
EEET 3046 Control Systems (2020)
Lecture 2: System dynamics and modeling

Dr. Yee Wei Law 〈yeewei.law@unisa.edu.au〉

Contents
1 Introduction 1

2 Differential equations 2
2.1 Examples 3

3 Laplace transform 6
3.1 Important properties 9
3.2 Transfer function 13

3.3 Introduction to discrete-time model-
ing and the z-transform 16

4 State-space equations 19
4.1 Realization* 23

5 An elaborate example 25

6 Summary 27

1 Introduction
As mentioned in Lecture 1, model-based control techniques1 require a model of the process to be
controlled, and this model comes in the form of a set of differential equations. The act of deriving
these differential equations is part of system modeling, which is typically the first step of any control
engineering process. System modeling requires an in-depth understanding of the physics of the
system; it is hence typically themost time consuming, if not themost challenging part of the process.

In Lecture 1, we have seen how control can be and have been applied to a wide range of systems,
whether they are electrical, mechanical, biological, or any mixture of these. It is impossible for the
course to give you all the training you need to model all kinds of systems. For this course, we will
learn and practise modeling

• RLC circuits (electrical): RLC circuit models are widely used in the analysis and design of analog
filters, electrical machine drives, power electronics, and power systems.

• Rigid-body systems (mechanical): Among the most important rigid-body systems are the mass-
spring-damper systems, because they can be used to model a wide range of mechanical systems,
such as car suspension (see Supplementary Lecture A), harmonic drives (see later), aircrafts, ships,
and buildings.

Modeling systems with differential equations is not enough. In order to design a controller for a
system, we need to be able to solve the differential equations, because the solution will give us the

1For a whizbang presentation on how model-based design works, see https://au.mathworks.com/solutions/

model-based-design.html or https://www.youtube.com/user/3dsCATIA.

1

https://au.mathworks.com/solutions/model-based-design.html
https://au.mathworks.com/solutions/model-based-design.html
https://www.youtube.com/user/3dsCATIA

output for any given input. The output expressed as a function of time is called the output response,
to emphasize the fact that the output is the system’s response to the input stimulus. For controller
design, there are two standard solution approaches: either solve the equations in the Laplace domain
using Laplace transform (Sect. 3), or the time domain using state-space equations (Sect. 4). While
Laplace transformation is a core part of classical control, the coverage of state-space equations here
serves only as an initiation to modern control.

This lecture follows the directions of [Nis15, Chs. 2 and 3], with supplements.

2 Differential equations
In themost general context, the term dynamical system refers to a system that evolveswith time, but it
is typically used to refer to a system that can be described using differential equation(s). Differential
equations can be ordinary or partial.

• Ordinary differential equations (ODEs): In these equations, the only independent variable is
time. Systems describable using ODEs alone are called lumped-parameter systems, since depen-
dent variables are not “spatially distributed”. We have seen examples of ODEs since high school:

– In electrical circuits, Faraday’s law of inductance: v = L
di
dt .

– In mechanics, Newton’s second law: F = m
d2x

dt2 .

– In physics and chemistry, law of radioactive decay: dN
dt = −kN , where N is the number of

atoms.
– In biology, the logistic equation: dA

dt = cA(P − A), where A is the number of infected people,
and P is the total population.

When the ODEs are written in the state-space form, the state vector has a finite dimension (i.e.,
finite number of elements), so lumped-parameter systems are also finite-dimensional systems.

Detail: Notation

There are threemain types of notations for derivatives. For the first-, second-, and nth-order
derivatives, we have
– Leibniz’s notation: dx

dt ,
d2x

dt2 , . . ., d
nx

dtn .
– Newton’s notation: ẋ, ẍ, ...x , . . ., x(n).
– Lagrange’s notation: x′, x′′, x′′′, . . ., x(n).
In the control literature, Newton’s notation is the mainstream notation.

• Partial differential equations (PDEs): In these equations, time is not the only independent vari-
able; some variables may depend on space or some other variable, in addition to time. Systems
modeled with PDEs are distributed-parameter systems. For example, in a diffusion process
where heat diffuses from one end of a narrow rectangular strip to another end of the strip (see
Figure 1) can be modeled with the PDE:

Cρ
∂z(x, t)

∂t
= K

∂2z(x, t)

∂x2
, (1)

2

where z(x, t) is the temperature of the strip at location x and time t; C, ρ,K are constants [Lev11,
Example 67.1]. Systems with flexible bodies are another example of distributed-parameter sys-
tems. PDEs cannot bewritten in the finite-dimensional state space form, so distributed-parameter
systems are also infinite-dimensional systems. Whenever you see such keywords as “flexible
structures” (as opposed to “rigid structures”), “vibration”, “noise” and “flow”, you can immediately
think of PDEs / distributed-parameters systems / infinite-dimensional systems.

Heat diffuses from left to right

𝑥

Figure 1: Diffusion of heat from the left end to the
right end of a narrow rectangular strip.
x marks the location from the left.

For this course, we only deal with ODEs, because lumped-parameter systems are common, and
distributed-parameter systems requiremore advancedmaths. Furthermore, we only deal with linear
ODEs of the form

any
(n)(t) + an−1y

(n−1)(t) + · · ·+ a0y(t) = bmx(m)(t) + · · ·+ b0x(t), (2)

where x(t) and y(t) represent the input and output respectively; the coefficients a0, . . . , an, b0, . . . , bm
are time-independent constants. Eq. (2) describes a linear time-invariant (LTI) systems.

If you have taken EEET 3041 Signals and Systems, then you should already be familiar with linear
ODEs. Otherwise, linear ODEs are covered in the EEET 5148 Control Systems M workshops. In
any case, in-depth knowledge of linear ODEs is not necessary.

2.1 Examples
Let us look at some sample systems describable using linear ODEs. We will look at an electrical
system (RC circuit) in Example 1, a mechanical system (mass-spring-damper) in Example 2, and
an electromechanical system (DC motor) in Example 3. Additionally, we will see how a rotational
mass-spring-damper (governed by the rotational version of Newton’s second law) can be used to
model a specific kind of gear in Example 4.

14 Signals and Systems

C

R

x(t) y(t)

Figure 2.1: An electrical circuit with resistor and capacitor in series, otherwise
known as an RC circuit.

mass M

K BB

p(t)f(t)

Figure 2.2: A mechanical mass-spring-damper system

that is in the form of (2.0.1).
As another example, consider the mass-spring-damper in Figure 2.2. A

force represented by the signal f is externally applied to the mass, and
the position of the mass is represented by the signal p. The spring exerts
force −Kp that is proportional to the position of the mass, and the damper
exerts force −BD(p) that is proportional to the velocity of the mass. The
cumulative force exerted on the mass is

fm = f −Kp−BD(p)

and by Newton’s law the acceleration of the mass D2(p) satisfies

MD2(p) = fm = f −Kp−BD(p).

We obtain the differential equation

f = Kp+BD(p) +MD2(p) (2.0.3)

that is in the form of (2.0.1) if we put x = f and y = p. Given p we can
readily solve for the corresponding force f . As a concrete example, let the
spring constant, damping constant and mass be K = B = M = 1. If the
position satisfies p(t) = e−t

2
, then the corresponding force satisfies

f(t) = e−t
2
(4t2 − 2t− 1).

i

14 Signals and Systems

C

R

x(t) y(t)

Figure 2.1: An electrical circuit with resistor and capacitor in series, otherwise
known as an RC circuit.

mass M

K BB

p(t)f(t)

Figure 2.2: A mechanical mass-spring-damper system

that is in the form of (2.0.1).
As another example, consider the mass-spring-damper in Figure 2.2. A

force represented by the signal f is externally applied to the mass, and
the position of the mass is represented by the signal p. The spring exerts
force −Kp that is proportional to the position of the mass, and the damper
exerts force −BD(p) that is proportional to the velocity of the mass. The
cumulative force exerted on the mass is

fm = f −Kp−BD(p)

and by Newton’s law the acceleration of the mass D2(p) satisfies

MD2(p) = fm = f −Kp−BD(p).

We obtain the differential equation

f = Kp+BD(p) +MD2(p) (2.0.3)

that is in the form of (2.0.1) if we put x = f and y = p. Given p we can
readily solve for the corresponding force f . As a concrete example, let the
spring constant, damping constant and mass be K = B = M = 1. If the
position satisfies p(t) = e−t

2
, then the corresponding force satisfies

f(t) = e−t
2
(4t2 − 2t− 1).

Force Position

Kp B(dp/dt)

Figure 2: RC circuit for Example 1. Figure 3: Mass-spring-damper system for Ex-
ample 2.

3

Example 1

Consider the RC circuit in Figure 2, with input voltage x(t) and output voltage y(t). For those
not familiar with capacitors, the current flowing the capacitor C is

i(t) = C
dy(t)
dt .

By Kirchoff ’s voltage law and Ohm’s law, we have the system model:

x = iR + y = RC
dy
dt + y = RCẏ + y. (3)

Example 2

Consider the mass-spring-damper system in Figure 3, with input force f(t) and output dis-
placement/position p(t). For those not familiar with springs and viscous dampers:
• When a spring is stretched/compressed, it resists the stretching/compressionwith a reaction

force of Kp(t), as per Hooke’s law, where K is the spring constant, p(t) is the amount of
stretching/compression.

• When a damper is stretched/compressed, is resists the stretching/compression with a re-
action force of Bṗ(t), where B is the coefficient of viscous damping, ṗ(t) is the speed of
stretching/compression.

The net force on mass M is thus

f(t)−Kp(t)−Bṗ(t). (4)

Note that there are no gravity terms in the equation above, because p(t) is measured from the
point where only gravity acts on the system. This is as explained in detail at http://lpsa.
swarthmore.edu/Systems/MechTranslating/TransMechSysModel.html.

By Newton’s second law, we have the system model:

Mp̈ = f −Kp−Bṗ. (5)

In the future, we can write down Eq. (5) simply by inspection:

Mp̈+Bṗ+Kp = f, (6)

as long as positive displacement is in the same direction as the external force.

Example 3

Consider the DC motor in Figure 4 with input voltage v(t) and output motor speed θ̇(t). Let
• T (t) be the torque,
• Kt be the torque constant,

4

http://lpsa.swarthmore.edu/Systems/MechTranslating/TransMechSysModel.html
http://lpsa.swarthmore.edu/Systems/MechTranslating/TransMechSysModel.html

Figure 4: A simplified model of a DC motor for
Example 3. Source: http://ctms.engin.

umich.edu/CTMS/index.php?example=

MotorSpeed§ion=SystemModeling.

• i(t) be the armature current.
• J be the moment of inertia of the rotor,
• θ(t) be the rotor angle,
• b be the coefficient of viscous friction,
• Kb be the back emf constant,
• R be the armature resistance,
• L be the armature inductance.
The torque is proportional to the armature current:

T = Kti. (7)

Using this fact and Newton’s second law, we have

Jθ̈ = T − bθ̇ = Kti− bθ̇. (8)

The back electromotive force (emf) is proportional to the rotor speed:

e = Kbθ̇. (9)

Using this fact and Kirchhoff ’s voltage law, we have

v = Ri+ L
di
dt + e = Ri+ L

di
dt +Kbθ̇. (10)

Now we have a system model comprising Eqs. (8) and (10) relating input v(t) to output θ̇(t).

Example 4

Consider the harmonic drive in Figure 5, which is a gear mechanisma designed to provide low
backlashb, high torque transmission in a compact assembly [SHV06, Sect. 6.5]. When the
wave generator rotates under the action of a motor, it causes the some of the teeth of the flexis-
pline and the circular spline to mesh. The way the teeth mesh has the advantage of producing
little backlash. The YouTube video at https://youtu.be/bzRh672peNk shows a harmonic drive
in action. Harmonic drives are useful for robotic applications, and in general applications that

5

http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SystemModeling
https://youtu.be/bzRh672peNk

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.
Fig_P8-18

Figure 5: A harmonic drive consists of a circular
spline, a flexispline, and an elliptical
wave generator. The flexispline takes
on the shape of the wave generator
when the latter is inserted into it. Im-
age source: https://www.hds.co.jp.

Figure 6: An idealized model of a harmonic
drive, where the flexipline is modeled
as a torsional spring of stiffness k. Sub-
scripts m and l refer to the motor and
the load respectively. Image source:
[Nis15, FIGURE P8.18].

require low backlash and high precision.
To model a harmonic drive, we can represent its flexispline as a torsional spring of stiffness

k (see Figure 6). Jm,Bm and θm characterize themotor, representing its themoment of inertia,
damping coefficient, and angle respectively. Jl, Bl and θl characterize the load, with apparent
meaning. Suppose we take the motor torque T (t) as input and the load angle θl(t) as output.

Applying Newton’s second law for rotation to the motor side, we have

Jmθ̈m +Bmθ̇m + k(θm − θl) = T. (11)

Note the amount of torsional stretching/compression is θm − θl rather than θm.
Applying Newton’s second law for rotation to the load side, we have

Jlθ̈l +Blθ̇l + k(θl − θm) = 0. (12)

Nowwe have a systemmodel comprising Eqs. (11) and (12) relating input T (t) to output θl(t).
aOne may wonder why it is not called a “harmonic gear” instead.
bLoss of motion between inter-meshing machine parts.

3 Laplace transform
This section shows how to solve differential equations by Laplace transform, which essentially con-
verts linear ODEs in the time domain into simple algebraic equations in the Laplace domain. Ad-
ditionally, this section introduces the concept of transfer function. A transfer function relates the
system output to the system input in the Laplace domain. Transfer functions are not necessary for
solving differential equations, but they make modeling so much easier, by allowing us to represent a
large system using a network of transfer functions.

6

https://www.hds.co.jp

Definition: Laplace transform

The Laplace transform of function f(t), denoted F (s), is

F (s) = L{f(t)} def
=

∫ ∞

0

e−stf(t)dt, (13)

where L is the Laplace transform operator, and s is a complex variable known as the Laplace
variable.

Detail: Unilateral vs. bilateral Laplace transform

The standard definition of the Laplace transform is “unilateral” (integration from 0 to∞). The
bilateral/two-sided definition of the Laplace transform, namelyLbilateral{f(t)} =

∫∞
−∞ e−stf(t)dt,

is not as commonly used. See http://mathworld.wolfram.com/BilateralLaplaceTransform.

html.

The Laplace transform is an integral. Clearly if f(t) tends to infinity over time, the integral becomes
undefined, so a Laplace transform only exists provided the conditions in the following theorem are
satisfied:

Theorem 1: [BB11, Theorem 5.1.6]

If function f is piecewise continuous on the interval 0 ≤ t ≤ T for any positive T , and f is of
exponential order a, then the Laplace transform L{f(t)} exists for s > a.

Quiz 1

Can you sketch an example of a piecewise continuous function?

Definition: Exponential order [BB11, Definition 5.1.5]

A function f(t) is of exponential order a if there exists real constants T ≥ 0, K > 0, and a,
such that when t ≥ T ,

|f(t)| ≤ Keat.

In other words, a function of exponential order a is guaranteed to grow no faster than some exponen-
tial functionKeat. For a function of exponential order a, the magnitude of the integrand in Eq. (13)
is bounded for s > a, since

|e−stf(t)| ≤ |e−st||f(t)| = e−st|f(t)| ≤ Ke−(s−a)t.

Note when s > a, e−(s−a)t is a decaying exponential, and |e−stf(t)| is guaranteed to decay with t.
Therefore, the Laplace transform of f(t) exists for s > a. The values of s for which the Laplace
transform exists constitute the region of convergence.

7

http://mathworld.wolfram.com/BilateralLaplaceTransform.html
http://mathworld.wolfram.com/BilateralLaplaceTransform.html

Example 5

L{1} =

∫ ∞

0

e−st dt = − lim
t→∞

e−st

s
+

1

s
.

For the above to be finite, we need <{s} > 0, hence the region of convergence is <{s} > 0.

Some popular Laplace transforms are provided in Table 1 on p. 29. Let us see how we can use this
table to calculate Laplace transforms.

Example 6

Use Table 1 to determine the Laplace transform of 2t sin(t).

Solution: From the table, we know L{tf(t)} = −F ′(s). Clearly, we can define f(t) = 2 sin(t),
then based on the table

F (s) = L{2 sin(t)} =
2

s2 + 1
=⇒ F ′(s) =

d
ds

(
2

s2 + 1

)
= − 4s

(s2 + 1)2
.

Therefore,
L{t · 2 sin(t)} = −

(
− 4s

(s2 + 1)2

)
=

4s

(s2 + 1)2
. (14)

We can verify Eq. (14) with just a web browser:

1. Visit website www.wolframalpha.com.
2. Type in “Laplace 2*t*sin(t)” in loose language, or “LaplaceTransform[2*t*Sin[t], t, s]”

in proper Mathematica syntax. Note that both Wolfram Alpha and Mathematica are made
by the same company, Wolfram.

3. Read the result.

Note that there is ABSOLUTELY NO expectation for the students to use Wolfram Alpha or
Mathematica in this course.

Alternatively, we can verify Eq. (14) using the following MATLAB code:
syms t s

laplace (2*t*sin(t), t, s)

Above, the keyword syms declares symbolic (as opposed to numeric) variables or functions.
We will be using more functions from MATLAB’s Symbolic Math Toolbox, like syms, as we go
along.

The inverse Laplace transform of F (s) is the contour integral called the Bromwich inversion in-
tegral:

L−1[F (s)] =
1

2πj

∫ σ+j∞

σ−j∞
estF (s)ds = f(t)u(t), (15)

where u(t) is the Heaviside/unit step function (u(t) = 1 for t > 0, u(t) = 0 for t < 0). For most
purposes though, it is easier to apply Laplace transform formulas in reverse than to calculate the
contour integral directly.

8

www.wolframalpha.com

3.1 Important properties
The Laplace transform has several important properties that make it extremely useful for system
modeling and controller design. First and foremost, the Laplace transform is a linear operator, be-
cause

L{af(x) + bg(x)} =

∫ ∞

0

e−st(af(t) + bg(t))dt = aL{f(x)}+ bL{g(x)}. (16)

We can similarly show the inverse Laplace transform is also a linear operator.
The key property of the Laplace transform that enables the conversion of differential equations

into algebraic equations is this:

Theorem 2: [BB11, Corollary 5.2.3]

Given continuous function f , if
• f ′, · · · , f (n−1) are continuous and f (n) is piecewise continuous on any interval 0 ≤ t ≤ T ,
• f ′, f ′′, · · · , f (n−1), f (n) are of exponential order a,
then L{f (n)(t)} exists for s > a, and is given by

L{f (n)(t)} = sn L{f(t)} − sn−1f(0)− · · · − f (n−1)(0). (17)

Example 7

Let us see how we can use Theorem 2 to determine the output response of the RC circuit in
Example 1. To both sides of Eq. (3):

x = RCẏ + y,

applying Laplace transformation and Theorem 2, we get

X(s) = RCsY (s)−RCy(0) + Y (s) =⇒ Y (s) =
1

RCs+ 1
(X(s) +RCy(0)). (18)

If x(t) is a sinusoid, e.g., x(t) = sin(ωt), then X(s) =
ω

s2 + ω2
, and

Y (s) =
1

RCs+ 1

(
ω

s2 + ω2
+RCy(0)

)
=

ω

(RCs+ 1)(s2 + ω2)
+

y(0)

s+ 1/(RC)

=
ωωc

(s+ ωc)(s2 + ω2)
+

y(0)

s+ ωc
,

(19)

where we have defined ωc
def
= 1/(RC). At this point, we can perform inverse Laplace transform

on Eq. (19) to obtain y(t), but this term

ωωc

(s+ ωc)(s2 + ω2)

is a third-order fraction (since the highest-order term is s3), whereas the Laplace transform
table only has entries up to the second order. To solve this problem, we need to apply partial

9

fraction expansion, i.e., a way of expressing a high-order fraction as a sum of first-order and
second-order fractions. In this case, we would like to find constants A, B and C such that

ωωc

(s+ ωc)(s2 + ω2)
=

A

s+ ωc
+

Bs+ C

s2 + ω2
. (20)

The numerators on both sides must be equal, i.e.,

ωωc = A(s2 + ω2) +Bs(s+ ωc) + C(s+ ωc). (21)

Equating the coefficients of s terms on both sides, we get

A+B = 0 =⇒ A = −B,

Bωc + C = 0 =⇒ C = Aωc,

Aω2 + Cωc = ωωc =⇒ Aω2 + Aω2
c = ωωc.

Therefore,
A =

ωωc

ω2 + ω2
c
, B = − ωωc

ω2 + ω2
c
, C =

ωω2
c

ω2 + ω2
c
. (22)

Substituting Eqs. (22) into Eq. (20), and substituting Eq. (20) into Eq. (19), we get

Y (s) =
ωωc

(ω2 + ω2
c)(s+ ωc)

− ωωcs

(ω2 + ω2
c)(s

2 + ω2)
+

ωω2
c

(ω2 + ω2
c)(s

2 + ω2)
+

y(0)

s+ ωc
. (23)

Taking inverse Laplace transform of the above, we get the output response

y(t) =
ωωc

ω2 + ω2
c

[
e−ωct − cos(ωt) + ωc

ω
sin(ωt)

]
+ y(0)e−ωct. (24)

We can readily verify Eq. (24) using the MATLAB code below:
syms y(t) x(t) t omega_c omega y_0

x = sin(omega*t);

dsolve(diff(y,t)==- omega_c*y+omega_c*x,y(0)== y_0)

Since ωc is positive, the exponentials in Eq. (24) decay with time, so in steady state, y(t) is a
sinusoid, just as x(t) is a sinusoid.
• The last term y(0)e−ωct is the only term that depends on the initial state, and represents the
free response or natural response of the system. The free response is also called the zero-input
response, since it equals the output response at zero input (i.e., x(t) = 0).

• The other terms represent the forced response of the system. The forced response is also
called the zero-state response since it equals the output response at zero initial state (i.e.,
y(0) = 0).

Note:

• Partial fraction expansion, as the preceding example suggests, is often needed duringmanual anal-
ysis. An e-reading on partial fraction expansion [Nis11, pp. 37–44] is available on learnonline for
those who want to learn more than the technique demonstrated in Example 7.

10

• In classical control, we typically assume zero initial conditions, i.e., f(0) = 0, · · · , f (n−1)(0) = 0,
in which case we end up with L{f (n)(t)} = sn L{f(t)}. Therefore, remember this: at zero initial
conditions, differentiation in the time domain is equivalent to multiplication with s in the Laplace
domain.

Symmetrical to Theorem 2, we have the following theorem which will become useful in Lecture 4.

Theorem 3: [BB11, Theorem 5.2.4]

Given continuous function f , if
• f is piecewise continuous on any interval 0 ≤ t ≤ T ,
• f is of exponential order a,
then for any positive integer n and s > a,

L
{
tnf(t)

}
= (−1)nF (n)(s). (25)

The next key property has to do with time shift (Second Shifting Theorem) and frequency shift
(First Shifting Theorem):

Theorem 4: First Shifting Theorem / First Translation Theorem

If F (s) = L{f(t)} and a ∈ R, then L{e−atf(t)} = F (s+ a).

Example 8

The First Shifting Theorem is especially useful for inverse-transforming denominators with
complex roots, for example,

L−1

{
1

s2 + 2s+ 5

}
= L−1

{
1

(s+ 1)2 + 22

}
= e−t L−1

{
1

s2 + 22

}
=

1

2
e−t sin(2t).

Theorem 5: Second Shifting Theorem / Second Translation Theorem

If a > 0 and F (s) = L{f(t)}, then L{f(t− a)u(t− a)} = e−asF (s).

The Second Shifting Theorem provides a way to model systems with delay. This delay, also called
transport lag, transport delay or dead time, is the time between when an input is applied, and when
the system starts responding to the input.

The next key property is convolution, which enables the block diagram approach to control system
design.

Definition: Convolution [HS14, Definition 4.38]

Suppose f(t) and g(t) are piecewise continuous functions. The convolution f ∗ g of the func-
tions f and g is

f ∗ g def
=

∫ t

0

f(τ)g(t− τ)dτ. (26)

11

Thephysical interpretation of convolution can be understoodby approximating the integral in Eq. (26)
with a sum:

f ∗ g ≈ f [0]g[t]∆t+ f [∆t]g[t−∆t]∆t+ · · ·+ f [t]g[0]∆t.

Think of f [0], f [∆t], · · · , f [t − ∆t], f [t] as input impulses at time instants 0,∆t, · · · , t − ∆t, t. Also,
think of g[t], g[t−∆t], · · · , g[∆t], g[0] as the system’s output impulses at time instants t, t−∆t, · · · ,∆t, 0.
The term “impulse response” simply means the system’s output in response to an input impulse.

• In response to f [0], the system produces response f [0]g[0], f [0]g[∆t], · · · , f [0]g[t], · · · .
• In response to f [∆t], the system produces response 0, f [∆t]g[0], · · · , f [∆t]g[t−∆t], · · · .
• · · ·
• In response to f [t], the system produces response 0, 0, · · · , f [t]g[0], · · · .

Therefore,

• At time t, the system’s response to f [0] is f [0]g[t].
• At time t, the system’s response to f [∆t] is f [∆t]g[t−∆t].
• · · ·
• At time t, the system’s response to f [t] is f [t]g[0].

The convolution f∗g is thus the sumof output impulses responding to input impulses f [0], f [∆t], · · · , f [t],
where ∆t → 0. By approximation, we assume the system input stays at f [0] for the time between 0

and ∆t, so the contribution of f [0] to the system response is f [0]g[t]∆t; by the same reasoning, we
multiply ∆t with f [∆t]g[t−∆t], . . ., f [t]g[0].

For the convolution, we have a really convenient theorem:

Theorem 6: Convolution Theorem [HS14, Theorem 4.39]

If L{f(t)} = F (s) and L{g(t)} = G(s), then

L{f ∗ g} = F (s)G(s).

The Convolution Theorem means that if F (s) is the Laplace transform of an input f(t), and G(s) is
the Laplace transform of the system’s impulse response, then the Laplace transform of the system’s
response to f(t) is simply the product F (s)G(s). This theorem paves way for the introduction of
“transfer functions”, and makes the block diagram approach of controller design feasible.

The last key property in this subsection is the final value theorem, which is the standard tool for
calculating the steady-state value (e.g., response, error) of a system.

Theorem 7: Final value theorem [BtMvdB03]

Let f(t)be a piecewise smooth functionwith Laplace transformF (s). When f(∞) = limt→∞ f(t)

exists, then
f(∞) = lim

s→0
sF (s), (27)

where the limit s → 0 has to be taken s.t. <{s} approaches 0 from the positive side.

Above, the reason for emphasizing taking the limit from the positive side is to ensure the operation
is performed within the region of convergence.

12

Quiz 2

Is the Final Value Theorem applicable to f(t) = sin(t)? What about f(t) = e−t sin(t)?

3.2 Transfer function
A transfer function relates the system output to the system input in the Laplace domain; this is why a
transfer function is called an input-output representation. If the input function and output function
have Laplace transforms U(s) and Y (s) respectively, then the Convolution Theorem says there exists
G(s) such that Y (s) = G(s)U(s). G(s) is the system’s impulse response, and equivalently the system’s
transfer function. Assuming zero initial conditions, the transfer function G(s) is defined as

G(s) =
Y (s)

U(s)
.

Therefore, given zero initial conditions, the output response in the Laplace domain is the transfer
function multiplied with the input.

Example 9

Revisiting the RC circuit of Example 7, we have Eq. (18):

Y (s) =
1

RCs+ 1
(X(s) +RCy(0)).

Setting y(0) = 0, we have the transfer function of the RC circuit:

G(s) =
Y (s)

X(s)
=

1

RCs+ 1
,

which represents a first-order system.
The Laplace-domain output response to a unit step input is

Ystep(s) =
1

RCs+ 1

(
1

s

)
=

1

s
− 1

s+ 1/(RC)
.

The time-domain output response to a unit step unit is thus

ystep(t) = L−1

{
1

s
− 1

s+ 1/(RC)

}
= 1− e−t/(RC).

Notice the free response term is a decaying exponential only because the root of the denom-
inator of G(s) is negative. Had 1/(RC) been a negative value, the free response would have
been an increasing exponential — this kind of response is unstable. This example is a preview
of the important concepts of poles and stability.

Definition: Poles and Zeros

A rational transfer function is a transfer function that can be written as a polynomial of s
divided by another polynomial of s, where the polynominals cannot be degenerate (i.e., con-

13

taining just a constant term) at the same time. Any rational transfer function of the form

G(s) =
N(s)

D(s)
=

b0s
m + b1s

m−1 + · · ·+ bm
a0sn + a1sn−1 + · · ·+ an

,

can be factorized into the zero-pole-gain form

G(s) = K
(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)
. (28)

• The polynomial D(s) is a characteristic polynomial, and the equation D(s) = 0 is a charac-
teristic equation.

• The poles ofG(s) are the roots ofD(s), i.e., the values of s that makeD(s) = 0. See Figure 7.
• The zeros of G(s) are the roots of N(s), i.e., the values of s that make N(s) = 0.

“poles”

Figure 7: The poles of a transfer function are like the poles of a tent,
that are infinitely tall.

Poles and zeros can be real or complex, but for real-world systems, complex poles or zeros must
come in conjugate pairs. The fundamental theorem of algebra states that any n-degree polynomial
has n roots. Hence, any nth-order transfer function has n poles. This means, we can expand any
nth-order rational transfer function by partial fraction expansion into n fractions:

G(s) =
c1

s− p1
+ · · ·+ cn

s− pn
,

where the poles pi (i = 1, . . . , n) can be real or complex. For all the fractions to be inverse-transformable
to decaying exponentials, all the poles pi (i = 1, . . . , n) must have negative real parts. As long as the
input-dependent forced response does not diverge, and the natural response dies off, the output re-
sponse is stable. Since the poles determine the natural response of the system, we conclude

For a system to be stable, all its poles must have negative real parts.

We will discuss stability more rigorously in a later lecture.
Figure 8 shows various system configurations, where each block represents a transfer function.

The Convolution Theorem tells us

• For the open-loop configuration in Figure 8(a), the transfer function

T (s) =
Y (s)

R(s)
= G(s)H(s).

T (s) is an open-loop transfer function, since there is no feedback.

14

𝐺(𝑠) 𝐻(𝑠) 𝐺(𝑠) 𝐻(𝑠)𝑅 𝑌 𝑅 𝑌 𝐺(𝑠)

𝐻(𝑠)

𝑅 𝑌

(𝑎) (𝑏) (𝑐)

+

−

+

−

𝐻 𝑠 ∉ {0,1}

Figure 8: Various control configurations. Each block represents a transfer function. No feedback is
employed in (a). Unity feedback is employed in (b). Nonunity feedback is employed in (c).

• For the unity feedback configuration in Figure 8(b),

Y (s) = G(s)H(s)(R(s)− Y (s)) =⇒ Y (s) =
G(s)H(s)

1 +G(s)H(s)
R(s),

so the transfer function

T (s) =
Y (s)

R(s)
=

G(s)H(s)

1 +G(s)H(s)
. (29)

T (s) is a closed-loop transfer function.

• For the nonunity feedback configuration in Figure 8(c),

Y (s) = G(s)(R(s)−H(s)Y (s)) =⇒ Y (s) =
G(s)

1 +G(s)H(s)
R(s),

so the transfer function

T (s) =
Y (s)

R(s)
=

G(s)

1 +G(s)H(s)
. (30)

T (s) is a closed-loop transfer function.

Eqs. (29) and (30) are very useful equations to remember. Unity feedback is more common than
nonunity feedback because of its robustness [FPEN02, p. 236].

𝐺𝐺(𝑠𝑠)

𝐻𝐻(𝑠𝑠)

𝐾𝐾
+

+
𝑅𝑅

𝑌𝑌

−

+

Figure 9: Block diagram for Example 10.

Example 10

Referring to the block diagram in Figure 9, determine the transfer function Y (s)/R(s).

15

Solution:

Y (s) = K[G(s)R(s) +H(s)(R(s)− Y (s))] =⇒ Y (s)[1 +KH(s)] = [KG(s) +KH(s)]R(s)

=⇒ Y (s)

R(s)
=

KG(s) +KH(s)

1 +KH(s)
.

3.3 Introduction to discrete-time modeling and the z-transform
Recall that in a sampled-data control system (see Figure 10), the plant operates in continuous time,
but the controller operates in discrete time. We can either design the controller in continuous time,
or discretize the plant model and design the controller in discrete time. Suppose we try the latter
approach. The goal here is to determine the transfer function of a plant in discrete time if we know
the Laplace transformof the plant. For this, we need to investigate the effects of sampling and holding
(see Figure 11) on any given signal.

Controller PlantD/A Hold

A/D
Analog
sensor

𝑟(𝑡) 𝑦(𝑡)

𝑦(𝑘𝑇)

Clock

−

+

Sample
period 𝑇

𝑢(𝑘𝑇) 𝑢(𝑡)𝑟(𝑘𝑇)

Discrete-time domain

Figure 10: A sampled-data control system.

𝑓(𝑡)
𝑓∗(𝑡)

Hold 𝑓ℎ(𝑡)

Closes every
𝑇 sec

𝑓ℎ(𝑡)

𝑡

zero-order hold

Figure 11: A sampler device and a hold device. We call the sampler “ideal” when we assume it closes
for an infinitesimally short amount of time.

Consider the sampling device in Figure 11. We can express the sampled version of f(t), f∗(t), as

f∗(t) = f(0)δ(t) + f(T)δ(t− T) + f(2T)δ(t− 2T) + · · · =
∞∑
k=0

f(kT)δ(t− kT), (31)

where T is the sample period, and δ is the Dirac delta function. Applying Laplace transformation
and the Second Shifting Theorem (see Theorem 5),

F ∗(s) =

∞∑
k=0

f(kT)e−kTs. (32)

Define z def
= eTs, and F (z)

def
= F ∗(s), then we have the definition of the z-transform for f(kT):

16

F (z) =

∞∑
k=0

f(kT)z−k. (33)

• Notice by definition z−1 = e−Ts is a time-delay operator, i.e.,

Y (z) = z−1R(z) =⇒ y(kT) = r((k − 1)T).

• A list of popular f(kT) and F (z) pairs can be found in Table 1.

• Table 1 shows the z-transform satisfies theConvolutionTheorem,meaningwe can treat z-transforms
as blocks in a block diagram, like how we treat Laplace transforms. Therefore in the discrete-time
domain, we use z-transforms rather than Laplace transforms.

• Table 1 shows the z-transform of an impulse is 1, so a system’s transfer function in the z domain,
or z-transfer function in short, is equivalent to its impulse response.

For the hold device in Figure 11, we almost always use zero-order hold (ZOH), whichmeans given
an impulse signal of amplitude A, the ZOH device outputs a pulse of height A and width T . In other
words, given an input of A, the output response in the time domain is

Au(t)− Au(t− T),

which has the Laplace transform A

(
1

s
− e−Ts

s

)
. Note that we are working in the Laplace domain

rather than the z domain, because fh(t) is a continuous-time signal. Thus, the Laplace transform of
the ZOH device is

GZOH(s) =
1− e−Ts

s
. (34)

𝛿(𝑘𝑇) ZOH 𝐺(𝑠) 𝑔(𝑘𝑇)

Blue lines are continuous-time

𝑔(𝑡)

𝐺(𝑧)

Figure 12: A cascade of a ZOH, a continuous-time plant, and an ideal sampler.

Armedwith the knowledge of the z-transform, and the Laplace transformof the ZOH,we can now
derive the z-transfer function of the cascade system in Figure 12. The result will be useful because
this cascade system is a common part of a sampled-data system, as can be observed in Figure 10.
The output response before sampling is given by

g(t) = L−1

{(
1− e−Ts

)
G(s)

s

}
= g1(t)u(t)− g1(t− T)u(t− T),

17

where g1(t)
def
= L−1{G(s)/s}. The sampled output response is thus g(kT) = g1(kT)u(kT)− g1(kT −

T)u(kT − T). Using Table 1, we can get the z-transform of g(kT) as

G(z) = Z{g1(kT)} − z−1Z{g1(kT)}.

∴ G(z) = (1− z−1)Z

{
L−1

{
G(s)

s

}∗
}

, (35)

where L−1{G(s)/s}∗ represents the sampled version of L−1{G(s)/s}.

𝑚Input force: 𝑢(𝑡)

Friction: 𝑏𝑣(𝑡)

𝑢(𝑡)
𝑈(𝑧)

ZOH 𝑉(𝑧)

Car

Car

(a) (b)

Figure 13: For Example 11: (a) Simplified model for cruise control. (b) Block diagram.

Example 11

This example is adapted from [FV13, Example 3.2]. Consider the model of a cruise control
system in Figure 13. Determine the z-transfer function, G(z) = V (z)/U(z).

Solution: Applying Newton’s second law, we get the differential equation describing cruise
control:

mv̇ + bv = u.

Applying Laplace transformation to both sides, we get the transfer function of the “Car” block
in Figure 13(b):

G(s) =
1

ms+ b
.

The z-transfer function is thus

G(z) =
V (z)

U(z)
= (1− z−1)Z

{
L−1

{
1

s(ms+ b)

}∗
}

=
1

b
(1− z−1)Z

{
L−1

{
1

s
− m

ms+ b

}∗
}

=
1

b
(1− z−1)Z

{
u(kT)− e−bkT/mu(kT)

}
=

1

b
(1− z−1)

(
1

1− z−1
− 1

1− e−bT/mz−1

)
=

1

b

(
1− z − 1

z − e−bT/m

)
=

1

b

(
1− e−bT/m

z − e−bT/m

)
.

The derived z-transfer function can be validated using the following MATLAB code:

18

syms s m b t k T z

tmp = subs(ilaplace (1/(s*(m*s+b))), t, k*T)

G = simplify ((z-1)/z*ztrans(tmp ,k,z))

At this point, we have caught a glimpse of discrete-time modeling using the z-transform. There is
muchmuchmore to systemmodeling, analysis and controller design using the z-transform than this
course can cover, but these topics are easier to learn once you know the continuous-time techniques
and not vice versa. Next, we will return to the continuous-time domain, but on a different approach
than transfer function.

4 State-space equations
An alternative to the input-output representation provided by transfer functions is the state-space
representation. In this representation, the system state plays a major role. Whereas an input-output
representation is unique (since there is only one way the input affects the output), a state-space rep-
resentation is not (since some states can be mutually dependent).

To see how state-space equations arise from a set of differential equations, notice the differential
equations of Examples 1–4 can be written in the form:

ẋ1(t) = a11(t)x1(t) + a12(t)x2(t) + · · ·+ a1n(t)xn(t) + f1(t),

ẋ2(t) = a21(t)x1(t) + a22(t)x2(t) + · · ·+ a2n(t)xn(t) + f2(t),

...
ẋn(t) = an1(t)x1(t) + an2(t)x2(t) + · · ·+ ann(t)xn(t) + fn(t),

or in vector-matrix form,
ẋ(t) = A(t)x(t) + f(t), (36)

where

ẋ =

ẋ1...
ẋn

 , A =

a11 · · · a1n
...

an1 · · · ann

 , x =

x1...
xn

 , f =

f1...
fn

 .

Note my notation: bold italic lower case for vectors (e.g., x); bold upright upper case for matrices
(e.g., A). The reason for using the first-order form of Eq. (36) is that there is a well-known solution
for it.

The solution for

ẋ(t) = Ax(t) + f(t), subject to initial state x(0) = x0, (37)

consists of a homogeneous part and a particular part:

x(t) = xh(t) + xp(t) = eAtx0 +

∫ t

0

eA(t−τ)f(τ)dτ. (38)

19

The homogeneous part xh(t) = eAtx0 is the solution to the homogeneous equation
ẋ(t) = Ax(t), x(0) = x0.

The matrix eAt is called a matrix exponential:

Definition: Matrix exponential

eX
def
=

∞∑
k=0

Xk

k!
= I+X+

1

2!
X2 +

1

3!
X3 + · · · (39)

• It is exactly the same as the regular exponential when A is a 1-by-1 matrix (i.e., a scalar).
• In EEET 4071 Advanced Control, we will learn multiple ways of computing the matrix exponen-

tial.
• Property that matters for now: d

dt e
At = AeAt = eAtA.

Example 12

In Example 7, we applied the Laplace approach to solving theODE describing the RC circuit of
Example 1. Show that the time-domain solution is equivalent to the Laplace-domain solution
(see Eq. (24)).

Solution: From Example 1, we have Eq. (3):

x = RCẏ + y =⇒ ẏ = −ωcy + ωcx, (40)

where we have used the definition ωc
def
= 1/(RC). Applying Eq. (38) to Eq. (40), we have

y(t) = e−ωcty(0) +

∫ t

0

e−ωc(t−τ)ωcx(τ)dτ. (41)

If x(t) is a sinusoid, e.g., x(t) = sin(ωt), then the previous equation becomes

y(t) = ωce
−ωct

∫ t

0

eωcτ sin(ωτ)dτ + y(0)e−ωct. (42)

Performing integration by parts, we have∫ t

0

eωcτ sin(ωτ)dτ =

∫ t

0

eωcτ d
(
− 1

ω
cos(ωτ)

)
=

[
− 1

ω
eωcτ cos(ωτ)

]t
0

−
∫ t

0

− 1

ω
cos(ωτ)ωce

ωcτ dτ

=
1

ω
− 1

ω
eωct cos(ωt) + ωc

ω

∫ t

0

eωcτ cos(ωτ)dτ.

(43)

We have to perform another integration by parts:∫ t

0

eωcτ cos(ωτ)dτ =

∫ t

0

eωcτ d
(
1

ω
sin(ωτ)

)
=

1

ω
eωct sin(ωt)− ωc

ω

∫ t

0

eωcτ sin(ωτ)dτ.
(44)

20

Substituting Eq. (44) into Eq. (43) gives us∫ t

0

eωcτ sin(ωτ)dτ =
1

ω
− 1

ω
eωct cos(ωt) + ωc

ω2
eωct sin(ωt)− ω2

c

ω2

∫ t

0

eωcτ sin(ωτ)dτ.

∴
∫ t

0

eωcτ sin(ωτ)dτ =
ω

ω2 + ω2
c

[
1− eωct cos(ωt) + ωc

ω
eωct sin(ωt)

]
. (45)

After much effort, we finally have a closed-form formula for the integral, which we can sub-
stitute back into Eq. (42) and get

y(t) = ωce
−ωct

∫ t

0

eωcτ sin(ωτ)dτ + y(0)e−ωct

=
ωωc

ω2 + ω2
c

[
e−ωct − cos(ωt) + ωc

ω
sin(ωt)

]
+ y(0)e−ωct.

(46)

Eq. (46) is exactly the same as Eq. (24) in Example 7. Thus solution in the time domain is
equivalent to solution in the Laplace domain.

Although the Laplace approach seems to be easier, state-space solutions
• are necessary for state-space control methods, which are in turn necessary for multivariable con-

trol;
• can be efficiently performed using computers; in fact, to solve any set of ODEs in MATLAB nu-

merically, we have to express it in the first-order form first2.
In this course, we will focus on setting up so-called linear state-space equations, and leave state-

space controller design to EEET 4071 Advanced Control. Looking back at Eq. (36), if we can express
f in the form Bu, where u is the input vector (i.e., the vector of input variables), then we get a state
equation. In general, any continuous-time finite-dimensional LTI system with n states,m inputs and
p outputs can be described by

linear state-space equations

ẋ(t) = Ax(t) +Bu(t), (47)
y(t) = Cx(t) +Du(t), (48)

where

• x ∈ Rn is the state vector, u ∈ Rm is the input vector, y ∈ Rp is the output vector;
• Eq. (47) is the state equation;
• Eq. (48) is the observation / output / measurement equation;
• A ∈ Rn×n is the system / dynamic / evolution matrix;
• B ∈ Rn×m is the input / control matrix;
• C ∈ Rp×n is the output / observation matrix;
• D ∈ Rp×m is the coupling / direct feedthrough / direct transmission / direct transfer / feedforward
matrix.

To obtain the output response for system (47)–(48), we apply Eq. (38) to the state equation (47), and
2https://www.mathworks.com/help/releases/R2017b/matlab/math/choose-an-ode-solver.html

21

https://www.mathworks.com/help/releases/R2017b/matlab/math/choose-an-ode-solver.html

substitute the solution into the observation equation (48):

y(t) = CeAtx0 +C

∫ t

0

eA(t−τ)Bu(τ)dτ +Du(t). (49)

Example 13

Revisiting the mass-spring-damper system of Example 2, we have Eq. (6):

Mp̈(t) = −Bṗ(t)−Kp(t) + f(t) =⇒ p̈(t) = − B

M
ṗ(t)− K

M
p(t) +

1

M
f(t), (50)

where f(t) is the input, p(t) is the output.
To rewrite the above as state-space equations, we have to determine the states that make up

the state vector x:
• ẋ contains the highest-order derivatives, so ẋ must contain p̈, and thus x must contain ṗ.
• Eq. (50) shows p̈ equals something times ṗ plus something times p plus something times f ,

so x must contain p in addition to ṗ.
The reasoning above suggests we can define x

def
= [ṗ p]> (> is the transpose operator). Now

we can write the state equation as[
p̈

ṗ

]
=

[
− B

M −K
M

1 0

][
ṗ

p

]
+

[
1
M

0

]
f, (51)

and the observation equation as

p = [0 1]

[
ṗ

p

]
. (52)

Since there are two variables in the state vector, this is a second-order system.

Example 14

Revisiting the DC motor of Example 3, we have Eqs. (8) and (10):

Jθ̈(t) = −bθ̇(t) +Ki(t), (53)
Li′ = −Kθ̇(t)−Ri(t) + v(t), (54)

where v(t) is the input, θ̇(t) is the output.
To rewrite the above as state-space equations, we have to determine the states that make up

the state vector x:
• ẋ contains the highest-order derivatives, so ẋmust contain θ̈ and i′, and thusxmust contain

θ̇ and i.
• Eqs. (53)–(54) show that there are no other derivatives of θ and i other than θ̇ and i (zero-

order derivative) on the right-hand side.
The reasoning above suggests we can define x def

= [θ̇ i]>. Now we can write the state equation

22

as [
θ̈

i′

]
=

[
−b/J K/J

−K/L −R/L

][
θ̇

i

]
+

[
0

1/L

]
v, (55)

and the observation equation as

θ̇ = [1 0]

[
θ̇

i

]
. (56)

Since there are two variables in the state vector, this is a second-order system.

In general, given an ODE of the form

anz
(n) + an−1z

(n−1) + · · ·+ a1ż + a0z = bu, (an 6= 0), (57)

we can define the state vector as x = [z(n−1) z(n−2) · · · z]>, and write the state equation accord-
ingly as

ẋ =


−an−1/an · · · −a1/an −a0/an

1 · · · 0 0
...
0 · · · 1 0

x+


b/an
0
...
0

u. (58)

If we take z as the output variable, then we can write the observation equation as

y = [0 · · · 0 1]x. (59)

4.1 Realization*

State space
representation

Transfer
function Realization

We can convert a state-space representation to a transfer function, and vice versa. Applying Laplace
transform to the state equation and initial state

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

we get

sX(s)− x0 = AX(s) +BU(s)

=⇒ X(s) = (sI−A)−1x0 + (sI−A)−1BU(s)

= Φ(s)x0 + Φ(s)BU(s),

(60)

where Φ(s)
def
= (sI − A)−1 is called the resolvent matrix [HJS08, p.64]. Notice how convolution in

the time domain corresponds to multiplication in the s-domain, i.e.,

L

{∫ t

0

eA(t−τ)Bu(τ)dτ

}
= (sI−A)−1BU(s).

23

Similarly, applying Laplace transformation to the observation equation

y(t) = Cx(t) +Du(t),

and using Eq. (60), we get

Y (s) = CX(s) +DU(s) = C[Φ(s)x0 + Φ(s)BU(s)] +DU(s)

= CΦ(s)x0 + (CΦ(s)B+D)U(s).
(61)

Setting x0 = 0 gives us the transfer matrix

G(s)
def
= C(sI−A)−1B+D. (62)

The tuple (A,B,C,D) is called a realization of G(s). For SISO systems, G(s) is scalar and is a
transfer function. As a reminder, a transfer function is a unique representation, because there is
only one way to relate the output to the input.

It is not always possible to realize a transfer function, because:

Theorem 8: [Che99, Theorem 4.2]

A transfer function is realizable if and only if it is rational and proper.

Definition: Rational and proper transfer function

Suppose G(s) is a transfer function. Furthermore, suppose G(s) is rational, i.e., can be ex-

pressed as N(s)

D(s)
, where N(s) and D(s) are polynomial functions of s.

• G(s) is strictly proper if D(s) has a higher degree than N(s).
• G(s) is semiproper or biproper if D(s) has the same degree as N(s).
• G(s) which is strictly proper or semiproper or biproper is proper, i.e., D(s) has the same

degree or a higher degree than N(s).
• G(s) is improper if D(s) has a lower degree than N(s).

Quiz 3

Suppose transfer function G(s) is strictly proper, as s → ∞, |G(s)| →?

• Even when we can realize a transfer function in state space, the state-space representation is not
unique, since we can pick different states for the state-space equations.

• The most important realization is the minimal realization (or minimum realization), i.e., a state-
space representation of the system in the lowest order; this is covered in EEET 4071 Advanced
Control.

In summary, state-space representations have certain advantages over transfer functions:

• A transfer function represents input-output behavior, whereas a state-space representation reflects
internal system behavior, providing deeper insights into system internals.

24

– Such insights include controllability and observability, which form the basis for state-feedback
controller designs; these topics are covered in EEET 4071 Advanced Control.

• SISO and multivariable systems can be handled equally in state space.

• The initial state is inherently taken into account.

5 An elaborate example
Supplementary Lecture A has some information on active suspension, which uses control to achieve
good ride and handling quality. The controller is to counter disturbances due to road roughness,
and the forces and moments associated with the various inertial and aerodynamic loadings caused
by braking, turning, wind gusts, etc. For designing an active suspension controller, the standard
practice is to use the quarter-car model in Figure 14. Here, we will look at the detail of this model
[LLGS12]. The relevant variables and constants are as follows.

• Mass ms is the sprung mass representing the car chassis.
• Mass mu is the unsprung mass representing the wheel assembly.
• u(t) represents the force exerted by the active suspension controller. For ms, u(t) is an upward

force. For mu, u(t) is a downward force.
• The k∗ constants are stiffness coefficients.
• The c∗ constants are damping coefficients.
• The z∗(t) variables measure displacement. Notice zr(t) measures tire deflection/compression,

rather than how far it bounces off the ground.

The input to the plant is u(t). It may not be obvious, but zr(t) and żr(t) are disturbances, and can be
thought of as inputs imposed by the road condition. The output is z̈s(t), because the control objective
is to minimize the vertical acceleration of the chassis to maximize ride comfort.

344 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 20, NO. 2, APRIL 2012

Fig. 1. Quarter-car model.

muz̈u (t) + cs [żu (t) − żs(t)] + ks [zu (t) − zs(t)]

+ kt [zu (t) − zr (t)] + ct [żu (t) − żr (t)]

= −u (t)

msz̈s(t) + cs [żs(t) − żu (t)] + ks [zs(t) − zu (t)]

= u (t) . (1)

Let x1(t) = zs(t) − zu (t) denote the suspension deflection,
x2(t) = zu (t) − zr (t) the tire deflection, x3(t)= żs(t) the
sprung mass speed, x4(t)= żu (t) the unsprung mass speed,
and w(t) = żr (t) the disturbance input. Equation (1) can be
rewritten as

ẋ(t) = A (t)x(t) + B1 (t) w(t) + B (t)u (t) (2)

where

A (t) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 −1
0 0 0 1

− ks

ms
0 − cs

ms

cs

ms

ks

mu
− kt

mu

cs

mu
−cs + ct

mu

⎤
⎥⎥⎥⎥⎥⎦

B (t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1

ms

− 1
mu

⎤
⎥⎥⎥⎥⎥⎥⎦

, B1 (t) =

⎡
⎢⎢⎢⎣

0
−1
0
ct

mu

⎤
⎥⎥⎥⎦

x(t) = [x1(t) x2(t) x3(t) x4(t)]T .

For the control design problems of suspension systems, their
performances, such as ride comfort, suspension deflection, and
road holding, are the fundamentals that are taken into account. It
is widely accepted that ride comfort can be generally quantified
by the body acceleration in the vertical direction in the context
of a quarter-vehicle model; hence, it is practical to choose body
acceleration z̈s(t) as the first control output. It indicates that one
of the objectives is to minimize the vertical acceleration z̈s(t)
to secure vehicle travel comfort.

Recall the H∞ control method; the value of the H∞ norm
is defined as an upper bound of the root-mean-square (RMS)
gain, and the main objective is to minimize the H∞ norm of the
transfer function from the disturbance w(t) to the control output,
i.e., z1(t) = z̈s(t), with an emphasis on the improvement of ride
comfort. Meanwhile, the following required performances have
to be taken into account as well.

1) The suspension deflection cannot exceed a maximum value
that is constrained by mechanical structure

|zs(t) − zu (t)| ≤ zmax (3)

where zmax is the maximum suspension deflection.
2) The dynamic tire load has to be less than the static tire load

in order to ensure a firm uninterrupted contact of the wheels on
the road

kt (zu (t) − zr (t)) < (ms + mu) g. (4)

Based on the aforementioned criteria, the body acceleration
z̈s(t) is chosen as the performance control output, and the
suspension stroke zs(t) − zu (t) and relative dynamic tire load
kt (zu (t) − zr (t)) / (ms + mu) g are chosen as the second con-
trol output z2(t). Therefore, the following system is derived to
present the active vehicle suspension system:

ẋ(t) = A (t) x (t) + B1 (t) w (t) + B (t) u (t)

z1(t) = C1 (t)x(t) + D1 (t) u (t)

z2(t) = C2 (t)x(t) (5)

where A (t) , B1 (t), and B (t) are defined in (2), and

C1 (t) =
[
− ks

ms
0 − cs

ms

cs

ms

]
, D1 (t) =

1
ms

C2 (t) =

⎡
⎢⎣

1
zmax

0 0 0

0
kt

(ms + mu) g
0 0

⎤
⎥⎦ . (6)

Note that the suspension system in (5) is a model with uncer-
tainty in that the sprung mass ms and the unsprung mass mu

vary in the given ranges, where ms and mu denote ms (t) and
mu (t), respectively. In the meantime, the actuator delay and
fault should be taken into account, since the suspension perfor-
mance could be affected by these factors. It leads to the system
as

ẋ(t) = A (t) x (t) + B1 (t) w (t) + B (t) uf (t − d (t))

z1(t) = C1 (t)x(t) + D1 (t)uf (t − d (t))

z2(t) = C2 (t)x(t)

x(t) = φ(t), t ∈
[
−d̄, 0

]
(7)

where φ(t) is a vector-valued initial continuous function that
is defined on t ∈

[
−d̄, 0

]
. d (t) denotes the time-varying delay

satisfying

0 ≤ d (t) ≤ d̄, d (t) ≤ μ. (8)

Considering the fault channel from the controller to the actuator

uf (t) = mau(t) (9)

Figure 14: A quarter-car model comprising mass-spring-
dampers used for designing active suspension
[LLGS12, Fig. 1]. To see generic active suspension
in action, see https://youtu.be/NELQQgRyOjE. To
see electromagnetic active suspension in action, see
https://youtu.be/IQ1eKddstxM.

The following is similar to what we have done for Example 2. We look at each mass in turn and
apply Newton’s second law. For mass ms,

msz̈s + cs(żs − żu) + ks(zs − zu) = u. (63)

For mass mu,

muz̈u + cs(żu − żs) + ks(zu − zs) + ct(żu − żr) + kt(zu − zr) = −u. (64)

25

https://youtu.be/NELQQgRyOjE
https://youtu.be/IQ1eKddstxM

Our usual practice suggests the state vector should contain żs, zs, żu, zu, żr and zr, but since żr and
zr are disturbances, we only need żs, zs, żu, and zu. In practice, it is easier to measure the suspension
deflection xsu

def
= zs − zu, and the tire deflection xur

def
= zu − zr, for example using high-resolution

encoders, so it makes sense to replace the state variables zs and zu with xsu and xur. Substituting xsu
and xur into Eqs. (63)–(64), we get

msz̈s + cs(żs − żu) + ksxsu = u

=⇒ z̈s = − cs
ms

żs +
cs
ms

żu −
ks
ms

xsu +
1

ms
u,

(65)

muz̈u + cs(żu − żs)− ksxsu + ct(żu − żr) + ktxur = −u

=⇒ z̈u =
cs
mu

żs −
cs
mu

żu +
ks
mu

xsu −
ct
mu

żu +
ct
mu

żr −
kt
mu

xur −
1

mu
u.

(66)

Now, define x def
= [xsu xur żs żu]

>, then we can write Eqs. (65)–(66) into state-space equations
ẋsu
ẋur
z̈s
z̈u


︸ ︷︷ ︸

ẋ

=


0 0 1 −1

0 0 0 1

− ks
ms

0 − cs
ms

cs
ms

ks
mu

− kt
mu

cs
mu

−cs+ct
mu


︸ ︷︷ ︸

A


xsu
xur
żs
żu


︸ ︷︷ ︸

x

+


0 0

0 −1
1
ms

0

− 1
mu

ct
mu


︸ ︷︷ ︸

B

[
u

żr

]
, (67)

z̈s︸︷︷︸
y

=
[
− ks

ms
0 − cs

ms

cs
ms

]
︸ ︷︷ ︸

C

x+
[

1
ms

0
]

︸ ︷︷ ︸
D

[
u

żr

]
. (68)

Using the code in Listing 1, we can determine the transfer matrix to be

G(s) =

 s2(mus
2+cts+kt)

msmus4+(csms+ctms+csmu)s3+(ksms+ktms+ksmu+csct)s2+(cskt+ctks)s+kskt
s(ks+css)(kt+cts)

msmus4+(csms+ctms+csmu)s3+(ksms+ktms+ksmu+csct)s2+(cskt+ctks)s+kskt

>

. (69)

Listing 1: MATLAB code for Sect. 5
syms s cs ks ct kt ms mu

A = [0 0 1 -1;

0 0 0 1;

-ks/ms 0 -cs/ms cs/ms;

ks/mu -kt/mu cs/mu -(cs+ct)/mu];

B = [0 0;

0 -1;

1/ms 0;

-1/mu ct/mu];

C = [-ks/ms 0 -cs/ms cs/ms];

D = [1/ms 0];

G = simplify(C*inv(s*eye(size(A))-A)*B+D);

pretty(G)

26

6 Summary
• A “dynamical system” is a system that evolves with time. Typically, they can be described with

ODEs or PDEs. In this course, we focus on dynamical systems that can be described with linear
ODEs; more specifically, RLC circuits (electrical domain), andmass-spring-dampers (mechanical
domain).

• By solving a set of ODEs describing a system, we are essentially predicting its behavior over
time, given the input and initial conditions. Solution methods include the Laplace transform
(frequency-domain, typical of classical control), and state-space methods (time domain, typical
of modern control).

• The Laplace transform is an integral transform, and hence a linear operator.
– Theorem2 implies, given zero initial conditions, differentiation in the time domain is equivalent

to multiplication with s in the Laplace domain. This theorem and the First Shifting Theorem
(see Theorem 4) are indispensable for deriving transfer functions.

– The Second Shifting Theorem (see Theorem 5) provides a way to model systems with delay. It
can also be used to derive the z-transform.

– Theexistence of theConvolutionTheorem (seeTheorem6) enables the block diagram approach
to control system design, where each block in a diagram is a transfer function.

• Difference equations and z-transforms are the equivalents of differential equations and Laplace
transforms in the discrete-time domain.

• Some commonly used Laplace transforms and z-transforms can be found in Table 1.

• In state-space methods, a system is modeled with state-space equations. Unlike input-output rep-
resentations such as transfer functions, state-space representations are not unique because (i) the
choice of state variables is not unique, (ii) the order of the states in the state vector is not unique.
– A state-space representation can always be expressed as a transfer function/matrix.
– However, not all transfer functions/matrices can be realized in state space.

References
[BB11] J.R. Brannan and W.E. Boyce. Differential equations: an introduction to modern meth-

ods and applications. John Wiley & Sons, Inc., 2011.
[BtMvdB03] R. J. Beerends, H. G. ter Morsche, and J. C. van den Berg. Fourier and Laplace trans-

forms. Cambridge University Press, 2003.
[Che99] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press, 3rd

edition, 1999.
[FPEN02] G.F. Franklin, J.D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Sys-

tems. Prentice-Hall, Inc., 4th edition, 2002.
[FV13] M. Sami Fadali and Antonio Visioli. Digital Control Engineering: Analysis and Design.

Elsevier, Inc., 2nd edition, 2013.
[HJS08] Elbert Hendricks, Ole Jannerup, and Paul Haase Sorensen. Linear Systems Control:

Deterministic and Stochastic Methods. Springer-Verlag Berlin Heidelberg, 2008.

27

[HS14] Martin Hermann and Masoud Saravi. A First Course in Ordinary Differential Equa-
tions: Analytical and Numerical Methods. Springer India, 2014.

[Lev11] William S. Levine, editor. The Control Handbook: Advanced Methods. CRC Press, 2nd
edition, 2011.

[LLGS12] Hongyi Li, Honghai Liu, Huijun Gao, and Peng Shi. Reliable fuzzy control for
active suspension systems with actuator delay and fault. IEEE Trans. Fuzzy Syst.,
20(2):342–357, April 2012.

[Nis11] Norman S. Nise. Control Systems Engineering. Wiley, 6th edition, 2011.
[Nis15] Norman S. Nise. Control Systems Engineering. Wiley, 7th edition, 2015.
[SHV06] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot modeling and

control. John Wiley & Sons, 2006.

28

Table 1: Table of Laplace transforms and z-transforms.
• By definition, f(t) = 0 for t ≤ 0.
• F (s) = L{f(t)} is the Laplace transform of f(t).
• F (z) = Z{f [k]} is the z-transform of f(kT) (a pulse train), where T is the sample period.

f(t) F (s) f(kT) F (z)

Impulse δ(t) 1 δ(kT) 1

Step u(t)
1

s
u(kT)

z

z − 1

Ramp t
1

s2
kT

Tz

(z − 1)2

Parabola t2
2

s3
k2T 2 T 2z(z + 1)

(z − 1)3

Power tn
n!

sn+1
knTn lima→0(−1)n

dn

dan

(
z

z − e−aT

)
Sine sin(ωt) ω

s2 + ω2
sin(ωkT) sin(ωT)z

z2 − 2 cos(ωT)z + 1

Cosine cos(ωt) s

s2 + ω2
cos(ωkT) z[z − cos(ωT)]

z2 − 2 cos(ωT)z + 1

Freq. shift e−atf(t) F (s+ a) e−akT f(kT) F (eaT z)

Time shift f(t− a)u(t− a) e−asF (s) f(kT −
aT)u(kT − aT)

z−aF (z)

Freq. scale a−kf(kT) F (az)

Time scale f(at)
1

|a|
F
(
s

a

)
Freq. diff. tnf(t) (−1)n

dn F (s)

dsn knf(kT) (−z)n
dn F (z)

dzn

Time diff. f ′(t) sF (s)− f(0) f(kT) − f((k −
1)T)

(1− z−1)F (z)

Convolution (f ∗ g)(t) F (s)G(s) (f ∗ g)(kT) F (z)G(z)

Final value f(∞) lims→0 sF (s) f(∞) limz→1(z − 1)F (z)

29

	Introduction
	Differential equations
	Examples

	Laplace transform
	Important properties
	Transfer function
	Introduction to discrete-time modeling and the z-transform

	State-space equations
	Realization*

	An elaborate example
	Summary

