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1 I n t r o d u c t i o n

After almost two control courses, it should be clear by now that stability is the foremost requirement
for any useful system. An unstable system will saturate or behave erratically when an input — no
matter how small — is applied, and in the worst case it will fail, burn out or even disintegrate.

For LTI systems in continuous time, we know the system matrix must have only eigenvalues with
a negative real part. For LTI systems in discrete time, we know that the systemmatrixmust have only
eigenvalues with a magnitude less than 1. This lecture deals with more than just LTI systems, and is
meant to serve as an introduction to nonlinear systems through Lyapunov stability theory. The im-
portance of stability theory cannot be emphasized enough, considering how most controller design
techniques depend on definitions of stability and techniques of stabilization for their mathematical
foundation.

1 . 1 I n t e r n a l v s . e x t e r n a l s t a b i l i t y

In EEET 3046 Control Systems, we learnt that a SISO LTI system has two components in its output
response: natural/free/zero-input response and forced/zero-state response. Because of this, we can
qualify the stability of a SISO LTI system in terms of
• its external stability, i.e., the stability of its forced response, and
• its internal stability, i.e., the stability of its natural response.
In that course, we learnt the definitions of external stability and internal stability for SISOLTI systems
(see Figure 1 for visual analogies), but how do they extend to multivariable LTI systems?
External stability is interpreted differently depending on whether system is a transfer function/-

matrix or a state-space model.
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Figure 1: Analogies for external stability. Say
the ball is at the origin, and we give the
ball a poke of finite strength. Think
of the distance between the ball and
the origin as the forced response. If
the ball eventually stops at a certain
spot, the system is externally stable
(BIBO stable). If the ball keepsmoving
away, the system is externally unstable
(BIBO unstable).

Figure 2: Analogies for internal stability. At t =
0, we place a ball at a random spot
other than the origin, and see if the
ball will settle at the origin (asymptot-
ically stable), or settle at some point
other than the origin (stable), or keep
moving away from the origin (unsta-
ble). Think of the the distance between
the ball and the origin as the natu-
ral response. Illustration inspired by
[WL07, Figure 6.1].

• For a transfer function/matrix, external stability refers to the stability of the system’s forced re-
sponse. Since only the input and output of the system are considered, external stability is synony-
mous with input-output stability, and the more expressive term bounded-input bounded-output
stability (BIBO stability). A system is BIBO stable if its zero-state response to any bounded input
is also bounded [Kai80, Sect. 2.6.1]. Note that if an input is unbounded, the system’s BIBO stabil-
ity cannot be determined. The notion of BIBO stability carries over naturally from SISO systems
to multivariable systems, with the only change being where we had “input” or “output” (singular),
we now have “inputs” or “outputs” (plural).

• For a linear state-space model, the notion of BIBO stability is applicable.

• For a nonlinear state-space model, the notions of input-to-state stability [Son08] and L stabil-
ity [Kha15, Ch. 6] apply, but the mathematical machinery required to analyze these notions of
stability is beyond the undergraduate level.

Figure 3: Alexandr Lyapunov (note “Alexander” without an ‘e’): De-
spite the impact of his work, it remained practically un-
knownoutsideRussia until after theWorldWar II. For a great
intellectual like him, he had a disproportionately tragic end-
ing, having shot himself in the head on the same day his wife
died from tuberculosis. He died three days after. Image from
Wikipedia.

Internal stability is interpreted differently depending onwhether the system is a transfer function
(SISO only) or a state-space model (SISO or multivariable).
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• For a transfer function (SISO only), internal stability has the classical meaning: the stability of the
transfer function’s natural response. A natural response is
– stable if it approaches zero as time approaches infinity;
– marginally stable if it neither decays nor grows but remains constant or oscillates as time ap-

proaches infinity;
– unstable if it grows without bound with time [Nis15, Sect. 6.1].
In this interpretation, internal stability implies BIBO stability but the converse is not true, and
internal stability is simply equivalent to the case where all the poles of the system transfer function
have a negative real part.

• For a state-space model (SISO or multivariable), the existence of states necessitates a different
interpretation of internal stability that is due to Alexandr Lyapunov (see Figure 3). This interpre-
tation is called Lyapunov stability, which is defined in Sect. 2. Since Lyapunov stability is defined
for the most general state-space representation, it is applicable to LTI and non-LTI systems alike.
– For LTI systems, Lyapunov stability implies BIBO stability, but the converse is only true for

minimal realizations (systems that are both controllable and observable) [KA01, Sect. 2.2],
[Kai80, p. 177], so Lyapunov stability is the stronger stability criterion.

– For non-LTI systems and nonlinear systems in particular, Lyapunov stability does not imply
external stability [Kha02, p. 175].

For analyzing Lyapunov stability, Lyapunov stability theory is the gold standard. In this lecture,
we will study this theory, and apply it to the stability analysis of nonlinear systems (see Sect. 3.2)
as well as LTI systems (see Sect. 3.3). We note that for nonlinear systems with nonzero input,
Lyapunov stability theory is essential but not enough. Henceforth, we will refer to a system with
zero input as an autonomous system.
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Adaptive Control 
and the NASA X-15-3 

Flight Revisited
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D
ecades after the fi rst hypersonic vehicles pushed 

the boundaries of aerospace technology and re-

search, high-performance aircraft continue to 

be the subject of considerable research interest. 

A new generation of hypersonic vehicles offers 

a far more effective way of launch-

ing small satellites or other vehicles 

into low-Earth orbit than expendable 

rockets. Additionally, these aircraft 

facilitate quick response and global 

strike capabilities. High-performance 

missions involving the X-15 in the 1950s and 1960s and the 

X-43A in the 2000s pushed the boundaries of aircraft speed 

and altitude, setting world records. These aircraft also 

served as platforms for cutting-edge research in propul-

sion, hypersonic stability, and control, as well as support-

ing technologies that enabled the design and operation of 

subsequent aircraft and spacecraft. This article examines 

the role of control in NASA’s X-15 program and, in particu-

lar, the X-15-3, which used adaptive control. The X-15 air-

craft is depicted in Figure 1. 

Control of hypersonic vehicles is 

challenging due to the changes in 

the aircraft dynamics as the maneu-

ver takes the aircraft over large 

flight envelopes. Three hypersonic 

planes, the X-15-1, X-15-2, and X-15-3, were flown as a 

part of the NASA X-15 program. The X-15-1 and X-15-2 

were equipped with a fixed-gain stability augmentation 

system. In contrast, the X-15-3 was one of the earliest air-

craft to feature an adaptive control scheme. The Honey-

well MH-96 self-adaptive controller adjusted control 

NASA DRYDEN FLIGHT RESEARCH CENTER (NASA-DFRC)

LESSONS LEARNED AND 
LYAPUNOV-STABILITY-BASED DESIGN

Figure 4: This is the cover page of an
article [DAL10] that revisits
the fatal accident of the X-
15-3 experimental aircraft in
1967, by examining the role of
Lyapunov-stability-based de-
sign of adaptive flight con-
trollers in several “how and
what if ” scenarios. The use-
fulness of Lyapunov stability
theory cannot be overstated.
When in doubt, think of the
legendary X-15 program.

No doubt the central theme of this lecture is Lyapunov stability theory, which is the foundation
of nonlinear control, where we lose the ability to determine the stability of a system by means of
the eigenvalues of the nonexistent system matrix. Even though this course does not cover nonlinear
control, Lyapunov stability theory is so fundamentally important that it is the basis of all but the
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most basic control approaches. In the opening lecture, we read about NASA’s X-15 program, specif-
ically about how the ill-fated X-15-3 was equipped with an adaptive controller without a stability
proof, and about how Lyapunov-based model reference adaptive control turned the multi-million
dollar program around (see Figure 4). After all, “Lyapunov methods” is a suggested Tier 2 topic in
Engineers Australia’s “Mechatronic Engineering Foundational Technical Skills” document.

In terms of organization, Sect. 2 introduces the core stability definitions. Sect. 3 introduces Lya-
punov’s first and second methods, with the emphasis being the second method. Rounding up the
lecture, Sect. 4 describes sample applications of Lyapunov theory to optimal control and adaptive
control.

2 L y a p u n o v s t a b i l i t y

So far we know stability is related to the “convergence” of some response to its equilibrium state. For
LTI systems, we know convergence is exponential, but obviously this is not the case for all systems.
The following example shows how a response converges to its equilibrium state matters.

Figure 5: Phase portraits of system (1). The left figure shows 10 trajectories with a random initial
state converge at the equilibrium point (1, 0). The right figure shows an example of how a
trajectory can start very close to the equilibrium point and yet make a sizeable excursion
before reaching the equilibrium point. This is a classic example of how an equilibrium can
be unstable and yet convergent (having all nontrivial trajectories converging to it).

Example 1

This example is adapted from [Ter09, Example 3.11]. Consider the nonlinear system

ṙ = r(1− r), θ̇ = sin2(θ/2), (1)

where (r, θ) are polar coordinates. The equilibrium states are given by{
ṙ = r(1− r) = 0 =⇒ r = 0 or 1,
θ̇ = sin2(θ/2) = 0 =⇒ θ = 2Nπ, where N ∈ Z.
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So two of the equilibria are (r, θ) = (0, 0) and (r, θ) = (1, 0). Using Listing 1, we can generate
the phase portrait (plot of one state against another state) in Figure 5, which features a conspic-
uous limit cycle (a closed trajectory which at least one other trajectory spirals into). Despite the
limit cycle, all trajectories—except the trivial one that starts and stays at the origin—converge
at (r, θ) = (1, 0).

Listing 1: MATLAB code for plotting Figure 5.
rng (1);

t0 = 0; tf = 400;

figure; subplot (1,2,1);

for run = 1:10

if run < 10 % 10 starting points far from equilibrium

r0 = 10* rand (1); theta0 = 2*pi*rand (1);

else % 1 close to equilibrium

r0 = 0.1* rand (1) + 1; theta0 = 0.1* rand (1);

end

[t,rtheta] = ode45(@unstable_yet_convergent , [t0 ,tf], [r0;theta0 ]);

r = rtheta (:,1); theta = rtheta (:,2);

x = r.*cos(theta ); y = r.*sin(theta );

p = plot(x,y); set(p, 'Color ', rand (3 ,1));

text(x(1), y(1), sprintf('(%.2f,%.2f)',x(1),y(1)));

hold all

end

xlabel('x = r*cos(\ theta)'); ylabel('y = r*sin(\ theta)');

title('10 sample trajectories of an unstable yet convergent system ');

hold off;

subplot (1,2,2);

p = plot(x,y); set(p, 'Color ', rand (3 ,1));

text(x(1), y(1), sprintf('(%.2f,%.2f)',x(1),y(1)));

xlabel('x = r*cos(\ theta)'); ylabel('y = r*sin(\ theta)');

title('Zoom -in view of a sample trajectory ');

function xdot = unstable_yet_convergent(t,x)

% x is [r,theta]

xdot = zeros (2,1);

r = x(1); theta = x(2);

xdot (1) = r*(1-r);

xdot (2) = sin(theta /2)^2;

end

A common feature of the system trajectories is that they always make an excursion before
converging to the equilibrium state, regardless of how close their initial state is to the equilib-
rium state. The implication is that even the slightest perturbation to the equilibrium state will
cause the system to go through an excursion before settling back to its equilibrium state. If the
system in question is responsible for cruise control, then since the slightest change in driving
conditions or road conditions can set off a large excursion in speed, the system will do a hor-
rible job maintaining its set-point speed. In this sense, which we call the sense of Lyapunov, we
cannot practically consider the system stable despite the convergence of the system response.
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To be exact, we cannot call the system at the specific equilibrium state (because a system can
have multiple equilibrium states) stable in the sense of Lyapunov. Later, we will learn that the
system at the specific equilibrium state is by definition not stable because no trajectories can
be confined to an arbitrarily small neighborhood around the equilibrium state regardless of
how close the initial state is to the equilibrium state.

Quiz 1

What is the primary difference between “system response” and “system trajectory”?

Example 1 introduces two key ideas:

• Internal stability is a property of a system with respect to an equilibrium state, because a system
can have multiple isolated equilibrium states (equilibria), each with different stability properties.
As a reminder, the equilibrium states of the autonomous system defined by the state equation

ẋ(t) = f(x(t)), x(t0) = x0, (2)

are values of x that satisfy ẋ = f(x) = 0. By convention, instead of saying “systemX is stable/un-
stable at equilibrium state xe”, we say “equilibrium state xe of system X is stable/unstable”.

• Stability is different from convergence. Stability in the sense of Lyapunov, or Lyapunov stability in
short, has to do with how a system state behaves around its equilibrium value.

The analysis of the Lyapunov stability of a system necessitates a formal mathematical framework,
and this framework in turn requires the formal definitions of a few stability concepts. Below, we
introduce these formal definitions:

Definition: Lyapunov stability

An equilibrium xe of the system ẋ(t) = f(x(t)) is
• Lyapunov stable or stable in the sense of Lyapunov or simply stable if for any t0 ≥ 0 and
ε > 0, there exists a δ > 0 s.t.

‖x(t0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ε, ∀t ≥ t0; (3)

• unstable if it is not stable;

• uniformly stable if δ in Eq. (3) is independent of t0;

• convergent or attractive if there exists a δ > 0 s.t.

‖x(t0)− xe‖ < δ =⇒ lim
t→∞

‖x(t)− xe‖ = 0; (4)

• asymptotically stable if it is stable and attractive;

• globally asymptotically stable if it is stable and limt→∞ ‖x(t)−xe‖ = 0 for all initial states.

The set of all x(t0) s.t. x(t) → xe as t → ∞ is called the domain of attraction / region of
attraction.
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Figure 6: Examples of equilibria in a two-dimensional state space that are (a) Lyapunov stable, (b)
unstable.

• It is a common practice to refer to the origin as an equilibrium state because if xe is not the origin,
we can always transfer it to the origin by introducing a new variable x̃

def
= x − xe. Then, ˙̃x = 0

at x̃ = 0. This is why stability is often defined based on the assumption xe = 0. However, in the
definitions above, we have dispensed with this assumption.

• The concept of “Lyapunov stability” can be understood by imagining we are trying to keep every
system trajectory within a neighborhood1 of some finite radius ε centered at the equilibrium state
(see Figure 6). After all, for stability’s sake, we do not want any system trajectory to go to infinity.
Clearly, the initial state x(t0) must be chosen at most ε away from the equilibrium; let us define
δ as the upper bound of this distance, i.e., δ def

= inf ‖x(t0) − xe‖. The mathematical definition of
Lyapunov stability can then be understood through the subsequent challenge-response interpre-
tation. The challenge is: for any value of ε, can we find a value of δ such that as long as x(t0) is
less than δ away from xe, every possible system trajectory emanating from x(t0) is contained within
the ε neighborhood? If the response is “yes”, then we conclude xe is Lyapunov stable or just stable;
otherwise, xe is not. Through the challenge and response, we can see that δ may depend on ε and
t0, thus it is a common practice to express δ as a function of ε and t0, i.e., δ(ε, t0).

Quiz 2

In the challenge-response interpretation, ε can be of any value. However, is the challenger
more concerned with arbitrarily small or arbitrarily large values? You can think of it this
way: which case is associated with a smaller “search space” for δ?

• The set of all initial states at time t0 for which xe is Lyapunov stable is called the domain/region of
attraction.

• In the challenge-response interpretation of Lyapunov stability, if δ exists and does not depend on
t0, then xe is uniformly stable. In other words, if the region of attraction changes with t0, then xe

is not uniformly stable. Uniform stability is a concern for time-varying systems since the property

1This neighborhood has the geometry of an “interval” in a one-dimensional state space, a “circle” in a two-dimensional
state space, a “ball” in a three-dimensional state space, a “hypersphere” in a higher-dimensional state space.
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can change with time, as the following example shows.

Example 2

This example is adapted from [LW13, Example 8.9]. Consider the first-order linear time-
varying state equation:

ẋ(t) = 2t[3 sin(t)− 1]x(t), (5)

subject to initial condition x(t0) = x0. The question is whether the equilibrium point at the
origin is stable.
We can get the system response by solving the differential equation manually using the
method of the integrating factor, as demonstrated in the EEET 5148 Control Systems M
workshop. Alternatively, we can solve it using the MATLAB function dsolve. The system
response turns out to be

x(t) = x0c(t0) exp
{
6 sin(t)− 6t cos(t)− t2

}
,

where c(t0) = exp
{
−
[
6 sin(t0)− 6t cos(t0)− t20

]}
. Through constrained optimization (e.g.,

MATLAB function fmincon), we can determine the upper bound of exp
{
6 sin(t)− · · ·

}
to

be around 22011, so

|x(t)| < 22011c(t0)|x0| (note c(t0) > 0).

In order for the origin to be stable, there must be a positive response to the challenge: for
any given ε, can we find a δ such that

|x0| < δ =⇒ |x(t)| < ε, ∀t ≥ t0?

Suppose we define
δ

def
=

ε

22011c(t0)
,

then for all t ≥ t0,

|x0| < δ =⇒ |x(t)| < 22011c(t0)|x0| <
ε

δ
δ = ε.

Clearly, δ depends on t0, so the system is not uniformly stable. However, let us see how not
uniformly stable the system is. By differentiating δ with respect to t0, we can determine δ
reaches its local minima and local maxima at 2Nπ+arcsin(1/3) and (2N+1)π−arcsin(1/3)
respectively, where N ∈ Z. This is to say, for the same ε (how close we want the system
trajectory to be near the equilibrium), x0 must be significantly closer to the equilibrium for
t0 = 2Nπ + arcsin(1/3) than for t0 = (2N + 1)π − arcsin(1/3).

• If xe is stable, then no matter how small ε is, we can always find a δ. However, regardless of how
small δ is (i.e., how close x(t0) is to xe), “stability” alone does not imply x(t) will ever converge to
xe. When x(t) does converge to xe, we say xe is convergent or attractive. A stable and convergent
equilibrium is an asymptotically stable equilibrium (see Figure 8). It is easy to imagine a stable
but not convergent equilibrium. As for an unstable yet convergent equilibrium, we have actually
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(a) (b) (c)

Figure 7: The origin of system (5) is not uniformly stable. (a) shows δ generally decreases with t0.
(b) and (c) show x0 needs to be significantly closer to the origin for t0 = arcsin(1/3) than
for t0 = π − arcsin(1/3), given the same ε.
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Figure 8: Examples of equilibria in a two-dimensional state space that are (a) asymptotically stable,
and (b) globally asymptotically stable.

seen one such example in Example 1. Asymptotic stability is clearlymore desirable than Lyapunov
stability.

• If the region of attraction of an asymptotically stable equilibrium is the entire state space, then the
equilibrium is globally asymptotically stable. Any kind of stability quality that is globally true is
clearly more desirable than otherwise.

To qualify how fast a system approaches its asymptotically stable equilibrium, we have the follow-
ing definitions:

Definition: Exponential stability [Kha02, Definition 4.5]

An equilibrium xe of the system ẋ(t) = f(x(t)) is
• exponentially stable if for any t0 > 0, there exist positive constants δ, k and λ s.t.

‖x(t0)− xe‖ < δ =⇒ ‖x(t)− xe‖ ≤ ke−λ(t−t0)‖x(t0)− xe‖, ∀t ≥ t0 (6)
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(the maximum value of λ for which this holds is the rate of convergence);

• globally exponentially stable if for any t0 > 0 and x(t0), there exist positive constants k
and λ s.t.

‖x(t)− xe‖ < ke−λ(t−t0)‖x(t0)− xe‖, ∀t ≥ t0. (7)

Exponential stability can be understood through the same challenge-response interpretation intro-
duced earlier. To understand why we need the factor k in the definition, observe k exp(−λ(t− t0)) is
another way of writing exp(−λ(t− t0) + some constant), which has a constant term in the exponent
for generality. Global exponential stability is the ultimate goal, but can be difficult to achieve inmany
applications.

Example 3

Consider the nonlinear system

ẋ(t) = −(1 + cos2 x(t))x(t),

with equilibrium state at the origin. It is easily verifiable that the system response takes the
form:

x(t) = x(0) exp

{
−
∫ t

0

[
1 + cos2 x(τ)

]
dτ

}
= x(0) exp(−t− some nonnegative number).

Therefore,
|x(t)| ≤ |x(0)| exp(−t),

i.e., the nonlinear system is exponentially stable.

It is important to note that the definitions provided so far are applicable to any dynamical sys-
tem — linear or nonlinear, time-invariant or time-varying. In the next subsection, we will see a
specialization of these definitions for LTI systems.

2 . 1 L T I s y s t e m s

The linearity of LTI systems allows us to simplify the stability definitions earlier. Before we study
these simplifications, let us get to know some useful facts about the equilibria of an LTI system.
Consider the equilibria of the LTI system ẋ = Ax, which can be obtained by solving ẋ = Ax = 0.
Basic linear algebra tells us:

• IfA is nonsingular, the origin is the only equilibrium point. Such an equilibrium point is so-called
isolated.

• If A is singular, Ax = 0 has infinitely many solutions for x, hence the system has infinitely many
equilibrium points including the origin.

Since the origin is always an equilibrium point of an LTI system, it is common to refer to the LTI
system and the origin of the LTI system interchangeably in terms of stability. As such, “the system
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is stable/unstable” is really a concise way of saying “the origin of the system is stable/unstable” if the
system is LTI.

Quiz 3

In the discussion above, why did we consider ẋ = Ax rather than ẋ = Ax+Bu?

Now, the definitions of Lyapunov stability for LTI systems:

Definition: Lyapunov stability of LTI systems [WL07, Definition 6.2], [Hes09, Definition 8.1]

The origin of the system ẋ(t) = Ax(t) is
• Lyapunov stable or stable in the sense of Lyapunov or simply stable if for any initial state

x0, there exists a positive constant k s.t. ‖x(t)‖ ≤ k‖x0‖, ∀t ≥ 0;

• unstable if it is not stable;

• (globally) asymptotically stable if for any initial state x0, limt→∞ ‖x(t)‖ = 0;

• (globally) exponentially stable if for any initial statex0, there exist positive constants k and
λ s.t. ‖x(t)‖ ≤ ke−λt‖x0‖, ∀t ≥ 0.

The definition of Lyapunov stability for LTI systems is based on the observation:

x(t) = eAtx0 =⇒ ‖x(t)‖ = ‖eAtx0‖ ≤ ‖eAt‖‖x0‖. (8)

If the norm of the matrix exponential does not grow unbounded, then ‖eAt‖ ≤ k for some positive
constant k, and we have a Lyapunov stable system satisfying

‖x(t)‖ ≤ k‖x0‖. (9)

Example 4

Suppose A =

[
0 1

−6 −5

]
, then ‖eAt‖ starts at 1, peaks at slightly below 1.2 before it decays to

zero, so a good choice for k is k = 1.2.

In the definitions above, the parentheses surrounding “globally” mean if an LTI system is asymp-
totically/exponentially stable, it is globally so. Global exponential stability is the ultimate goal. Fortu-
nately for LTI systems, asymptotic stability and exponential stability are equivalent [Ter09, Corollary
3.2], [WL07, p. 216], and achieving asymptotic stability requires just one simple condition: the sys-
tem matrix of the system must be Hurwitz (if the system is continuous-time) or convergent (if the
system is discrete-time). In either case, the system matrix is called a stability matrix [Hes09].

Definition: Hurwitz [Ter09, Defintion 3.2], [Son98, Definition C.5.2]

• A matrix A ∈ Cn×n is said to be Hurwitz if all of its eigenvalues have a negative real part.

• A matrix A ∈ Cn×n is said to be convergent or discrete-time Hurwitz if all of its eigenval-
ues have a magnitude of less than 1.
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On the relationship between Hurwtiz-ness and asymptotic stability, we have the following essential
theorem for continuous-time systems:

Theorem 1: [WL07, Theorem 6.3]

An equilibrium state of ẋ(t) = Ax(t) is
• stable iff all eigenvalues of A have a nonpositive real part, and the geometric multiplicity of

any eigenvalue with zero real part equals the associated algebraic multiplicity;

• globally asymptotically stable iff A is Hurwitz.

For discrete-time systems, we have the following essential theorem:

Theorem 2: [Che99, p. 131]

An equilibrium state of ẋ[k + 1] = Ax[k] is
• stable iff all eigenvalues of A have a magnitude of less than or equal to 1, and the geometric

multiplicity of any eigenvalue with unit magnitude equals the associated algebraic multi-
plicity;

• globally asymptotically stable iff A is convergent.

General systems

LTI systems

Lyapunov stability concepts:

Unstable
Stable
Uniformly stable
Convergent/attractive
Asymptotically stable
Exponentially stable
Global whatever

Classical stability concepts:

Unstable
Marginally stable
Stable

Figure 9: Keywords in the Lyapunov sense and keywords in the classical sense. A keyword in the
classical sense can be mapped to multiple keywords in the Lyapunov sense.

Quiz 4

In Figure 9, can you map the keywords in the classical sense to the keywords in the Lyapunov
sense? If you have difficulty mapping “marginally stable”, please read on to find out why.
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3 L y a p u n o v s t a b i l i t y a n a l y s i s

Unlike linear systems, nonlinear systems do not have eigenvalues, and moreover closed-form for-
mulas relating the trajectory to the initial state are typically not available for nonlinear systems. Lya-
punov analysis is so far the only means by which we can determine the stability of these systems.
The underlying theory originated in Lyapunov’s doctoral thesis “The general problem of the stabil-
ity of motion”, which in turn was built on Poincaré’s work in theoretical mechanics [KA01, p. 10].
Although published in 1892, Lyapunov’s work remained practically unknown outside Russia until
the Cold War and Space Race era, when there was a huge demand for techniques for analyzing and
controlling nonlinear systems commonly found in aerospace applications. Lyapunov proposed two
methods for determining stability [BW74]. We shall discuss them in turn.

3 . 1 L y a p u n o v ’s fi r s t / i n d i r e c t m e t h o d

Since we can determine the stability of a linear system by its eigenvalues, it is natural to ask whether
we can determine the stability of a nonlinear system by the eigenvalues of its linear approximation.
Lyapunov’s first or indirect method [SL91, Sect. 3.3] has an answer to this very question, and essen-
tially, it serves as the fundamental justification for using linear control techniques in practice.

Given a nonlinear system and a specific equilibrium point of the system, themethodworks by first
linearizing the system about the specified equilibrium point, and calculating the eigenvalues of the
linearized system. The following theorem is then used to determine the stability of the equilibrium
point of the original nonlinear system:

Theorem 3: [SL91, Theorem 3.1]

Denote the equilibrium point of the original nonlinear system by xe.
• If the linearized system is strictly stable, i.e., all eigenvalues have a negative real part, then

xe is asymptotically stable.

• If the linearized system is unstable, i.e., at least one eigenvalue has a positive real part, then
xe is unstable.

• If the linearized system is marginally stable, i.e., all eigenvalues are in the closed left-half
complex plane with at least one eigenvalue on the imaginary axis, then nothing can be con-
cluded about the stability of xe.

Therefore, if a linearized system is marginally stable, the original nonlinear system can be stable,
asymptotically stable or unstable.

Example 5

Consider the first-order nonlinear system:

ẋ = −x5.

About the origin, the linearized system has an eigenvalue of 0, so Lyapunov’s indirect method
fails. In the next subsection, we shall see how the direct method can overcome this problem.

13



In addition to the limitation associated with marginally stable linearized systems, the indirect
method provides no way of finding the region in which asymptotic stability applies, when the lin-
earized system is asymptotically stability. These limitations of the indirect method explain the need
for the direct method.

3 . 2 L y a p u n o v ’s s e c o n d / d i r e c t m e t h o d

To cover the case where the first method failed and also to prove the first method, Lyapunov de-
veloped the second or direct method, which provided the first general stability criteria applicable to
both linear and nonlinear systems. Lyapunov observed that the stability of an equilibrium state could
be based on a general class of energy-like functions. The intuition that real-world systems settle from
a high-energy state into a low-energy one forms the basis of the Lyapunov function, which for a given
system is a user-defined scalar function that is supposed to capture the energy of the system — this
is why Lyapunov functions are typically quadratic. If a system is stable, then a Lyapunov function
exists, and the system state only follows trajectories where the time derivative of the Lyapunov func-
tion is nonpositive, i.e., trajectories of nonincreasing energy. The existence of a Lyapunov function
implies the stability of the system. Procedure-wise, the stability of a system can be established essen-
tially by just investigating the signs of the Lyapunov function and its time derivative evaluated along
the system trajectories. The primary advantage of the direct method is that it does not require the
solutions to the differential equations describing the system.

A Lyapunov function is defined as follows:

Definition: Lyapunov function [NPWW02, Definition 2.2]

Let V : Rn 7→ R be a real-valued function, andS ⊂ Rn be a compact (i.e., closed and bounded)
region containing the origin in its interior. V is a Lyapunov function for the system ẋ(t) =

f(x(t)) if it satisfies the following properties:

1. V is continuously differentiable, i.e., ∂V
∂xi

(i = 1, . . . , n) exist and are continuous.

2. V (x) is positive definite in S , i.e.,

V (x)

{
= 0 if x = 0;

> 0 if x ∈ S \ {0}.
(10)

3. V̇ (x) along the system trajectories is negative semidefinite, i.e.,

V̇ (x) = ∇xV · ẋ =
∂V

∂x1
ẋ1 + · · ·+ ∂V

∂xn
ẋn

{
= 0 if x = 0;

≤ 0 if x ∈ S \ {0}.
(11)

In Lecture 7, we came across the definition of positive/negative (semi)definiteness for symmetric
matrices, whereas the definition above is for functionals. A functional is a real-valued function on a
vector space. Caution: The definitions of positive semidefiniteness and positive definiteness in the
textbook [Żak03, Definition 4.8], [Żak03, Definition 4.9] are inaccurate. For any general dynamical
system, the following theorem give the conditions for its stability and asymptotic stability:

14



Theorem 4: [Kha02, Theorem 4.1], [SL91, Theorem 3.3]

• The origin of the system ẋ = f(x), f(0) = 0, is stable if there exists a Lyapunov function V
for the system.

• If furthermore V̇ is negative definite, then the origin is asymptotically stable.

• If even furthermore V is radially unbounded, i.e., V → ∞ as ‖x‖ → ∞, then the origin is
globally asymptotically stable.

Essentially, if the origin of a system is stable, then all system trajectories follow the direction of
nonincreasing V as illustrated in Figure 10.

Figure 10: If the origin is stable, all system
trajectories follow the direction of
nonincreasing V , where V is the Lya-
punov function. V̇ is exactly the in-
ner product of grad V and dx

dt in the
figure. Image source: https://www.

math24.net/wp-content/uploads/

2016/09/lyapunov-function2.svg

Lyapunov functions are user-defined. If we can find a Lyapunov function, we can prove a system
is stable or asymptotically stable; otherwise, we cannot make any conclusion. Whether or not a
Lyapunov function can be found depends on the problem domain, the designer’s insight into the
problem, his/her skills, and one may even say a bit of luck. However, since Lyapunov functions are
energy-like functions, like electrical power and kinetic energy, they are often quadratic, such as the
ones in the subsequent examples. This does notmean Lyapunov functionsmust be quadratic though.

Example 6

Revisiting Example 5. Let us consider a more general system:

ẋ = −c(x),

where c(x) is defined such that xc(x) > 0 and c(0) = 0, e.g., c(x) = x5. Define the Lyapunov
function candidate as V (x) = x2.

• Since dV
dx = 2x exists and is continuous, V is continuously differentiable.

• V is clearly positive definite.
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• V̇ =
dV
dx ẋ = −2xc(x) is clearly negative definite.

• Moreover, V → ∞ as |x| → ∞.

Therefore the origin is globally asymptotically stable. We saw in Example 5 how this result was
not attainable using the indirect method.

Quiz 5

For each of the functions below, determine whether it satisfies the definition of c() in Exam-
ple 6:
• the saturation function,
• the tan function,
• the tanh function.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 2

Figure 11: Plot of 20 sample trajectories of the
system (12)–(13), with initial states
satisfying x21 + x22 < 1. The origin is
asymptotically stable.

Example 7

This example is adapted from [NPWW02, Example 2.3]. Determine the equilibrium point of
the nonlinear system:

ẋ1 = x1(x
2
1 + x22 − 1)− x2, (12)

ẋ2 = x1 + x2(x
2
1 + x22 − 1), (13)

where x1, x2 ∈ R. Show the equilibrium point is the origin, and the origin is asymptotically
stable by showing V (x) = x21 + x22 is a Lyapunov function and V̇ (x) is negative definite.

Solution: To obtain the equilibrium point, we set ẋ1 and ẋ2 to zero, and get

(x21 + x22 − 1) =
x2
x1
, (x21 + x22 − 1) = −x1

x2
.

Hence x21 = −x22. This equation is only satisfied, since x1, x2 ∈ R, by x1 = x2 = 0. The
equilibrium point is therefore the origin.
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Now, let us investigate the Lyapunov function candidate V (x) = x21 + x22.
• Since the partial derivatives ∂V

∂x1
= 2x1 and ∂V

∂x2
= 2x2 exist and are continuous, V is con-

tinuously differentiable.
• Since

V =

{
0, if (x1, x2) = (0, 0),

sum of squares > 0, if (x1, x2) 6= (0, 0);

V is positive definite.
• For V̇ along the system trajectory, we have

V̇ (x) =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 = 2x1[x1(x

2
1 + x22 − 1)− x2] + 2x2[x1 + x2(x

2
1 + x22 − 1)]

= 2(x21 + x22)(x
2
1 + x22 − 1)

=⇒ V̇ (x) =


0, if x21 + x22 = 0;

−ve, if 0 < x21 + x22 < 1;

0, if x21 + x22 = 1;

+ve, if 1 < x21 + x22.

Therefore within the region x21+x22 < 1, V (x) is a Lyapunov function with V̇ (x) being negative
definite. Within this region, the origin is asymptotically stable, as confirmed by the plot in
Figure 11.

Example 8

This example is adapted from [FPEN15, EXAMPLE 9.16]. Consider the nonlinear system

ẍ1 = −ẋ1 + c(r − x1),

where x1 is the state variable, r is the constant input set-point, and c() is a continuous nonlinear
function with the property: ec(e) > 0 and c(0) = 0. The system is second-order, and by
defining the state vector as x = [ė e]>, where e = r − x1, we can rewrite the system as the
nonlinear state equation:

ẋ =

[
ë

ė

]
=

[
−ė− c(e)

ė

]
. (14)

Furthermore, the system is a servomechanism, because in steady state (ë = 0, ė = 0),

ë = −ė− c(e) =⇒ c(e) = c(r − x1) = 0 =⇒ x1 = r.

Suppose we define the Lyapunov function candidate as V (x) = 1
2 ė

2 +
∫ e

0
c(ξ)dξ. Show that

the equilibrium point at the origin is Lyapunov stable.

Solution:

• Since the partial derivatives ∂V
∂ė

= ė and ∂V

∂e
= c(e) (due to Leibniz’s rule) exist and are

continuous, V is continuously differentiable.

17



• Since

V =

{
0, if (ė, e) = (0, 0),

square + positive > 0, if (ė, e) 6= (0, 0);

V is positive definite.

• For V̇ along the system trajectory, we have

V̇ =
∂V

∂ė
ë+

∂V

∂e
ė = ė(−ė− c(e)) + c(e)ė = −ė2.

Note that V̇ along the system trajectory only depends on ė and not e. More specifically, V̇ is
zero at points (0, e), where e is nonzero, so V̇ can be zero outside the origin. In other words,
V̇ is only negative semidefinite, and not negative definite.

Therefore, V (x) is a Lyapunov function with a negative semidefinite V̇ (x), and thus the origin
is Lyapunov stable.

Quiz 6

In Example 8, explain why the state vector is NOT defined as x = [ẋ1 x1]
> instead.

𝑥𝑏

𝑦𝑏

𝑥𝑒

𝑦𝑒

𝜓

Figure 12: The position parameters of a ship: (x, y, ψ). Notice the earth axes and body axes follow
the north-east-down and front-right-down conventions respectively.

Example 9

Examples of Lyapunov functions for physical systems abound in [DBDN13]. In [DBDN13,
Sect. 2.3], we can see a case study on the position control of a ship. The control objective is
to track the desired position expressed in terms of (x, y, ψ) as shown in Figure 12. Instead of
discussing the system model at length, let us just say the following quadratic form has been
found to be a Lyapunov function:

V =
1

2

(
r>M∗r + e>Kpe+ φ̃

>
Γ−1φ̃

)
,

where
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• e is the control error;
• r

def
= ė+αe is the filtered tracking error, where α is some diagonal gain matrix;

• M∗ = RMR> is the transformed mass-inertia matrix, where R is the rotation matrix be-
tween the earth and body axes, and M is the mass-inertia matrix;

• Kp and Γ are control gain matrices;
• φ̃ is the system parameter estimation error.

In fact, a Lyapunov function typically contains all the squared tracking errors and squared
estimation errors in the system, since in equilibrium, these tracking errors and estimation
errors should all be zero.

3 . 3 L y a p u n o v t h e o r e m

When applied to LTI systems, Lyapunov’s theory gives us the Lyapunov theorem. For LTI systems,
the quadratic form is especially useful as a Lyapunov function candidate:

V (x)
def
= x>Px, (15)

where P is a symmetric positive definite matrix. We shall see what other conditions P must satisfy
in order for V to be a Lyapunov function.

• For the continuous-time LTI system ẋ(t) = Ax(t), differentiating V gives us

V̇ (x(t)) = ẋ>(t)Px(t) + x>(t)Pẋ(t) = x>A>Px+ x>PAx = x>(A>P+PA)x. (16)

• For the discrete-time LTI systems x[k + 1] = Ax[k], differencing V gives us

∆V (x[k]) = V (x[k + 1])− V (x[k]) = x>[k + 1]Px[k + 1]− x>[k]Px[k]

= x>[k]A>PAx[k]− x>[k]Px[k] = x>[k](A>PA−P)x[k].
(17)

Recall for an asymptotically stable equilibrium at the origin, we must have a decreasing V along the
system trajectories converging at the origin, i.e., Eqs. (16)–(17) tell us

• if the system is continuous-time, V̇ and hence A>P+PA must be negative definite;

• if the system is discrete-time, ∆V and hence A>PA−P must be negative definite.

The Lyapunov theorem confirms the existence of such a matrix P.

Theorem 5: Lyapunov theorem

For any symmetric positive definite matrix Q, the Lyapunov equation

A>P+PA = −Q (continuous-time) (18)
A>PA−P = −Q (discrete-time) (19)

has a unique symmetric positive definite solution P iff A is a stability matrix.
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Figure 13: An easy way to remember the continuous-time Lyapunov
equation is to recall the immensely successful Swedish pop
sensation called “ABBA” in the 1970s. There is some simi-
larity between “A>P+PA” and “ABBA”, right? Image from
Wikipedia.

Proof : The following proof for the continuous-time case is from [WL07, Theorem 6.4].
Necessity (A is Hurwitz, hence P is . . .): Suppose all eigenvalues of A are Hurwitz. Define a

symmetric matrix

P
def
=

∫ ∞

0

eA
>tQeAt dt.

Since Q is positive definite, Q can be expressed as R>R, where R is nonsingular. Therefore,

x>Px =

∫ ∞

0

(
eAtx

)>
Q
(
eAtx

)
dt =

∫ ∞

0

(
eAtx

)>
R>R

(
eAtx

)
dt

=

∫ ∞

0

‖ReAtx‖2 dt ≥ 0.

Since R and eAt are nonsingular, ReAtx is only zero when x = 0. Therefore, P is positive definite.
P also satisfies the Lyapunov equation because

A>P+PA =

∫ ∞

0

{
A>eA

>tQeAt + eA
>tQeAtA

}
dt =

∫ ∞

0

d
dt

{
eA

>tQeAt
}

dt (∵ AeAt = eAtA)

= eA
>tQeAt

∣∣∣∞
0

= 0−Q = −Q (∵ A is Hurwitz).

P is the unique solution because if P̃ is another solution,

A>(P− P̃) + (P− P̃)A = 0 =⇒ eA
>t
{
A>(P− P̃) + (P− P̃)A

}
eAt = 0

=⇒ d
dt

{
eA

>t(P− P̃)eAt
}

= 0

=⇒
∫ ∞

0

d
dt

{
eA

>t(P− P̃)eAt
}

dt = −(P− P̃) = 0.

Sufficiency (P is . . ., henceA isHurwitz): Suppose for a given positive definiteQ, there is a unique
positive definite solutionP. If we let λ be an eigenvalue ofA and v be the corresponding eigenvector,
then

−v∗Qv = v∗(A>P+PA)v = v∗A∗Pv + v∗PAv = (λv)∗Pv + v∗P(λv) = (λ̄+ λ)v∗Pv

= 2<(λ)v∗Pv.

Since Q and P are by definition positive definite, <(λ) must be negative, for every λ of A. Hence A
is Hurwitz.
Important points about the Lyapunov theorem:

• For LTI systems, the Lyapunov theorem provides a necessary and sufficient condition for stability.
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• The Lyapunov theorem is equivalent to saying that given a system matrixA, provided we can find
positive definite matrices P and Q that satisfy the Lyapunov equation associated with A, then we
can show A is a stability matrix [Ter09, Theorem 3.7].

• The Lyapunov theorem implies that given an asymptotically stable LTI system, we can always
find some positive definite P s.t. V (x)

def
= x>Px is a Lyapunov function for the system [Son98,

Theorem 18]. This fact will become useful later for solving the LQR problem.

• Continuous-time and discrete-time Lyapunov equations can be solved using the MATLAB func-
tions lyap and dlyap respectively, but beware: where we have A or A> in Eqs. (18)–(19) the
MATLAB functions use its transpose instead.

Example 10

This example is adapted from [KA01, Problem 3.6.9]. Consider the continuous-time system:

ẋ =

[
0 1

1 0

]
x+

[
0

−1

]
u,

y =
[
1 0

]
x.

Apply the Lyapunov theorem to determine whether the system is asymptotically stable. Note:
Of course we can tell the system is unstable because the system matrix has eigenvalues−1 and
1, but the purpose of this example is to show how the same conclusion can be deduced from
the Lyapunov theorem.

Solution: Define the symmetric matrix

P
def
=

[
p11 p12
p12 p22

]
as the solution to the Lyapunov equation A>P + PA = −Q. Since Q can be any positive
definite matrix, let us define Q = I. Then,

A>P+PA = −I =⇒
[
0 1

1 0

][
p11 p12
p12 p22

]
+

[
p11 p12
p12 p22

][
0 1

1 0

]
= −

[
1 0

0 1

]
=⇒

[
p12 p22
p11 p12

]
+

[
p12 p11
p22 p12

]
= −

[
1 0

0 1

]
=⇒

[
2p12 p11 + p22

p11 + p22 2p12

]
= −

[
1 0

0 1

]
∴ p12 = −1/2, p11 + p22 = 0.

Since P is not unique, we conclude that A is not Hurwitz.

4 S a m p l e a p p l i c a t i o n s

This section presents some applications of Lyapunov stability theory to controller design.

21



4 . 1 O p t i m a l c o n t r o l

In Lecture 8, we have gone through a lot of trouble deriving the continuous-time algebraic Riccati
equation starting from the state and costate equations, but it is actually possible to derive the equa-
tion using Lyapunov theorem alone. An optimal control input, denoted u∗(t), should be such that
the closed-loop system ẋ(t) = (A − BK)x(t) is asymptotically stable, i.e., there exists a quadratic
Lyapunov function V (x) = x>(t)Px(t), where P is positive definite, such that V̇ (x) is negative
definite on the trajectories of the closed-loop system, as a consequence of the Lyapunov theorem.

Theorem 6: [Żak03, Theorem 5.2]

The state-feedback control law u∗ = −Kx is optimal (minimizes J) if for some V = x>Px,

u∗ = argmin
u

(
V̇ + x>Qx+ u>Ru

)
, (20)

and
V̇
∣∣
u=u∗ + x>Qx+ u∗>Ru∗ = 0. (21)

Proof : Given

V̇
∣∣
u=u∗ + x>Qx+ u∗>Ru∗ = 0 =⇒

∫ ∞

0

V̇
∣∣
u=u∗ dt = −

∫ ∞

0

(
x>Qx+ u∗>Ru∗

)
dt

=⇒ V (x(∞))− V (x(0)) = −J(u∗).

Above, we explicitly express the performance index as a function of u∗. Requiring the closed-loop
system to be asymptotically stable, we have x(∞) = 0 =⇒ V (x(∞)) = 0>P0 = 0, thus

V (x(0)) = J(u∗).

We need to prove optimality, i.e., there is no ũ 6= u∗ s.t. J(ũ) < J(u∗) = V (x(0)). Let us prove by
contradiction, by supposing there is a ũ s.t. ũ 6= u∗ but J(ũ) < J(u∗). In other words, since ũ 6= u∗,

V̇
∣∣
u=ũ

+ x>Qx+ ũ>Rũ > 0 =⇒ −
∫ ∞

0

V̇
∣∣
u=ũ

dt <
∫ ∞

0

(
x>Qx+ ũ>Rũ

)
dt

=⇒ V (x(0)) < J(ũ)

=⇒ J(u∗) < J(ũ),

giving us the contradiction we need. Therefore, Eqs. (20)–(21) necessarily imply u∗ is optimal.
Note that in the proof above, Eq. (18) is not used, and just the fact that V = x>Px is a Lyapunov

function suffices. As a corollary of Theorem 6,

∂

∂u

{
dV
dt + x>Qx+ u>Ru

}∣∣∣∣
u=u∗

= 0

=⇒ ∂

∂u

{
2x>P

dx
dt + x>Qx

}∣∣∣∣
u=u∗

+ 2u∗>R = 0

=⇒ ∂

∂u

{
2x>P(Ax+Bu) + x>Qx

} ∣∣∣∣
u=u∗

+ 2u∗>R = 0

=⇒ 2x>PB+ 2u∗>R = 0.
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Note that the matrix calculus performed above is in the numerator layout or Jacobian formulation
(see https://en.wikipedia.org/wiki/Matrix_calculus). Therefore, the LQR control law is u∗ =

−R−1B>Px, confirming the result in Lecture 8. Up to this point, P remains to be determined, and
for this we revisit Eq. (21):

dV
dt

∣∣∣∣
u=u∗

+ x>Qx+ u∗>Ru∗ = 0

=⇒ 2x>P(Ax−BR−1B>Px) + x>Qx+ x>PBR−1B>Px = 0

=⇒ x>
{
2 · 1

2

[
PA+ (PA)>

]
− 2PBR−1B>P+Q+PBR−1B>P

}
x = 0

=⇒ x>
{
A>P+PA+Q−PBR−1B>P

}
x = 0.

Above, we have just recovered the continuous-time algebraic Riccati equation.
The following discrete-time counterpart of Theorem 6 can be similarly proven:

Theorem 7: [Żak03, Theorem 5.4]

The state-feedback control lawu∗[k] = −Kx[k] is optimal (minimizes J) if for some V (x[k]) =

x>[k]Px[k],
u∗[k] = argmin

u[k]

(
∆V (x[k]) + x>[k]Qx[k] + u>[k]Ru[k]

)
, (22)

and
∆V (x[k])

∣∣
u=u∗ + x>[k]Qx[k] + u∗>[k]Ru∗[k] = 0. (23)

From Theorem 7, the discrete-time LQR control law and discrete-time algebraic Riccati equation
can be similarly derived [Żak03, Sect. 5.3.5].

4 . 2 A d a p t i v e c o n t r o l

All nonlinear control approaches, including neuro-fuzzy control and sliding mode control, rely on
Lyapunov stability theory. This little excursion to adaptive control here serves merely as an appetizer
for further studies in nonlinear control. Besides being important for aerospace applications as hinted
at the beginning of this lecture, adaptive control is one of the five most important features in an
industrial loop controller [LAC06].32 Chapter 1 Introduction 

Ym(t) 
Reference model 

嚼....-

y(t) 

Figure 1.4: Direct model reference adaptive control system. 

y(t) 

Figure 1.5: Indirect adaptive control system. 

on an estimation error presenting the mismatch between the plant output y(t) 
and its estimated version generated from the parameter estimate (ìp (t)). 

In either a direct or an indirect adaptive linear control design or an adap
tive nonlinear backstepping control design, the key idea is to use the estimates 
of some unknown parameters of an ideal controller (in a direct design as shown 
in Figure 1.4) or the controlled plant (in an indirect design as shown in Figure 
1.5) as if they were the true values of those unknown parameters. The pa
rameter estimates are obtained from an adaptive update law driven by system 
performance error (track由i
t衍roller either d出ir四ec时叫tl悻yo旧r through a d由e吕创ig伊n equation tωoma叩p the plant pa旧.rame吼te时r 
e臼st挝imate臼stωo the controller pa町rame前te曰rs. This idea is called the certainty equiv
alence principle. For such a principle to work efficiently, the used parameter 
estimates should satisfy some desired properties: smallness of estimation er-

Figure 14: The direct model reference
adaptive control system archi-
tecture [Tao03, Figure 1.4].
Here, θ denotes a generic
controller parameter.
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Like a typical control system, an adaptive control system consists of a plant and a controller. How-
ever, the plant parameters are potentially unknown, and in the direct model reference adaptive control
(MRAC) system architecture (see Figure 14), there is an adaptive law for updating the controller pa-
rameters to achieve some desired system performance.

For simplicity, consider the first-order SISO LTI plant

ẏ(t) = −apy(t) + bpu(t), (24)

where the output y(t) doubles as the state. The control objectives are to ensure all closed-loop system
signals are bounded, and y(t) tracks asymptotically the output ym(t) of a reference model:

ẏm(t) = −amym(t) + bmr(t), (25)

where am > 0 to ensure asymptotic stability. Note that am is user-defined based on performance
requirement, and plays the role of the exponential frequency (i.e., inverse of the time constant) of
a first-order system. In other words, the performance requirement is embedded in am, and not
explicitly specified as part of the control objectives. Define the tracking error as

e(t)
def
= y(t)− ym(t). (26)

The question is can we find suitable gains ky and kr for the control law:

u(t) = kyy(t) + krr(t), (27)

such that limt→∞ e(t) = 0? Let us consider the case where ap and bp known, and the case where ap
and bp are unknown, in turn.
Case ap and bp are known: By defining

ky =
ap − am

bp
, kr =

bm
bp
, (28)

we can get the closed-loop system:

ẏ(t)− ẏm(t) = −apy(t) + bpkyy(t) + bpkrr(t)− (−am)ym(t)− bmr(t) =⇒ ė(t) = −ame(t). (29)

By the definition of am, it is clear that (i) limt→∞ e(t) = 0, (ii) all e(t), y(t) and u(t) are bounded, so
the control objectives are met.
Case ap and bp are unknown: Since ap is unknown, ky and kr are no longer known. This is where

the adaptive law comes in, which we shall use to estimate ky and kr. Rewrite the control law as

u(t) = k̂y(t)y(t) + k̂r(t)r(t), (30)

where k̂y(t) and k̂r(t) are estimates of ky and kr at time t. The idea of using estimated controller
parameters instead of the actual controller parameters is known as the certainty equivalence principle
[Tao03, p. 32]. Define the gain estimation errors as

k̃y(t)
def
= ky − k̂y(t), k̃r(t)

def
= kr − k̂r(t). (31)

Replacing ky and kr in Eq. (29) with k̂y = ky− k̃y and k̂y = ky− k̃y, closed-loop system now becomes:
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ė(t) = −ame(t)− bp

[
k̃y(t)y(t) + k̃r(t)r(t)

]
. (32)

As long as k̃y(t) and k̃r(t) converge to zero, so will e(t) too. The adaptive law is thus a state equation
involving k̃y(t) and k̃r(t) that is asymptotically stable by design. It is exactly this design component
that we are going to apply Lyapunov stability theory to — this is why this design component is called
a Lyapunov design [Tao03, Sect. 1.5.1].

For the Lyapunov design,

• Lyapunov design 1: Suppose we define the Lyapunov function candidate as

V =
1

2
e2(t) +

1

2
k̃2y(t) +

1

2
k̃2r(t), (33)

which is positive definite, then

V̇ = e(t)ė(t) + k̃y(t)
˙̃ky(t) + k̃r(t)

˙̃kr(t)

= −ame2(t)− e(t)bp

[
k̃y(t)y(t) + k̃r(t)r(t)

]
+ k̃y(t)

˙̃ky(t) + k̃r(t)
˙̃kr(t) (∵ Eq. (32))

= −ame2(t) + k̃y(t)
[
˙̃ky(t)− bpe(t)y(t)

]
+ k̃r(t)

[
˙̃kr(t)− bpe(t)r(t)

]
.

To ensure V̇ is at least negative semidefinite, we can define the adaptive laws as
˙̃ky(t) = bpe(t)y(t),

˙̃kr(t) = bpe(t)r(t),

but this requires knowledge of bp.

• Lyapunov design 2: Suppose we define the Lyapunov function candidate as

V =
1

2
e2(t) +

|bp|
2
k̃2y(t) +

|bp|
2
k̃2r(t). (34)

Quiz 7

What is the reason for using |bp| instead of bp in the definition above?

Then,

V̇ = e(t)ė(t) + |bp|k̃y(t) ˙̃ky(t) + |bp|k̃r(t) ˙̃kr(t)

= −ame2(t)− e(t)bp

[
k̃y(t)y(t) + k̃r(t)r(t)

]
+ |bp|k̃y(t) ˙̃ky(t) + |bp|k̃r(t) ˙̃kr(t) (∵ Eq. (32))

= −ame2(t) + k̃y(t)
[
|bp| ˙̃ky(t)− bpe(t)y(t)

]
+ k̃r(t)

[
|bp| ˙̃kr(t)− bpe(t)r(t)

]
.

To ensure V̇ is at least negative semidefinite, we can define the adaptive laws as

˙̃ky(t) =
bp
|bp|

e(t)y(t) = sign(bp)e(t)y(t) =⇒ ˙̂
ky(t) = − sign(bp)e(t)y(t),

˙̃kr(t) =
bp
|bp|

e(t)r(t) = sign(bp)e(t)r(t) =⇒ ˙̂
kr(t) = − sign(bp)e(t)r(t).

Compared to Lyapunov design 1, Lyapunov design 2 requires only the knowledge of the sign of
bp, which in all likelihood should be available. For implementation,

25



k̂y(t) = − sign(bp)γy
∫ t

0

e(τ)y(τ)dτ + k̂y(0), (35)

k̂r(t) = − sign(bp)γr
∫ t

0

e(τ)r(τ)dτ + k̂r(0). (36)

Above, the so-called adaptive gains γy and γr are added for tuning the rate of convergence of the
adaptive laws [Din13, p. 91]. As usual, these gains cannot be too large lest they destabilize the
system. Adding the adaptive gains is equivalent to changing the Lyapunov function of Lyapunov
design 2 to

V =
1

2
e2(t) +

|bp|
2γy

k̃2y(t) +
|bp|
2γr

k̃2r(t).

Note that since V̇ only depends on e(t), and not k̃y(t) and k̃r(t), we cannot conclude V̇ is nega-
tive definite, although it is certainly negative semidefinite. However, the fact that V is a Lyapunov
function implies e(t), k̂y(t) = ky − k̃y(t) and k̂r(t) = kr − k̃r(t) are bounded. By inference, y(t) =

e(t) + ym(t) and u(t) as defined in Eq. (30) are bounded. Showing e(t) converges to zero requires
Barbalat’s lemma:

Theorem 8: Barbalat’s lemma [Din13, Lemma 7.1], [SL91, Lemma 4.2]

If a function f : R 7→ R is uniformly continuous for t ∈ [0,∞), and
∫∞
0
f(t)dt exists, then

limt→∞ f(t) = 0. Note: A sufficient condition for uniform continuity is bounded derivative.

According to Eq. (32), and the fact that e(t), k̃y(t), y(t), k̃r(t), r(t) are bounded, ė(t) is bounded, so
e(t) and hence e2(t) are uniformly continuous. Furthermore, since

V̇ = −ame2(t) =⇒
∫ ∞

0

e2(τ)dτ =
V |t=0 − V |t=∞

am
<∞,

according to Barbalat’s lemma, limt→∞ e(t) = 0, i.e., the tracking error converges to zero.
In conclusion, for the first-order SISO LTI plant (24) of unknown parameters, the adaptive con-

troller (30) using adaptive laws (35)–(36) can be used to track the output of the referencemodel (25).
A discussion of multivariable MRAC can be found in [Tao03, Sect. 9.2], but the most popular adap-
tive control approach to date is L1 adaptive control because of its robustness properties [HC10]. The
highly compressed introduction to adaptive control above also contains an introduction to Barbalat’s
lemma, which is a powerful tool that is often used in conjunction with Lyapunov’s direct method to
analyze the stability of nonlinear control systems.
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