generating a small aero-
dynamic force of LE on the elevator, and thus a torque about the center of gravity CG. The
torque rotates the aircraft by α about CG. The lift force applied to the wings is proportional to
α, i.e.,

LW = CZWα, (30)

whereCZW is the lift coefficient of the wing. Similarly, LE is proportional to the angle between
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(a) Large system zero on the left-half plane does
not significantly change the original overshoot.

(b) Small system zero on the left-half plane am-
plifies the overshoot.

    

(c) Small system zero on the right-half plane
causes large undershoot.

(d) Large system zero on the right-half plane
causes small undershoot.

Figure 10: Plots of the step response of the system s+ a

s2 + 2ζωns+ ω2
n
subjected to step input 1

as
, where

ζ = 1/
√
2, ωn = 50.
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system is minimum phase, then the zero is in the left-half plane, which implies that the
internal dynamics (6.39) is stable, independently of the initial conditions and of the
magnitudes of the desired yd,..., yj^ (where r is the relative degree).

A classical example of the effect of a right half-plane zero is the problem of
controlling the altitude of an aircraft using an elevator.

Example 6.5: Aircraft altitude dynamics

horizontal

Figure 6.4 : Dynamic characteristics of an aircraft

A schematic diagram of the dynamics of an aircraft (in the longitudinal plane) is shown in Figure

6.4. The sum of the lift forces applied to the aircraft wings and body is equivalent to a single lift

force Lw, applied at the "center of lift" CE . The center of lift does not necessarily coincide with

the center of mass CQ (with a positive d meaning that the center of mass is ahead of the center of

lift). The mass of the aircraft is denoted by m and its moment of inertia about CG is denoted by

/ . We assume that all angles are small enough to justify linear approximations, and that the

forward velocity of the aircraft remains essentially constant.

The aircraft is initially cruising at a constant altitude h = ho. To affect its vertical motion, the

elevator (a small surface located at the aircraft tail) is rotated by an angle E. This generates a

small aerodynamic force LE on the elevator, and thus a torque about CQ . This torque creates a

rotation of the aircraft about CQ, measured by an angle a . The lift force Lw applied to the wings

is proportional to a , i.e., Lw = Czwo.. Similarly, LE is proportional to the angle between the

horizontal and the elevator, i.e., LE = CZE(E-a) . Furthermore, various aerodynamic forces

create friction torques proportional to d, of the form ba. In summary, a simplified model of the

aircraft vertical motion can be written

(CZEl+Czwd)a = CZEl E (6.40a)

m'h = {CZE^Cm)a-CZEE (6.40b)

where the first equation represents the balance of moments and the second the balance of forces. 1

Figure 11: The aircraft altitude control sys-
tem is a classic example of a
nonminimum-phase [SL91, Ex-
ample 6.5].

the horizontal and elevator, i.e.,
LE = CZE(E − α), (31)

where CZE is the lift coefficient of the elevator. Furthermore, various aerodynamic forces
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create friction torques proportional to α̇, of the form bα̇. Applying Newton’s second law, we
can thus write

mḧ = LW cos(α)− LE cos(E − α) = CZWα cos(α)− CZE(E − α) cos(E − α)

≈ CZWα− CZE(E − α) (assuming angles α and E − α are small)
= (CZW + CZE)α− CZEE.

(32)

Applying the rotational version of Newton’s second law, we can also write

Jα̈ + bα̇ = lCZE(E − α)− dCZWα

=⇒ Jα̈ + bα̇ + (CZEl + CZWd)α = CZElE

=⇒ (Js2 + bs+ CZEl + CZWd)α(s) = CZElE(s)

=⇒ α(s) =
CZEl

Js2 + bs+ CZEl + CZWd
E(s).

(33)

Substituting Eq. (33) into the Laplace transform of Eq. (32), we get

ms2H(s) = (CZW + CZE)α(s)− CZEE(s)

=⇒ ms2H(s) =

[
(CZW + CZE)CZEl

Js2 + bs+ CZEl + CZWd
− CZE

]
E(s)

=⇒ H(s)

E(s)
= −CZEJs

2 + CZEbs− CZWCZE(l − d)

ms2(Js2 + bs+ CZEl + CZWd)
.

(34)

Judging by the signs of the coefficients of the numerator (CZEJs
2+CZEbs−CZWCZE(l−d)),

we can conclude that H(s)/E(s) has one positive zero and one negative zero. Thus H(s)/E(s)

is nonminimum-phase.
The nonminimum phase of H(s)/E(s) is consistent with the common observation that the

initial effect of a step change in E is an instantaneous downward force on the elevator, leading
to an initial downward acceleration of the aircraft’s CG. The step change in E also creates a
torque about the CG, which builds up the pitch angle α, thereby creating an increasing upward
lift force on the wings and body. This lift eventually takes over the downward force on the
elevator. Clearly, it is important for pilots to recognize such nonminimum-phase behavior,
especially when flying at low altitudes.

6 Summary
• To design a stable and responsive control system, we need to know how the system parameters

are related to the transient response characteristics, e.g., the rise time, peak time, settling time and
overshoot.

• A higher-order system can often be expressed as a sum of first- and second-order subsystems; and
its transient response characteristic can be approximated by those of the dominant second-order
subsystem. “Dominant” means having poles closest to the imaginary axis.

• Many real-world processes can be modeled as a first-order system.
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– Eqs. (7) and (8) can be used to estimate rise time and settling time of the step response of such
a system.

– The time constant and magnitude of a step response can be used to estimate the parameters of
a first-order system (see Example 1).

• A second-order system is characterized by its damping ratio ζ and natural frequency ωn.
– ζ determines whether a system is undamped, underdamped, critically damped or overdamped;

the underdamped case is of interest because of shorter settling time.
– Eqs. (19), (21) and (23) can be used to calculate the settling time, peak time and overshoot.
– Damping ratio determines the overshoot; the absolute real part of the system poles determines

the settling time; the absolute imaginary part of the system poles determines the peak time.
– Specifying the desired overshoot and settling time (alternatively, peak time) is equivalent to

specifying the desired dominant closed-loop poles — this is the first step of a typical controller
design process.

• System zeros affect transient response. The nearer they are to the imaginary axis, the worse they
affect the performance (see Figure 10). Positive zeros make the system nonminimum-phase, and
the nearer they are to the imaginary axis, the worse the undershoot becomes.
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