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Figure 1: NASA’sHiMAT is a remotely piloted tailless aircraft that uses elevons and canards to control
its angle of attack and pitch angle. Elevons are flight control surfaces that combine the
functions of the elevators (pitch) and the ailerons (roll). The open-loop step responses of
these angles are unstable— the yellow spots show they grow indefinitely with a step change
in the deflection angles of the elevons and canards. However, the yellow spots also show the
responses reverse their growing trend at some point, but this is due to model inaccuracy.
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1 Introduction
Consider the HiMAT (Highly Maneuverable Aircraft Technology) aircraft, developed by Rockwell
for NASA in the 1970s, to enhance the transonic maneuverability of American fighter jets at that
time. To change its angle of attack or pitch angle, the HiMAT changes the deflection angles of its
elevons and canards (see Figure 1). In open loop, the angle of attack and pitch angle grow indefi-
nitely with a step change in the deflection angles; we say the open-loop step responses of the angle
of attack and pitch angle are unstable. This is an example of an open-loop unstable system — we
design/synthesize controllers to stabilize such systems.

Physically, an unstable system whose response grows without bound could be self-damaging, un-
safe, if not plainly useless. Therefore, when designing a control system, we always ensure it is stable,
before we worry about its performance, which is often achieved in a trade-off between transient
response and steady-state error.

In this lecture, we will learn

• the definitions of stability;
• how to determine the stability of a system;
• how to determine the steady-state error of a stable system;
• the effect of disturbances, and the meaning of the sensitivity functions — this paves way for the

classical controller design technique of loop shaping.

This lecture follows the directions of [Nis15, Chs. 6 and 7] and [DB11, Ch. 5].

2 Definitions of stability
14 Signals and Systems

C

R
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Figure 2.1: An electrical circuit with resistor and capacitor in series, otherwise
known as an RC circuit.
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Figure 2.2: A mechanical mass-spring-damper system

that is in the form of (2.0.1).
As another example, consider the mass-spring-damper in Figure 2.2. A

force represented by the signal f is externally applied to the mass, and
the position of the mass is represented by the signal p. The spring exerts
force −Kp that is proportional to the position of the mass, and the damper
exerts force −BD(p) that is proportional to the velocity of the mass. The
cumulative force exerted on the mass is

fm = f −Kp−BD(p)

and by Newton’s law the acceleration of the mass D2(p) satisfies

MD2(p) = fm = f −Kp−BD(p).

We obtain the differential equation

f = Kp+BD(p) +MD2(p) (2.0.3)

that is in the form of (2.0.1) if we put x = f and y = p. Given p we can
readily solve for the corresponding force f . As a concrete example, let the
spring constant, damping constant and mass be K = B = M = 1. If the
position satisfies p(t) = e−t

2
, then the corresponding force satisfies

f(t) = e−t
2
(4t2 − 2t− 1).

i

Figure 2: An RC circuit.

In Lecture 2, we derived the output response for the RC circuit in
Figure 2 as

Y (s) =
1

RCs+ 1
X(s)︸ ︷︷ ︸

forced response

+
RC

RCs+ 1
y(0)︸ ︷︷ ︸

natural response

. (1)

• When the initial state is zero, Y (s) reduces to the first term, rep-
resenting the forced response (aka zero-state response), which de-
pends only on the input. The stability of the forced response de-
termines the system’s external stability.

• When the input is zero, Y (s) reduces to the second term, repre-
senting the natural response (aka free response or zero-input re-
sponse), which depends only on the initial state. The stability of the natural response determines
the system’s internal stability.

The stability of Y (s) necessitates both external and internal stability, but we shall see internal stability
implies external stability. Let us discuss external stability and internal stability in turn.

2.1 External stability
The external stability of an LTI system is equivalent to the stability of its forced response. Since only
the input and output of the system are considered, external stability is synonymouswith input-output
stability, and the more expressive term bounded-input bounded-output stability (BIBO stability).
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Definition: BIBO stability [Kai80, Sect. 2.6.1], [Che99, Ch. 5, p. 122]

A system is BIBO stable if every bounded input produces a bounded output.

• A signal is bounded if the signal is less than a finite value for all time.
• Note that if an input is unbounded, the system’s BIBO stability cannot be determined.
• Figure 3 shows physical analogies for external stability.

Origin Origin Origin

BIBO stable BIBO stable BIBO unstable

Origin Origin Origin

Figure 3: Physical analogies for external stability. Say the ball is at the origin, and we give the ball a
poke of finite strength. Think of the distance between the ball and the origin as the forced
response. If the ball eventually stops at a certain spot, the system is externally stable (BIBO
stable). If the ball keeps moving away, the system is externally unstable (BIBO unstable).

Origin Origin Origin

BIBO stable BIBO stable BIBO unstable

Origin Origin Origin

Figure 4: Physical analogies for internal stability. At t = 0, we place a ball at a random spot other
than the origin, and see if the ball will settle at the origin (stable), or settle at some point
other than the origin (marginally stable), or keep moving away from the origin (unstable).
Think of the the distance between the ball and the origin as thenatural response. Illustration
inspired by [WL07, Figure 6.1].

2.2 Internal stability
The internal stability of an LTI system is equivalent to the stability of its natural response.

Definition: Internal stability [Nis15, Sect. 6.1]

An LTI system is
• stable if its natural response approaches zero with time;
• marginally stable if its natural response neither decays nor grows but remains constant or

oscillates as time approaches infinity;
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• unstable if its natural response grows without bound with time.

Figure 4 shows physical analogies for internal stability.
The example in Eq. (1) shows that the natural response shares the same characteristic polynomial

with the transfer function. Whether this natural response is stable depends on the roots of this
characteristic polynomial, or equivalently, the poles of the transfer function. Let us study how the
location of the poles in the s plane affects the stability of the natural response (see Figure 5):

Case 1 Case 2Case 2

Case 3Case 3

Case 4

Case 3Case 3

Case 4

Figure 5: Pole locations determine stability: see text for a discussion of the different cases.

Case 1 One or more poles at the origin:
• One pole at the origin is associated with a step response in the time domain (because L{1} =

1/s), which is marginally stable.
• n > 1 poles (i.e., poles withmultiplicity n > 1) at the origin are associated with a time response

of the form tn−1 (because L
{
tn−1

}
= (n− 1)!/sn), which is unstable.

Case 2 One or more poles on the real axis excluding the origin:
• A pole at−σ 6= 0 is associated with the exponential response exp(−σt), which is stable if σ > 0,

but unstable if σ < 0.
• Apolewithmultiplicityn > 1 at−σ 6= 0 is associatedwith the exponential response tn−1 exp(−σt),

which is stable if σ > 0, but unstable if σ < 0.

Quiz 1

L−1

{
1

(s+ σ)n

}
=?

Case 3 One or more strictly complex poles:
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• For physically realizable systems, these poles come in conjugate pairs andhave the form−σ±jω,
where σ, ω 6= 0. A conjugate pair is associated with a time response of the form e−σt sin(ωt+φ),
which is stable if σ > 0, but unstable if σ < 0.

• A conjugate pair with multiplicity n > 1 is associated with a linear combination of responses
of the form e−σt sin(ωt + φ0), te−σt sin(ωt + φ1), . . ., tn−1e−σt sin(ωt + φn−1). The combined
response is stable if σ > 0, but unstable if σ < 0.

Quiz 2

Using the formula L
{
tnf(t)

}
= (−1)nF (n)(s), determine L

{
te−σt sin(ωt)

}
.

Case 4 One or more poles on the imaginary axis excluding the origin:
• For physically realizable systems, these poles come in conjugate pairs and have the form ±jω,

where ω 6= 0. A conjugate pair is associated with a sinusoidal response, which is marginally
stable.

• A conjugate pair with multiplicity n > 1 is associated with a linear combination of responses of
the form sin(ωt+φ0), t sin(ωt+φ1), . . ., tn−1 sin(ωt+φn−1). The combined response is unstable.

Quiz 3

Using the formula L
{
tnf(t)

}
= (−1)nF (n)(s), determine L

{
t sin(ωt)

}
.

In summary,

• A stable system has only poles in the open left half plane.
• Amarginally stable system has poles on the imaginary axis with multiplicity 1, and no poles

in the open right half plane.
• An unstable system has poles in the open right half plane, and/or poles on the imaginary

axis with multiplicity greater than 1.

Example 1

Consider the system G(s) =
1

(s+ 10)(s2 + ω2)
. G(s) has a pole at −10, and a pair of poles at

±jω, so it is marginally stable. As for BIBO stability, we have not really covered the formal
method for assessing BIBO stability, but consider the following types of input:
• Step input: The output response will consist of a step response, a decaying exponential, and

a sinusoid. So this output response is bounded.
• Sinusoidal input of angular frequency ω: The output response will consist of a decaying

exponential, a sinusoid, and a growing sinusoid. So this output response is unbounded.

In conclusion, G(s) is marginally stable and BIBO unstable.

Example 1 is an example of how marginal stability does not ensure BIBO stability. Unless we are
designing oscillators, stability is the only desirable condition. Theorem 1 says that internal stability
implies BIBO stability; and BIBO stability implies internal stability if the transfer function is rational
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and proper.

Theorem 1: [Che99, Theorem 5.3]

A SISO LTI system with proper rational transfer function G(s) is BIBO stable iff every pole of
G(s) has a negative real part, or equivalently, lies inside the left half s-plane.

Example 2

This example is adapted from [Che99, Example 5.2]. Consider the system G(s) = 1. In terms
of external stability,G(s) passes the input unchanged to the output, so it is clearly BIBO stable.
However, in terms of internal stability, G(s) does not have any pole, so it is not (internally)
stable. In this example, G(s) is not a rational transfer function since it is not a fraction of
polynomials of s (either the numerator or the denominator can be a degenerate polynomial,
but not both), so it does not satisfy the condition for Theorem 1.

Example 2 reminds us that internal stability implies BIBO stability, but the converse is not necessarily
true. This is why when analyzing the stability of a SISO LTI system, we only consider its internal
stability.

When a characteristic polynomial has only roots with a negative real part, it is so-calledHurwitz,
and the corresponding system is stable. Now, the question is: is it possible to determine whether a
characteristic polynomial is Hurwitz without factoring it? The answer to this question is the Routh-
Hurwitz stability criterion, which is discussed in Supplementary Lecture B.While the Routh-Hurwitz
criterion only applies to rational transfer functions, the Nyquist stability criterion applies to both
rational and nonrational transfer functions— this is to be covered in a later lecturewhere the concept
of frequency response is introduced.

3 Steady-state error
For a stable system, we are interested in its steady-state error, i.e., error in the steady state. Tomotivate
our discussion, let us use the antenna azimuth position control system in Figure 6 as an example.
The system is used to position a radio telescope antenna. The input is the desired azimuth angle,
which is converted into a voltage value by a potentiometer. The output is the actual azimuth angle,
which is also converted into a voltage value by another potentiometer. The difference between the
two voltage values, called the error, is amplified. The larger the error, the more the motor will turn.
The gain is howmuch the error is amplified. The higher the gain, the harder themotor will be driven.
Typically, the higher the gain, the smaller the steady-state error. The goal of the control system is
to minimize this steady-state error without destabilizing the system and worsening the transient
response significantly.

A system gives different steady-state errors depending on the input. We are concerned with three
kinds of input:

Input r(t) R(s) Sample application
Step 1 1/s Position control
Ramp t 1/s2 Tracking of constant-velocity targets
Parabola t2/2 1/s3 Tracking of constant-acceleration targets
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Figure 6: An antenna azimuth position control system [Nis15, FIGURE 1.8].

We shall call the steady-state error associated with each input type x as “x-response steady-state
error”, e.g., step-response steady-state error.

For each type of input, how much steady-state error a system produces depends on its configura-
tion. In the next subsection, we shall derive the formulas for calculating the three types of steady-
state errors for the unity feedback configuration (see Figure 7(a)), and then extend the results to more
general configurations.

𝑅(𝑠)
+

−

𝑌(𝑠)𝐺(𝑠) 𝑅(𝑠)
+

−

𝑌(𝑠)𝐺2(𝑠)

𝐻(𝑠)

(a) (b)

𝐺1(𝑠)

Figure 7: Unity vs nonunity feedback configurations, where H(s) is nonzero and nonunity.
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3.1 Unity feedback configuration
By “unity feedback configuration”, we mean the configuration in Figure 7(a). Based on the block
diagram,

Y (s) = G(s)[R(s)− Y (s)] = Y (s) =
G(s)

1 +G(s)
R(s),

and the error in the Laplace domain is

E(s)
def
= R(s)− Y (s) =

1

1 +G(s)
R(s).

By the final value theorem, the steady-state error is then

e(∞)
def
= lim

t→∞
e(t) = lim

s→0
sE(s) = lim

s→0

1

1 +G(s)
sR(s). (2)

• Step input: R(s) = 1/s,

estep(∞) =
1

1 + lims→0G(s)
=

1

1 +Kp
, (3)

where Kp is called the position error constant (or simply position constant):

Kp
def
= lim

s→0
G(s). (4)

Observe that if G(s) has one or more uncanceled poles at the origin, Kp → ∞, and estep(∞) → 0.

• Ramp input: R(s) = 1/s2,

eramp(∞) =
1

lims→0 sG(s)
=

1

Kv
, (5)

where Kv is called the velocity error constant (or simply velocity constant):

Kv
def
= lim

s→0
sG(s). (6)

Observe that ifG(s) has two or more uncanceled poles at the origin,Kv → ∞, and eramp(∞) → 0.

• Parabolic input: R = 1/s3,

epara(∞) =
1

lims→0 s2G(s)
=

1

Ka
, (7)

where Ka is called the acceleration error constant (or simply acceleration constant):
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Ka
def
= lim

s→0
s2G(s). (8)

Observe that ifG(s) has three ormore uncanceled poles at the origin,Ka → ∞, and epara(∞) → 0.

Note:

• Kp, Kv and Ka are collectively called the static error constants.

• The discussion above suggests the number of uncanceled poles at the origin in the forward-path
transfer function plays an important role in the minimization of the steady-state error — this
number of poles is called the system type [Nis15, p. 347-348]. For example, if the unity feedback
system in Figure 7(a) hasG(s) = 1/s, it is a type 1 system. A type 1 system can track any step input
with zero steady-state error. You can similarly infer the tracking ability of type 2, 3, . . . systems.

Example 3

Consider the unity feedback system in Figure 7(a) with

G(s) =
K
∏n

j=1(s+ bj)

s
∏m

i=1(s+ ai)
,

whereK, ai, bj ∈ R\{0}. What is the type number of the system? Furthermore, supposing the
system is stable, calculate the static error constants, and the corresponding steady-state errors.

Solution: Since G(s) has only one pole at the origin, the system is a type 1 system.

Kp = lim
s→0

G(s) = ∞ =⇒ estep(∞) =
1

1 +Kp
= 0.

Kv = lim
s→0

sG(s) =
K
∏n

j=1 bj∏m
i=1 ai

=⇒ eramp(∞) =
1

Kv
=

∏m
i=1 ai

K
∏n

j=1 bj
.

Ka = lim
s→0

s2G(s) = 0 =⇒ epara(∞) =
1

Ka
= ∞.

3.2 Nonunity feedback configuration
The Eqs. (3)–(8) for calculating steady-state errors are only applicable to unity feedback systems.
However, any nonunity feedback configuration, such as the one in Figure 7(b), can be converted
into a unity feedback configuration — all it takes are just skills for reading block diagrams and doing
high-school algebra.

The closed-loop transfer function (CLTF) for the unity feedback system in Figure 7(a) is

Y (s)

R(s)
=

G(s)

1 +G(s)
. (9)

The CLTF for the nonunity feedback system in Figure 7(b) can be derived as follows:

Y (s) = G2(s)[G1(s)R(s)−H(s)Y (s)] =⇒ Y (s)[1 +G2(s)H(s)] = G2(s)G1(s)R(s)

=⇒ Y (s)

R(s)
=

G2(s)G1(s)

1 +G2(s)H(s)
.

(10)
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Converting a nonunity feedback configuration into a unity feedback configuration is equivalent to
finding an expression for G(s) in terms of G1(s), G2(s) and H(s), such that the right-hand side of
Eq. (9) equals the right-hand side of Eq. (10), i.e.,

G

1 +G
=

G2G1

1 +G2H
=⇒ G+GG2H = G1G2 +GG1G2,

∴ G =
G1G2

1−G1G2 +G2H
. (11)

Instead of the algebraic approach above, a graphical approach for deriving Eq. (11) can be found in
[Nis15, pp. 358-359].

Example 4

Consider the nonunity feedback system in Figure 7(b) with

G1(s) = 1, G2(s) =
K

s(s+ a1)
, H(s) =

1

s+ a2
,

where K, a1, a2 ∈ R \ {0}. Assuming the system is stable, determine the value of a2 such that
the step-response steady-state error is 0.

Solution: Suppose the equivalent unity feedback system has the forward-path transfer func-
tion G(s), then applying Eq. (11),

G =
G1G2

1−G1G2 +G2H
=

K

s(s+ a1)

1− K

s(s+ a1)
+

K

s(s+ a1)(s+ a2)

=
K(s+ a2)

s(s+ a1)(s+ a2)−K(s+ a2) +K
.

Assuming the system is stable,

Kp = lim
s→0

G =
a2

1− a2
=⇒ estep(∞) =

1

1 +Kp
= 1− a2.

So that estep(∞) = 0, we need a2 = 1.

3.3 Disturbances and sensitivity functions
No study on stability and steady-state error is complete without considering disturbances. Exam-
ples of disturbances include wind gusts to an aircraft, waves rocking a ship, varying road surfaces
and gradients acting on a car’s suspension or cruise controller [rMss, Ch. 12]. A disturbance is a
stochastic process, and is typically modeled either as a load disturbance (aka input disturbance) or as
an output disturbance (see Fig 8).

To account for the effect of disturbances on the steady-state error, Eqs. (3)–(8) no longer suffice.
However, the calculation involves no more than reading the block diagram and applying the final
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Figure 8: Block diagrams of (a) a 1DOF system; and (b) a 2DOF system.

value theorem. For example, consider the system in Figure 8(a). The output response is

Y = Do +G[C(R− Y −N) +Di] = Do +GCR−GCY −GCN +GDi

=⇒ Y =
1

1 +GC
[GCR +GDi +Do −GCN ].

(12)

∴ E = R− Y = R− 1

1 +GC
[GCR +GDi +Do −GCN ]

=⇒ E =
1

1 +GC
[R−GDi −Do +GCN ].

(13)

Assuming the system is closed-loop stable, the steady-state error can then be calculated by applying
the final value theorem to Eq. (13).

Example 5

Consider the unity feedback system in Figure 8(a) with G(s) =
1

(s+ a)2
, where a ∈ R \ {0}.

Suppose the system is stable.

(a) Assuming C(s) = K, where K ∈ R+, Di(s) =
1

s
, Do(s) = 0 and N(s) = 0, calculate the

steady-state error due to the load disturbance.

(b) Assuming C(s) =
K

s
, where K ∈ R+, Di(s) =

1

s
, Do(s) = 0 and N(s) = 0, calculate the

steady-state error due to the load disturbance.

Solution:
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(a) Applying Eq. (13) to the problem, we have

Ed(s) = − G(s)

1 +G(s)C(s)
Di(s) = − 1

(s+ a)2 +K
· 1
s
,

∴ ed,step(∞) = lim
s→0

sEd(s) = − lim
s→0

s · 1

(s+ a)2 +K
· 1
s
= − 1

a2 +K
.

Notice the larger we make K, the more we can reduce ed,step(∞).

(b) Applying Eq. (13) again, we have

Ed(s) = − G(s)

1 +G(s)C(s)
Di(s) = − s

s(s+ a)2 +K
· 1
s
,

∴ ed,step(∞) = lim
s→0

sEd(s) = − lim
s→0

s · s

s(s+ a)2 +K
· 1
s
= 0.

Notice injecting a pole at the origin into the controller C(s) has the effect of reducing
estep(∞) to zero, even in the presence of a step disturbance.

The preceding example highlights the disturbance rejection property of integral control. Essentially,
the integral controller contributes a pole that increases the system type by 1.

The unity feedback configuration in Figure 8(a), with a cascade controller, has so-called one degree
of freedom (1DOF). This is because only one transfer function is available for shaping both reference

response and disturbance response, i.e., once C(s) is fixed, all E(s)

R(s)
, E(s)

Di(s)
, E(s)

D0(s)
and E(s)

N(s)
are

fixed. In comparison, the configuration in Figure 8(b) has two degrees of freedom (2DOF) due to the
additional F (s) block, which is called a set-point filter or reference filter [GGS00, Sect. 5.2]. For the
2DOF architecture, we can revise Eqs. (12)–(13) as follows:

Y =
1

1 +GC
[GCFR +D −GCN ], (14)

E =
1

1 +GC
[(1 +GC −GCF )R−D +GCN ], (15)

where D(s)
def
= G(s)Di(s) +Do(s). In the equation above, while C(s) can be tuned to shape distur-

bance response, F (s) can be tuned to shape reference response, to achieve both the desired distur-
bance rejection performance and the desired reference tracking performance. Wewill encounter the
2DOF architecture again in the context of the 2DOF PID controller in Lecture 7.

For now, we shall investigate the transfer functions Y (s)

D(s)
, Y (s)

N(s)
, E(s)

D(s)
, E(s)

N(s)
in Eq. (14)–(15) in

more detail. These are sensitivity functions, and understanding them allows us to design controllers
that are robust to model uncertainty and disturbances.

Advanced: Robustness

The concept of robustness is not easy to grasp on an introductory level, but it can be viewed in
two parts:
1. Robust stability: The system is stable for all perturbed plants about the nominal model up
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to the worst-case model uncertainty [SP05, Sect. 1.2].

2. Robust performance: The system satisfies the performance specifications for all perturbed
plants about the nominal model up to the worst-case model uncertainty [SP05, Sect. 1.2].

Standard measures of robustness are the gain margin and phase margin (see Lecture 8), which
are related to the maximum sensitivity:

Ms
def
= max

ω
|S(jω)|. (16)

For robustness, we need as per [AV16, Eq. (3.12)]

gain margin >
Ms

Ms − 1
, phase margin > 2 arcsin

(
1

2Ms

)
.

Ultimately, controller design is about striking a balance between performance and robustness.

Revisiting the 2DOF architecture in Figure 8(b) and Eqs. (14)–(15), we have

Y (s) =
G(s)C(s)F (s)

1 +G(s)C(s)
R(s) +

1

1 +G(s)C(s)︸ ︷︷ ︸
Sensitivity function

D(s)− G(s)C(s)

1 +G(s)C(s)︸ ︷︷ ︸
Complementary sensitivity function

N(s), (17)

E(s) =

[
1− G(s)C(s)F (s)

1 +G(s)C(s)

]
R(s)− 1

1 +G(s)C(s)︸ ︷︷ ︸
Sensitivity function

D(s) +
G(s)C(s)

1 +G(s)C(s)︸ ︷︷ ︸
Complementary sensitivity function

N(s), (18)

U(s) =
C(s)F (s)

1 +G(s)C(s)
R(s)− C(s)

1 +G(s)C(s)︸ ︷︷ ︸
Noise sensitivity function

[D(s) +N(s)], (19)

1

1 +G(s)C(s)︸ ︷︷ ︸
Sensitivity function

D(s) =
G(s)

1 +G(s)C(s)︸ ︷︷ ︸
Load sensitivity function

Di(s) +
1

1 +G(s)C(s)︸ ︷︷ ︸
Sensitivity function

Do(s). (20)

Collecting the definitions of the sensitivity functions in one place, we have:

1

1 +G(s)C(s)
Sensitivity function, denoted S(s)

G(s)C(s)

1 +G(s)C(s)
Complementary sensitivity function, denoted T (s)

G(s)

1 +G(s)C(s)
Load sensitivity function / input disturbance sensitivity function

C(s)

1 +G(s)C(s)
Noise sensitivity function / control sensitivity function

• Some authors affectionately call the four functions above the “Gang of Four” [rMss, Ch. 12].
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• Denote by S(s) the sensitivity function, then in Eq. (18), S(s)measures the sensitivity of the track-
ing error to disturbance. Thus, good disturbance rejection requires S(s) to be small, which in turn
requires C(s) to be large. The effect is the load sensitivity function will become small as well, but
the the noise/control sensitivity function will become large, causing the control action to be sen-
sitive to disturbance and noise, as per Eq. (19).

• Denote by T (s) the complementary sensitivity function, then in Eq. (18), T (s)measures the sensi-
tivity of the tracking error to noise. Thus, good noise rejection requires T (s) to be small, which in
turn requires C(s) to be small. Clearly, S(s) and T (s) cannot be made small for the same s (think
“frequency”).

• In fact, S(s) and T (s) are related through the identity:

S(s) + T (s) = 1, (21)

Eq. (21) is of fundamental importance because it reflects a fundamental trade-off in control system
design. Nevertheless, disturbances are typically concentrated in the low end of the frequency
spectrum, whereas noise is typically concentrated in the high end of the frequency spectrum. This
observationmotivates the loop shaping technique for designing controllers, where the closed-loop
frequency response of a system is shaped by making S(s) small at low frequencies but T (s) small
at high frequencies.

𝐶(𝑠)𝑅(𝑠) 𝑌(𝑠)
−

+
𝐸(𝑠)

𝐺(𝑠)
+

+

𝐹(𝑠)
𝐷(𝑠)

+

+

+
𝑁(𝑠)

+

Figure 9: A unity feedback system with feedforward control.

Example 6

Consider the unity feedback system in Figure 9 with integrated feedforward control provided
by the F (s) block. Determine the sensitivity and complementary sensitivity functions. Fur-
thermore, provide an expression for F (s) that eliminates the steady-state error when D(s) =

N(s) = 0.

Solution: Based on the block diagram,

Y = G
[
C(R− Y −N) + FR

]
+D =⇒ Y =

G(C + F )

1 +GC
R +

1

1 +GC
D − GC

1 +GC
N.

Therefore, in the presence of feedforward control, the sensitivity and complementary sensitiv-
ity function remain as S = 1/(1 +GC) and T = GC/(1 +GC) respectively.

Assuming G(s) = GN (s)/GD(s), C(s) = CN (s)/CD(s) and F (s) = FN (s)/FD(s) are ratio-
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nal, then

Y =
GN (CNFD + CDFN )

FD(GDCD +GNCN )
R +

GDCD

GDCD +GNCN
D − GNCN

GDCD +GNCN
N. (22)

We can make the following observations:
• For Y to be stable, both FD and GDCD +GNCN must be Hurwitz.
• When D = N = 0, if we choose F = G−1, then

E = R− Y = R− G(C + F )

1 +GC
R = R− GC + 1

1 +GC
R = 0.

This zero steady-state error is achieved with, in theory, instantaneous response.

Example 6 ismeant to introduce the topic of feedforward control. In a 2DOF architecture like that for
internal model control, feedforward is meant to provide good performance, while feedback is meant
to provide robustness and good disturbance rejection [ÅH06, Sect. 5.2]. Applications of feedforward
control include process control [Cor04, Sect. 6.6], vehicle control and robotics [SHV06, Cor11].
Nevertheless, there are some caveats for using feedforward control [ÅH06, Sect. 5.2]:

• As shown in Example 6, both FD and GDCD +GNCN must be Hurwitz.

• Since F (s) = G(s)−1, a reasonably accurate plant model G(s) is required, and furthermore the
plant G(s) must be rational andminimum-phase. A transfer function with dead time is not ratio-
nal, and its inverse is noncausal (i.e., output starting before input).

• For a strictly proper G(s) with relative degree 1, F (s) involves differentiation. However, differen-
tiation amplifies noise, and pure differentiation is unrealizable in software or hardware.

• For a strictly proper G(s) with higher relative degree than 1, F (s) involves impractical higher-
order differentiation.

• In view of the difficulties above, F (s) is often implemented as just an approximation of G(s)−1

[ÅH06, Sect. 5.2].

4 Summary
• The stability of an LTI system can be viewed in terms of its internal stability and external stability,

but since internal stability implies external stability (see Theorem 1), we are only concerned with
internal stability.

• A system is (internally) stable if any of the following equivalent statements is true:
– All its poles have a negative real part.
– All its poles are located in the open left half s-plane.
– Its characteristic polynomial is Hurwitz.

• Static error constants are defined to facilitate the calculation of step-response, ramp-response
and parabolic-response steady-state errors for the unity feedback configuration (see Figure 7(a)).
Nonunity feedback configurations can be converted into unity feedback configurations usingEq. (11).
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• A type n system has n poles at the origin in the forward path, and can track a 1/sn reference signal
with zero steady-state error. Additionally, it can reject a 1/sn disturbance.

• The sensitivity function, S(s), should be small for good disturbance rejection, whereas the com-
plementary sensitivity function, T (s), should be small for noise rejection. Since S(s) + T (s) = 1,
the standard practice is tomakeS(s) small for low frequencies, butT (s) small for high frequencies.

• In a two-degree-of-freedom architecture (e.g., Figure 9), feedforward control is designed to pro-
vide good performance, while feedback control is designed to provide good disturbance rejection.

References
[ÅH06] Karl Johan Åström and Tore Hägglund. Advanced PID control. ISA-Instrumentation,

Systems, and Automation Society, 2006.
[ARMAH14] Haitham Abu-Rub, Mariusz Malinowski, and Kamal Al-Haddad, editors. Power Elec-

tronics for Renewable Energy Systems, Transportation and Industrial Applications. John
Wiley & Sons Ltd, 2014.

[AV16] Victor M. Alfaro and Ramon Vilanova. Model-Reference Robust Tuning of PID Con-
trollers. Springer International Publishing, 2016.

[Che99] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press, 3rd
edition, 1999.

[Coo07] Michale V. Cook. Flight Dynamics Principles: A Linear Systems Approach to Aircraft
Stability and Control. Elsevier Ltd., 2nd edition, 2007.

[Cor04] J.-P. Corriou. Process Control: Theory and Applications. Springer-Verlag London Ltd.,
2004.

[Cor11] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB®.
Springer-Verlag Berlin Heidelberg, 2011.

[Cur14] Howard D. Curtis. Orbital mechanics for engineering students. Elsevier Ltd., 3rd edi-
tion, 2014.

[DB11] R.C. Dorf and R.H. Bishop. Modern Control Systems. Pearson, 12th edition, 2011.
[GGS00] Graham C. Goodwin, Stefan F. Graebe, and Mario E. Salgado. Control System Design.

Prentice Hall, 2000.
[Kai80] Thomas Kailath. Linear Systems. Prentice-Hall, Inc., 1980.
[Nis15] Norman S. Nise. Control Systems Engineering. Wiley, 7th edition, 2015.
[rMss] K.J. Åström and R.M. Murray. Feedback Systems: An Introduction for Scientists and

Engineers. Princeton University Press, 2nd edition, in progress. http://www.cds.

caltech.edu/~murray/amwiki/index.php/Second_Edition.
[SHV06] MarkWSpong, SethHutchinson, andMathukumalli Vidyasagar. Robotmodeling and

control. John Wiley & Sons, 2006.
[SP05] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and De-

sign. John Wiley & Sons, 2nd edition, 2005.

16

http://www.cds.caltech.edu/~murray/amwiki/index.php/Second_Edition
http://www.cds.caltech.edu/~murray/amwiki/index.php/Second_Edition


[WL07] Robert L. Williams II and Douglas A. Lawrence. Linear State-Space Control Systems.
John Wiley & Sons, 2007.

17


	Introduction
	Definitions of stability
	External stability
	Internal stability

	Steady-state error
	Unity feedback configuration
	Nonunity feedback configuration
	Disturbances and sensitivity functions

	Summary

