
EEET 4071 Advanced Control (2021)
Lecture 3: State-space equations

Dr. Yee Wei Law 〈yeewei.law@unisa.edu.au〉

Contents

1 Introduction 1

2 State-space equations 2

3 Model linearization 4

4 Solving state-space equations 10

5 Realization 12
5.1 Similarity transformation 14

6 Discretizing continuous-time state-space
equations 15
6.1 Solving discrete-time state-space equa-

tions 17

State-space equations
• Continuous-time
• Discrete-time

Linearization: nonlinear to
linear model

Solution of continuous-time
state-space equations

Matrix exponential

State-space to transfer matrix
to state-space

Discretization of continuous-
time models

Solution of discrete-time
state-space equations

Similarity transformation

Figure 1: Roadmap for this lecture.

1 Introduction

In classical control, we have three options when synthesizing a controller for a single-input
single-output (SISO) plant.

• If the plant does not have a significant time delay, or oscillatory modes (poles on the imagi-
nary axis), or large parameter variations [Cor04], then we can tune a PID controller for the
plant even if we do not have a model of the plant.

• If we have frequency response data but not a model of the plant, then we can apply the fre-
quency response technique.

• If we have a model of the plant, then we can apply the root locus technique.

1

For multivariable plants, we need modern control techniques, and a model of the plant in the
form of differential equations, to apply these techniques. It is only with this model, that a sta-
bility proof can be derived. The importance of modeling can thus not be overstated. Figure 1
shows the roadmap for this lecture.

2 State-space equations

A plant is a dynamical system, i.e., a system whose behavior evolves with time, either by itself
(autonomously) or under the influence of external processes. A dynamical system is described
by one or more differential equations. The idea of state-space modeling is to “package” these
differential equations into two first-order differential equations in the vector-matrix form to
facilitate analysis:

ẋ(t) = f(x(t),u(t)), (1)
y(t) = g(x(t),u(t)). (2)

Eq. (1) is called a state equation or state differential equation, whereas x(t) is a vector of states,
called a state vector. The vector u(t) represents the inputs to the system, and if u(t) = 0,
the system is called an autonomous system. Eq. (2) is called an output equation or observation
equation or measurement equation, which relates the output vector y(t) to the state and input
vectors. Whereas the states and the inputs are largely determined by the nature of the system,
there is flexibility in the choice of the outputs. Together, Equations (1) and (2) are called state-
space equations.

Example 1

Suppose a system is described by the second-order differential equations

ẍ1 + x22 = 1,

ẍ2 + ẋ1 = t,

where x1 and x2 are time-dependent variables. Rearranging the terms so that only the
highest-order terms stay on the left-hand side, we have

ẍ1 = −x22 + 1,

ẍ2 = −ẋ1 + t.

Letting z = [ẋ1 ẋ2 x2]
>, and u = t, we can then write the state equation as

ż =

ẍ1ẍ2
ẋ2

 =

−
([

0 0 1
]
z
)2

+ 0 · u+ 1[
−1 0 0

]
z + u[

0 1 0
]
z + 0 · u

 =

f1(z, u)f2(z, u)
f3(z, u)

 .
Note that f1 is nonlinear, so the state equation is nonlinear. Also note that if we swap the
order of ẋ1, ẋ2, x2 in z, and modify f1, f2, f3 accordingly, then we will get an equivalent
state-space representation of the same system. Thus, state-space representations are not
unique. We will revisit this point in Section 5.

We have seen a fictitious model in Example 1. Let us look at an actual model in the next exam-
ple.

2

Body 𝑧-axis
(Down)

Yaw

Roll

Pitch

Earth/inertia frame
𝑦

𝑥

𝑧

Angle of sideslip

Wind

𝑉
Flight path angle

Figure 2: Motion variables of an aircraftwith respect to the body frame and earth/inertial frame
of an aircraft. The direction of roll/pitch/yaw follows the right-hand rule.

Example 2

The dynamic model, in the form of equations of motion, of a fixed-wing aircraft (see Fig-
ure 2) is well documented. The state equation derived byNASA [DAP88] takes the form

ẋ =

ẋ1

ẋ2

ẋ3

ẋ4

 =

f 1(x,u)
f 2(x,u)
f 3(x,u)
f 4(x,u)

 ,
where

• x1 = [p q r]> consists of the roll rate, pitch rate, yaw rate of the aircraft;

• x2 = [V α β]> consists of the velocity, angle of attack, angle of sideslip of the air-
craft;

• x3 = [ψ θ φ]> consists of the Euler angles (yaw, pitch, roll) of the aircraft, rep-
resenting the successive rotations required to align the earth axes with the body axes
[DAP88, p. 8];

• x4 = [h x y]> consists of the altitude, earth x-coordinate, earth y-coordinate of the
aircraft.

The 12-state state equation is quite involved, and for illustrative purposes, let us just look
at f 1:

f 1(x,u) = −J−1
(
[I3 0 0 0]x× J[I3 0 0 0]x

)
+ J−1

LM
N

 ,
which can be derived from Euler’s equation of motion, where

• J is the inertia matrix of the aircraft;
• I3 is the 3-by-3 identity matrix;
• × is the cross product operator;
• L, M , N are the total torques about the body x, y, z axes due to aerodynamics and

propulsion.

The vector functions f 2, f 3, f 4 can be derived following [DAP88].

3

The nonlinear systems in Examples 1 and 2 are more difficult than linear systems to analyze
and design controllers for, so the standard practice is to linearize a nonlinear system, before
considering nonlinear techniques. Before we look at linearization techniques, let us study linear
state-space equations. If the system differential equations are all linear, then we can “package”
the differential equations into linear state-space equations:

ẋ(t) = A(t)x(t) +B(t)u(t), (3)
y(t) = C(t)x(t) +D(t)u(t), (4)

If n is the number of states,m is the number of inputs, p is the number of outputs, then

• A ∈ Rn×n is the system / dynamic / evolution matrix;

• B ∈ Rn×m is the input / control matrix;

• C ∈ Rp×n is the output / observation matrix;

• D ∈ Rp×m is the coupling / direct feedthrough / direct transmission / direct transfer / feedfor-
ward matrix.

If furthermore the linear system is time-invariant, i.e., the matrices A, B, C, D are time-
independent, then we can write

ẋ(t) = Ax(t) +Bu(t), (5)
y(t) = Cx(t) +Du(t). (6)

In discrete time, the state-space equations for linear time-invariant (LTI) systems take the form

x[k + 1] = Fx[k] +Gu[k], (7)
y[k] = Cx[k] +Du[k]. (8)

Note that Eq. (7) expresses a recursive relationship between the state at the next time instant
and the state at the current time instant. In Sect. 6, we will learn how to convert a model from
continuous-time to discrete-time.

3 Model linearization

Most physical systems are nonlinear, but we can linearize their models to facilitate analysis and
controller design. The scientific basis for the validity of this approach is provided by Lyapunov’s
first/indirect method. For now, let us focus on the procedure. Linearization refers to the linear
approximation of a model in the neighborhood of a chosen operating point using Taylor’s series
expansion. Consider again the continuous-time state-space equations (1)–(2), and let ue(t) be
an input that leads the system to equilibrium state/point xe, i.e.,

ẋ(t) = f(xe,ue(t), t) = 0,

where f is a nonlinear but linearizable function.

The equilibrium state is by definition the state in which the system has zero ẋ. If not
explicitly specified, the system input is assumed to be zero when the system is in its equi-
librium state.

4

Suppose the input is perturbed slightly from ue(t) to ue(t) + δu(t). Consequently, the state is
perturbed slightly from xe to xe + δx(t). Then,

ẋ(t) = ẋe + δ̇x(t) = δ̇x(t).

Using Taylor’s series expansion, we can write (dropping the (t) parts for clarity)

ẋ = δ̇x = f(xe + δx,ue + δu, t)

= f(xe,ue, t) +
∂f

∂x

∣∣∣∣x=xe
u=ue

δx +
∂f

∂u

∣∣∣∣x=xe
u=ue

δu + higher-order terms, (9)

where
∂f

∂x
is a shorthand for the Jacobian:

∂(f1, . . . , fn)

∂(x1, . . . , xn)
def
=

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

.

Note
∂f

∂x
is a square matrix.

Quiz 1

Based on how
∂f

∂x
is defined, can you tell how

∂f

∂u
is defined? Furthermore, what is the

dimension of
∂f

∂u
?

Treating δx(t) as the state vector, and ignoring the higher-order terms in Eq. (9), we have the
following linearized state equation:

δ̇x(t) =
∂f

∂x

∣∣∣∣x=xe
u=ue

δx(t) +
∂f

∂u

∣∣∣∣x=xe
u=ue

δu(t), (10)

where δx(t) = x(t)− xe and δu(t) = u(t)− ue. δx is often written as ∆x.

Example 3

James Maxwell (the physicist who gave us Maxwell’s equations for electromagnetism) co-
founded the theory of automatic control in his 1868 paper “On governors,” in which he
analyzed the stability of flyball governors (see Figure 3 and [Żak03, Section 1.7.1, Section
2.4, Example 4.6]). A governor is a mechanical device that uses mainly the properties
of centrifugal force to measure and regulate the speed of a machine. An enlightening
demonstration of how a diesel engine governor works can be found on YouTube: https:
//youtu.be/OiHb2L8ei8E.

Let x = [ϕ ϕ̇ ω]>, where ϕ is the angle between an arm with the vertical line, and
ω is the angular speed of the flywheel. ω is related to the angular speed of the flyball by

5

https://youtu.be/OiHb2L8ei8E
https://youtu.be/OiHb2L8ei8E

1.7 MODELING EXAMPLES 21

1.7 Modeling Examples

1.7.1 Centrifugal Governor
In this subsection, we model the centrifugal governor. In our modeling, we follow Pontryagin
[235, pp. 213–220]. For an alternative approach to modeling the governor see Maxwell [197] and
Fuller [92]. Some—for example, MacFarlane [192, p. 250]—claim that Maxwell founded the
theory of automatic control systems in his 1868 paper “On governors.” However, this landmark
paper is written in a terse and cryptic style. Fuller [92] does a wonderful job elucidating,
correcting, and expanding Maxwell’s paper. Mayr [199, Chapter X] gives a fascinating historical
account of the application of the centrifugal governor to the speed regulation of the steam engine
and tracks the origins of the flyball governor.

A schematic of the governor is depicted in Figure 1.4, while forces acting on the governor
are shown in Figure 1.10. For simplicity of notation, we assume that the length of the arms, on
which the weights are fastened, are of unity length. If the weights rotate with angular velocity
ωgov, then the arms form an angle ϕ with the vertical position. Let vweight denote the linear
velocity of the weights, and let r be the radius of the circle along which the weights rotate. Then,
vweight = ωgovr . Note that r = sin ϕ. The resulting centrifugal force acting on each weight is

m
v2

weight

r
= mω2

govr

= mω2
gov sin ϕ.

Simultaneously, a gravitational force mg acts on each weight. In addition, a frictional force in
the hinge joints acts on each weight. We assume that the frictional force is proportional to ϕ̇

� �

�

�

L � 1 L � 1

sin �

mg

m

mg sin
�

m�
2
gov

sin
� cos �

m�2
gov sin �

�gov

Figure 1.10 Forces acting on
the weights in the governor.

Figure 3: A flyball governor and the forces acting on it.

ω = ωgov/N , whereN is the gear ratio. The nonlinear state equation is

ẋ =

ϕ̇ϕ̈
ω̇

 =

f1(x)f2(x)
f3(x)

 =

ϕ̇

1

2
N 2ω2 sin(2ϕ)− g sin(ϕ)− b

m
ϕ̇

κ

J
cos(ϕ)− τ

J

 , (11)

where b is the coefficient of friction; J is the moment of inertia of the flywheel; κ and τ
are some other constants. For simplicity, we are not dealing with any input.

The linearization process starts by determining the equilibrium state of Eq. (11):

ẋ = 0 =⇒

ϕ̇e = 0,

ϕ̈e =
1

2
N 2ω2

e sin(2ϕe)− g sin(ϕe)−
b

m
ϕ̇e =

(
N 2ω2

e cos(ϕe)− g
)
sin(ϕe) = 0,

ω̇e =
κ

J
cos(ϕe)−

τ

J
=

1

J
(κ cos(ϕe)− τ) = 0,

=⇒

ϕ̇e = 0,

ωe =

√
g

N 2 cos(ϕe)
=

√
gκ

N 2τ
,

ϕe = arccos
(
τ

κ

)
.

Above, we disregarded the possibility that sin(ϕe) = 0 since that contradicts cos(ϕe) =

τ/κ. Therefore the equilibrium states are ϕe = arccos
(
τ

κ

)
, ϕ̇e = 0, ωe =

√
gκ

N 2τ
.

Next, we calculate the following partial derivatives for the Jacobian:

∂f1
∂ϕ

=
∂ϕ̇

∂ϕ
= 0,

∂f1
∂ϕ̇

=
∂ϕ̇

∂ϕ̇
= 1,

∂f1
∂ω

=
∂ϕ̇

∂ω
= 0,

6

∂f2
∂ϕ

=
∂

∂ϕ

{
1

2
N 2ω2 sin(2ϕ)− g sin(ϕ)− b

m
ϕ̇

}
= N 2ω2 cos(2ϕ)− g cos(ϕ),

∂f2
∂ϕ̇

=
∂

∂ϕ̇

{
1

2
N 2ω2 sin(2ϕ)− g sin(ϕ)− b

m
ϕ̇

}
= − b

m
,

∂f2
∂ω

=
∂

∂ω

{
1

2
N 2ω2 sin(2ϕ)− g sin(ϕ)− b

m
ϕ̇

}
= N 2ω sin(2ϕ),

∂f3
∂ϕ

=
∂

∂ϕ

{
κ

J
cos(ϕ)− τ

J

}
= −κ

J
sin(ϕ),

∂f3
∂ϕ̇

=
∂

∂ϕ̇

{
κ

J
cos(ϕ)− τ

J

}
= 0,

∂f3
∂ω

=
∂

∂ω

{
κ

J
cos(ϕ)− τ

J

}
= 0.

Now we assemble all the partial derivatives into the Jacobian:

∂(f1, f2, f3)

∂(ϕ, ϕ̇, ω)

∣∣∣∣
ϕe,ϕ̇e,ωe

=

∂f1
∂ϕ

∂f1
∂ϕ̇

∂f1
∂ω

∂f2
∂ϕ

∂f2
∂ϕ̇

∂f2
∂ω

∂f3
∂ϕ

∂f3
∂ϕ̇

∂f3
∂ω

ϕe,ϕ̇e,ωe

=

0 1 0

N 2ω2
e cos(2ϕe)− g cos(ϕe) − b

m
N 2ωe sin(2ϕe)

−κ
J

sin(ϕe) 0 0

 .
Let us simplify a few elements in the Jacobian:

N 2ω2
e cos(2ϕe)− g cos(ϕe) = N 2ω2

e(2 cos2(ϕe)− 1)− g cos(ϕe)

= N 2

(
gκ

N 2τ

)(
2τ 2 − κ2

κ2

)
− g

τ

κ

=
g

τκ
(τ 2 − κ2).

N 2ωe sin(2ϕe) = N 2

√
gκ

N 2τ
(2) sin(ϕe) cos(ϕe) = 2N

√
gκ

τ

√
κ2 − τ 2

κ2

√
τ 2

κ2

= 2N

√
gτ(κ2 − τ 2)

κ3
.

−κ
J

sin(ϕe) = −κ
J

√
κ2 − τ 2

κ2
= −

√
κ2 − τ 2

J
.

Finally, the linearized state equation is

∆ẋ =

0 1 0

g

τκ
(τ 2 − κ2) − b

m
2N

√
gτ(κ2 − τ 2)

κ3

−
√
κ2 − τ 2

J
0 0

∆x.

The linearized state equation can then be used to analyze the stability of the governor so
that proper values of b, J , κ, τ or some other parameters can be determined, but stability
analysis is discussed in a later lecture.

7

After seeing how we can perform linearization manually in the previous example, let us see
how we can perform linearization programmatically — specifically with MATLAB, as this is
how we tend to perform linearization in practice. MATLAB comes with a number of exam-
ples on linearization: https://www.mathworks.com/discovery/linearization.html. While the
examples are useful, a more systematic approach would be to look at the tools available in the
many toolboxes, as shown below.

• jacobian (command) from Symbolic Math Toolbox

– Utility: For deriving the Jacobians of a symbolic state equation.
– Significant links:

* https://www.mathworks.com/help/symbolic/jacobian.html

• Control System Tuner (app) from Control System Toolbox

– Utility: When used with a Simulink model, the Control System Tuner app is accessible
via the “Analysis” menu. The app computes system responses, and tunes the controller
parameters for a linearization of the model. By default, Control System Tuner linearizes
the model at the model initial conditions, but one or more alternate operating points can
be specified for tuning the model. Control System Tuner accepts two types of alternate
operating points:
1. Simulation snapshots: Control System Tuner simulates the model for a specified amount

of time, and linearizes using the state values at that time. Simulation snapshot lineariza-
tion is useful, for instance, when the model is known to reach an equilibrium state after
a certain simulation time.

2. Steady-state operating point: Control System Tuner finds a steady-state operating point
at which some specified condition is met (trimming). For example, if the model repre-
sents an automobilemotor, an operating point can be a point atwhich themotor operates
steadily at 2000 rpm.

Note the controlSystemTuner command presents a slightly differentGUI that does not support
linearization.

– Significant links:
* https://www.mathworks.com/help/control/ug/specify-operating-point-for-tuning-in-control-system-tuner-app.

html

* https://www.mathworks.com/help/control/examples/tune-a-simulink-model-of-a-control-system-using-control-system-tuner.

html

• linmod and dlinmod (commands) from Simulink

– Utility: For extracting a continuous-time linear state-space model from a Simulink model
around an operating point. linmod works by linearizing each block in a model individually.
The default algorithm uses preprogrammed analytic block Jacobians for most blocks, re-
sulting theoretically in more accurate linearization than numerical perturbation of block
inputs and states. linmod handles Transport Delay blocks by replacing the linearization of
the blocks with a Padé approximation. dlinmod is the discrete-time equivalent of linmod.

– Significant links:
* https://www.mathworks.com/help/simulink/ug/linearizing-models.html

* https://www.mathworks.com/help/simulink/slref/linmod.html

* https://www.mathworks.com/help/simulink/slref/dlinmod.html

* https://www.mathworks.com/help/slcontrol/ug/exact-linearization-algorithm.html

• linmod2 (command) from Simulink

– Utility: Like linmod, for extracting a continuous-time linear state-spacemodel froma Simulink
model around an operating point. linmod2 computes a linear state-space model by per-
turbing the model inputs and model states, and uses an advanced algorithm to reduce

8

https://www.mathworks.com/discovery/linearization.html
https://www.mathworks.com/help/symbolic/jacobian.html
https://www.mathworks.com/help/control/ug/specify-operating-point-for-tuning-in-control-system-tuner-app.html
https://www.mathworks.com/help/control/ug/specify-operating-point-for-tuning-in-control-system-tuner-app.html
https://www.mathworks.com/help/control/examples/tune-a-simulink-model-of-a-control-system-using-control-system-tuner.html
https://www.mathworks.com/help/control/examples/tune-a-simulink-model-of-a-control-system-using-control-system-tuner.html
https://www.mathworks.com/help/simulink/ug/linearizing-models.html
https://www.mathworks.com/help/simulink/slref/linmod.html
https://www.mathworks.com/help/simulink/slref/dlinmod.html
https://www.mathworks.com/help/slcontrol/ug/exact-linearization-algorithm.html

truncation error. Like linmod, linmod2 also handles Transport Delay blocks by replacing the
linearization of the blocks with a Padé approximation.

– Significant links:
* https://www.mathworks.com/help/simulink/ug/linearizing-models.html

* https://www.mathworks.com/help/simulink/slref/linmod2.html

• linmodv5 (command) from Simulink

– Utility: Like linmod, for extracting a continuous-time linear state-spacemodel froma Simulink
model around an operating point. However, linmodv5 is a legacy command created prior to
MATLAB version 5.3, and should be avoided.

– Significant links:
* https://www.mathworks.com/help/simulink/ug/linearizing-models.html

* https://www.mathworks.com/help/simulink/slref/linmodv5.html

• linearize (command) from Simulink Control Design

– Utility: For linearizing a Simulink model for command-line analysis of poles and zeros,
plot responses, and control design. To be used with commands findop and linio. Supports
batch linearization.

– Significant links:
* https://www.mathworks.com/help/slcontrol/ug/choosing-linearization-tools.html

* https://www.mathworks.com/help/slcontrol/ug/linearize.html

* https://www.mathworks.com/help/slcontrol/batch-linearization.html

* https://www.mathworks.com/help/slcontrol/ug/linearize-at-triggered-simulation-events.

html

* https://www.mathworks.com/help/slcontrol/examples/computing-operating-point-snapshots-at-triggered-events.

html

Detail: Batch linearization
Batch linearization refers to extractingmultiple linearizations from amodel for various
combinations of I/Os, operating points, and parameter values. Batch linearization en-
ables the analysis of the time-domain, frequency-domain, and stability characteristics
of a Simulink model, or portions of a model, under varying operating conditions and
parameter ranges. The results of batch linearization can be used to design controllers
that are robust against parameter variations, or to design gain-scheduled controllers
for different operating conditions. Batch linearization results can also be used to im-
plement linear parameter-varying (LPV) approximations of nonlinear systems using
the “LPV System” block of Control System Toolbox.

• slLinearize (command) from Simulink Control Design

– Utility: Provides interface for batch linearization of Simulink models.
– Significant links:

* https://www.mathworks.com/help/slcontrol/ug/choosing-linearization-tools.html

* https://www.mathworks.com/help/slcontrol/ug/sllinearizer.html

* https://www.mathworks.com/help/slcontrol/batch-linearization.html

• Linear Analysis Tool (app) from Simulink Control Design

– Utility: Accessible through the “Analysis” menu of Simulink, this tool enables interactive
exploration of Simulinkmodel linearization under different operating conditions. The tool
supports diagnosis of linearization problems, and batch linearization for varying model
parameter values. It can also generate MATLAB code for batch linearization.

– Significant links:
* https://www.mathworks.com/help/slcontrol/ug/choosing-linearization-tools.html

9

https://www.mathworks.com/help/simulink/ug/linearizing-models.html
https://www.mathworks.com/help/simulink/slref/linmod2.html
https://www.mathworks.com/help/simulink/ug/linearizing-models.html
https://www.mathworks.com/help/simulink/slref/linmodv5.html
https://www.mathworks.com/help/slcontrol/ug/choosing-linearization-tools.html
https://www.mathworks.com/help/slcontrol/ug/linearize.html
https://www.mathworks.com/help/slcontrol/batch-linearization.html
https://www.mathworks.com/help/slcontrol/ug/linearize-at-triggered-simulation-events.html
https://www.mathworks.com/help/slcontrol/ug/linearize-at-triggered-simulation-events.html
https://www.mathworks.com/help/slcontrol/examples/computing-operating-point-snapshots-at-triggered-events.html
https://www.mathworks.com/help/slcontrol/examples/computing-operating-point-snapshots-at-triggered-events.html
https://www.mathworks.com/help/slcontrol/ug/choosing-linearization-tools.html
https://www.mathworks.com/help/slcontrol/ug/sllinearizer.html
https://www.mathworks.com/help/slcontrol/batch-linearization.html
https://www.mathworks.com/help/slcontrol/ug/choosing-linearization-tools.html

* https://www.mathworks.com/help/slcontrol/ug/linearanalysistool-app.html

* https://www.mathworks.com/help/slcontrol/ug/linearize-simulink-model.html

* https://www.mathworks.com/help/slcontrol/ug/linearize-at-simulation-snapshot.

html

• Linear Analysis Plots (block) from Simulink Control Design

– Utility: For visualizing the linear characteristics of a Simulink model during simulation.
– Significant links:

* https://www.mathworks.com/help/slcontrol/ug/choosing-linearization-tools.html

* https://www.mathworks.com/help/slcontrol/ug/visualize-bode-response-of-simulink-model-during-simulation.

html

For linearizsation, the tools from Simulink Control Design are generally more featureful than
the tools from Simulink. Among the tools above, we shall practice using jacobian and linmod in
Practical 3.

Example 4

See accompanying Live Script.

4 Solving state-space equations

Given the state-space equations describing a system, and the initial condition of that system, we
shall be able to solve the state-space equations to determine how the system evolves with time.
For the LTI state-space equations with initial condition x(t0) = x0,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t);

the standard solution is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ) dτ, (12)

y(t) = CeA(t−t0)x0︸ ︷︷ ︸
free response

+C

∫ t

t0

eA(t−τ)Bu(τ) dτ +Du(t)︸ ︷︷ ︸
forced response

. (13)

Sincewe are dealingwith LTI systems, we can shift t0 to zero, without loss of generality. Eqs. (12)
and (13) allow us to determine the time response of a continuous-time LTI system, given its
initial state and a specification of the input. In the equations, x(t) and y(t) consist of two terms
each:

• a free response / zero-input response term that depends on the initial state x0, and

• a forced response / zero-state response term that depends on input u(t) over the period [t0, t].

Quiz 2

What is yet another synonym for “free response”?

Considering how eAt links the initial state to the current state, the matrix eAt is called the state
transition matrix. The term eAt is not a regular exponential, but a matrix exponential:

10

https://www.mathworks.com/help/slcontrol/ug/linearanalysistool-app.html
https://www.mathworks.com/help/slcontrol/ug/linearize-simulink-model.html
https://www.mathworks.com/help/slcontrol/ug/linearize-at-simulation-snapshot.html
https://www.mathworks.com/help/slcontrol/ug/linearize-at-simulation-snapshot.html
https://www.mathworks.com/help/slcontrol/ug/choosing-linearization-tools.html
https://www.mathworks.com/help/slcontrol/ug/visualize-bode-response-of-simulink-model-during-simulation.html
https://www.mathworks.com/help/slcontrol/ug/visualize-bode-response-of-simulink-model-during-simulation.html

eAt def
=

∞∑
k=0

Aktk

k!
. (14)

The matrix exponential has these properties:

• d
dte

At = AeAt = eAtA, which is directly verifiable by definition.

• eAt1eAt2 = eA(t1+t2), which is also directly verifiable by definition.

• (eAt)−1 = e−At, which follows from above, and means eAt is nonsingular.

• However, eAteBt = e(A+B)t = eBteAt iff AB = BA. Note matrix product is generally not
commutative.

Quiz 3

This is Analytic Exercise AE2.2 from [WL07]: Show that for any n× nmatrixA and any
scalar γ,

e(γI+A)t = eγteAt.

Note that I is the n × n identity matrix, and t is the time variable. Hint: Use one of the
properties of the matrix exponential.

Quiz 4

In Eq. (12), the matrix etAB is called an input-to-state impulse matrix. Can you explain
why?

There are many ways to calculate a matrix exponential [ML03], but they are generally tedious
to perform by hand.

• MATLAB provides function expm for calculating matrix exponentials.

• Later, we will learn how to calculate a matrix exponential by applying the Cayley-Hamilton
theorem, a very important theorem in linear algebra. For now, let us first consider some
special cases that are more convenient for manual calculation.

Example 5

Suppose A =

[
0 α
0 0

]
. We can easily check that A2 = A3 = · · · = 0. Such a matrix is

so-called nilpotent. Then from Eq. (14),

eAt = I+At =

[
1 αt
0 1

]
.

Example 6

SupposeA =

[
λ1 0
0 λ2

]
. We can easily check thatAk =

[
λk1 0
0 λk2

]
. Then from Eq. (14),

eAt =
∞∑
k=0

Aktk

k!
=

∞∑
k=0

tk

k!

[
λk1 0
0 λk2

]
=

∞∑
k=0

λk1t

k

k!
0

0
λk2t

k

k!

 =

[
eλ1t 0
0 eλ2t

]
.

This example demonstrates that, given anyA, the advantage of diagonalizing A, i.e., pick-

11

ing a nonsingular matrixP such that Ã = P−1AP is diagonal; this is an example of simi-
larity transformation, which is often done to ease analysis—more about this in Sect. 5.1.

Advanced: Frobenius’ theorem
Example 6 also demonstrates Frobenius’ theorem [HJS08, p. 78]: If a matrixA has eigen-
values λi, and if a function f is analytic in a region in the complex plane containing λi,
then the matrix f(A) has eigenvalues f(λi). Since the eigenvalues of a diagonal matrix
At = diag(λ1t, . . . , λnt) are exactly λ1t, . . . , λnt, and since the function f(z) = ez,
where z ∈ C, is analytic in any finite region of C, the eigenvalues of eAt are exactly
eλ1t, . . . , eλnt. We will study eigenvalues, which play the role of system poles, in detail
in the next lecture.

Figure 4: The system matrix of an LTI system must be Hurwitz —
not Hewitt — for the system to be asymptotically stable.
Image from Wikipedia.

The most important information embedded in the matrix exponential is stability. If the system
matrix has only eigenvalues with a negative real part, then the matrix exponential and hence
the free response will decay over time, and we say the system matrix is Hurwitz or the system
matrix is a stability matrix. Moreover, we say the system — more precisely, the equilibrium state
— is asymptotically stable.

5 Realization

Define the Laplace transforms

Y (s)
def
= L{y(t)} =

L{y1(t)}...
L{yp(t)}

 , U(s)
def
= L{u(t)} =

L{u1(t)}...
L{um(t)}

 ,
then the transfer function matrix (or transfer matrix in short) is defined as G(s) such that

Y (s) = G(s)U(s). (15)

The transfer function matrix is related to A, B, C and D through

G(s) = C(sI−A)−1B+D. (16)

• The inversematrix (sI−A)−1 is called the resolventmatrix, because it is the Laplace transform
of the state transition matrix eAt. Notice when s = λ, where λ is any eigenvalue of A, then
by definition det(sI − A) = 0, and the resolvent matrix does not exist. This is why the
eigenvalues of A are also called the poles.

• The tuple (A,B,C,D) is called a realization of G(s).

12

• While a transfer functionmatrix is unique, a realization is not unique, because if (A,B,C,D)
is a realization, we can pick any nonsingular matrix P such that (Ã, B̃, C̃,D) is also a real-
ization, where

Ã = P−1AP, B̃ = P−1B, C̃ = CP. (17)

The realizations (A,B,C,D) and (Ã, B̃, C̃,D) are so-called similar.

Quiz 5

If the state corresponding to realization (A,B,C,D) isx, what is the state corresponding
to the similar realization (Ã, B̃, C̃,D)?

The most important realization is the minimal realization (or minimum realization), which is
a realization of the lowest order. Minimal realizations are controllable and observable models
— the concept of controllability is a topic of the next lecture, whereas observability will have to
wait until the next course. Nevertheless, a transfer matrix may or may not be realizable.

A transfer matrix G(s) is realizable if and only if G(s) is a proper rational matrix.

𝑣 +
𝑣𝐶
−

𝑅

𝐿

𝐶

𝑅
+
𝑣2
−

Figure 5: An RLC circuit with input v and output vC .

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1
(a) Output response plot using (A1,B1,C1,D1)

Time (seconds)

A
m

pl
itu

de

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1
(b) Output response plot using transfer function

Time (seconds)

A
m

pl
itu

de

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1
(c) Output response plot using (A2,B2,C2,D2)

Time (seconds)

A
m

pl
itu

de

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1
(d) Output response plot using discretized (A1,B1,C1,D1)

Time (seconds)

A
m

pl
itu

de

Figure 6: Unit step responses for Example 7.

Example 7

For theRLCcircuit in Figure 5, we have derived the continuous-time state-space equations

13

in the tutorial as follows:[
v̈C
v̇C

]
=

[
− R

2L − 1
LC

1 0

] [
v̇C
vC

]
+

[
1

2LC
0

]
v, (18)

vC = [0 1]

[
v̇C
vC

]
. (19)

Applying Eq. (16) gives us the transfer function:

G(s) = C(sI−A)−1B+D = [0 1]

[s 0
0 s

]
−

[
− R

2L − 1
LC

1 0

]−1 [
1

2LC
0

]

= [0 1]

[
s+ R

2L
1
LC

−1 s

]−1 [
1

2LC
0

]
= [0 1]

1

s2 + R
2Ls+

1
LC

[
s − 1

LC

1 s+ R
2L

] [
1

2LC
0

]
=

1

s2 + R
2Ls+

1
LC

[
1 s+ R

2L

] [1
2LC
0

]
=

1

s2 + R
2Ls+

1
LC

· 1

2LC

=
1

2LCs2 +RCs+ 2
.

MATLAB provides the functions ss2tf and tf2ss for numerical conversions between state-
space and transfer-matrix representations, but there are no MATLAB functions for sym-
bolic conversions. Suppose R = 1000, L = 10−6 and C = 10−6, then we can use the
following MATLAB code for conversion:
R=1000; L=1e-6; c=1e-6;

A1 = [-R/(2*L) -1/(L*c); 1 0]; B1 = [1/(2*L*c); 0]; C1 = [0 1]; D1 = 0;

[b,a] = ss2tf(A1,B1 ,C1,D1);

G = tf(b,a)

[A2 ,B2,C2 ,D2] = tf2ss(b,a)

In general, the matrices A1, B1, C1, D1 are not the same as A2, B2, C2, D2 in the code above.
The unit step responses using the original state-space representation (A1, B1, C1, D1), the
transfer function, and the realization (A2, B2, C2, D2) are given in Figure 6(a)-(c), which are
identical.

5.1 Similarity transformation

Every system has a unique transfer-matrix representation but an infinite number of equivalent
state-space representations, which can be transformed to one another through similarity trans-
formation. But first, let us understand what similar matrices mean.

Pre-multiplying matrixAwith a nonsingular matrix has the same effect as performing elemen-
tary row operations on A. Similarly, post-multiplying A with a nonsingular matrix has the
same effect as performing elementary column operations on A.

Definition(s): Equivalent matrices [Mey01, p. 134], similar matrices [Mey01, p. 255]

Whenever matrixB can be derived from matrixA through a combination of elementary
row and column operations, we say A and B are equivalent matrices, and write A ∼ B.
Since elementary row and column operations can be achieved through pre- and post-

14

multiplication by nonsingular matrices respectively, we conclude

A ∼ B ⇐⇒ PAQ = B for nonsingular P and Q.

If A, B are square, and P, Q are inverses of each other, we say A and B are similar
matrices, and write A ' B.

Wewill now relate similarmatrices to similarity transformation of state-space representations.

Given continuous-time LTI state-space equations

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(20)

and a nonsingular matrix T, we define

x̃(t) = T−1x(t), Ã = T−1AT, B̃ = T−1B, C̃ = CT, D̃ = D,

such that Ã ∼ A, B̃ ∼ B, C̃ ∼ C, D̃ ∼ D. Then,

˙̃x(t) = Ãx̃(t) + B̃u(t),

y(t) = C̃x̃(t) + D̃u(t),
(21)

and we write (Ã, B̃, C̃, D̃) ∼ (A,B,C,D).

The question now is what form of (Ã, B̃, C̃, D̃) is “useful”? We have the following useful
forms:

• The controllable canonical form, observable canonical form, and Jordan canonical form have
historically been useful for analysis and proving theorems, but we shall not be concerned
with them in this course.

• The standard form for uncontrollable systems can be obtained through the similarity transfor-
mation called controllable subspace decomposition. This is covered in the next lecture.

• Minimal realizations werementioned before, and they can be obtained through the similarity
transformation called Kalman decomposition (MATLAB command minreal), which decom-
poses a model into four parts: controllable and observable, controllable but unobservable,
uncontrollable but observable, uncontrollable and unobservable. The controllable and ob-
servable part is exactly the minimal realization. Kalman decomposition is covered in the
next course.

6 Discretizing continuous-time state-space equations

The solution for the continuous-time LTI state-space equations in Sect. 4 gives us the tool to
discretize a continuous-timemodel. The state of a continuous-time LTI systemwith initial con-
dition x(0) = x0 is given by

x(t) = eAtx0 + eAt

∫ t

0

e−AτBu(τ) dτ.

The state at t = kT , where T is the sampling time interval, is given by

x(kT) = eAkTx0 + eAkT

∫ kT

0

e−AτBu(τ) dτ. (22)

15

The state at t = (k + 1)T is given by

x((k + 1)T) = eA(k+1)Tx0 + eA(k+1)T

∫ (k+1)T

0

e−AτBu(τ) dτ. (23)

Our goal is to combine (22) and (23) to express x((k + 1)T) as a linear combination of x(kT)
and u(kT). For this, we need to get rid of the constant terms consisting of x0. Premultiplying
Eq. (22) with eAT gives us

eATx(kT) = eA(k+1)Tx0 + eA(k+1)T

∫ kT

0

e−AτBu(τ) dτ.

Subtracting the above from Eq. (23) produces

x((k + 1)T) = eATx(kT) + eA(k+1)T

∫ (k+1)T

kT

e−AτBu(τ) dτ. (24)

The equation above establishes the link between the state of the next instant and the state of the
current instant throughA,B andu(t), but the integral term can be further simplified. Through
change of variable ζ def

= (k + 1)T − τ for simplifying the integration upper limit, we get

x((k + 1)T) = eATx(kT) + eA(k+1)T

∫ 0

T

e−A[(k+1)T−ζ]Bu((k + 1)T − ζ) d(−ζ)

= eATx(kT) +

∫ T

0

eAζBu((k + 1)T − ζ) dζ.

Holdingu((k+1)T−ζ) constant over the interval ζ ∈ (0, T]meansu((k+1)T−ζ) = u(kT)
over the interval ζ ∈ (0, T] (this is the so-called zero-order hold), and

x((k + 1)T) = eATx(kT) +

∫ T

0

eAζB dζ · u(kT).

At this point, we have successfully expressedx((k+1)T) as a linear combination ofx(kT) and
u(kT). By convention for discrete-time systems, we replace “(kT)” with “[k]”, and write

x[k + 1] = eATx[k] +

∫ T

0

eAζB dζ · u[k].

Given the continuous-time LTI state-space equations

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

the discrete-time equivalent state-space equations are

x[k + 1] = Fx[k] +Gu[k],

y[k] = Cx[k] +Du[k].

where

F = eAT , G =

∫ T

0

eAζB dζ.

Since our derivation above is based on the assumption that all signals change values in a step-
wise manner, the procedure is sometimes called the step-invariant transformation.

The step-invariant transformation tells us that if a continuous-time system has system matrix
A, the discrete-time counterpart has system matrix eAT .

16

According to Frobenius’ theorem, ifAhas eigenvaluesλi, then eAT has eigenvalues eλiT .

This fact will be useful for controller design later.

Example 8

Revisiting the RLC circuit in Example 7, it is possible to discretize the state-space equa-
tions (18)-(19) symbolically, but the algebraic expression is rather lengthy. Instead, sup-
pose again R = 1000, L = 10−6 and C = 10−6, then the following MATLAB code
returns the discretized model:
T = 1e-4;

sysd = c2d(sys , T, 'zoh');

Figure 6(d) shows the discrete-time unit step response of the RLC circuit based on the
discretized model.

6.1 Solving discrete-time state-space equations

Equipped with a way of solving LTI state-space equations, and a way of discretizing continuous-
time LTI state-space equations, the natural next step is to find a way to solve discrete-time LTI
state-space equations.

Given the discrete-time system

x[k + 1] = Fx[k] +Gu[k], y[k] = Cx[k] +Du[k], x[0] = x0,

we can see that

x[1] = Fx0 +Gu[0],

x[2] = F(Fx0 +Gu[0]) +Gu[1] = F2x0 + FGu[0] + +Gu[1],
...

x[k] = Fkx0 +
k−1∑
i=0

Fk−1−iGu[i].

Therefore, the solution of the discrete-time state-space equations is

x[k] = Fkx0 +
k−1∑
i=0

Fk−1−iGu[i], (25)

y[k] = CFkx0 +
k−1∑
i=0

CFk−1−iGu[i] +Du[k]. (26)

Eq. (25) shows that the state transition matrix of a discrete-time system is the matrix power
Fk.

The most important information embedded in the matrix power is stability. If the system ma-
trix has only eigenvalues with a magnitude less than 1, then the matrix power and hence the
free response will decay over time, and we say the system matrix is convergent/discrete-Hurwitz
or the system matrix is a stability matrix. Moreover, we say the system — more precisely, the
equilibrium state — is asymptotically stable.

17

References

[Cor04] J.-P. Corriou, Process Control: Theory and Applications, Springer-Verlag London
Ltd., 2004.

[DAP88] E. Duke, R. Antoniewicz, and B. Patterson, Derivation and definition of a linear
aircraft model, NASA Reference Publication 1207 (1988).

[HJS08] E. Hendricks, O. Jannerup, and P. H. Sorensen, Linear Systems Control: Determin-
istic and Stochastic Methods, Springer-Verlag Berlin Heidelberg, 2008.

[Mey01] C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2001.

[ML03] C. Moler and C. V. Loan, Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later, SIAMReview 45 no. 1 (2003), 3–49. https://doi.org/
10.1137/S00361445024180.

[WL07] R. L. Williams II and D. A. Lawrence, Linear State-Space Control Systems, John
Wiley & Sons, 2007.

[Żak03] S. H. Żak, Systems and Control, Oxford University Press, 2003.

18

https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180

	Introduction
	State-space equations
	Model linearization
	Solving state-space equations
	Realization
	Similarity transformation

	Discretizing continuous-time state-space equations
	Solving discrete-time state-space equations

