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1 Introduction
Lecture 5 introduced PID control, while Lecture 6 explained the roles of P, I and D actions. Further-
more, in the previous lecture, we learnt how to use root loci to tune PID controllers. However, the
root locus method requires a model of the plant/system. When this model is hard to come by, we
can resort to empirical/heuristic tuning rules.
Tuning rules are a set of formulas for calculating controller gains based on

1. some information about the plant, which can be a model or some measurable characteristics of
the plant, and

2. some performance criterion, which can be disturbance rejection, desired dominant poles, stability
margins, or some other requirement.

Attention: Disturbance

In this lecture, by “disturbance”, we mean “load disturbance”, aka “input disturbance”.

Different rules suit different plants, and there is no one-size-fits-all solution. It is therefore not sur-
prising the topic of PID controller tuning rules has been researched for decades. In fact, the hand-
book [O’D09] catalogs more than 200 tuning rules. MATLAB itself has at least three PID tuners:

• Control SystemDesigner’s PID tuner: This is embedded in the Control System tab of the Control
System Designer (see Figure 6). This tuner supports rule-based automatic tuning (auto-tuning
for short) — which is the process of automatically identifying the plant model and tuning the
controller based on that model [Vis06] — with limited interactivity.

• GUI-basedPID tuner: This is invocable by the command pidTuner and accessible through Simulink
(see Figure 12). This tuner is more general and offers a high level of interactivity.
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• Command-based PID tuner: This is the toned-down version of pidTuner invocable by the com-
mand pidtune. It offers limited and noninteractive configurable options through the function
pidtuneOptions.
In this lecture, we will learn about two heuristic tuning rules called the Ziegler-Nichols tuning

rules. Heuristic tuning rules are handy because they do not require a model of the system. They
serve as a good starting point for learning, and for tuning, they serve as a baseline for comparison
with more advanced rules.

2 Ziegler-Nichols
120 A Real-Time Approach to Process Control
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Figure 5.1 Typical responses to a load change.

5.1.1 Controller Response

Depending on the process to be controlled, the first consideration is to decide what type of
response is optimal, or at least acceptable. Typical process responses to a load change are
illustrated in Figure 5.1.

The three possible general extremes of response that exist, as shown in Figure 5.1, are

1. overdamped – slow response with no oscillation;
2. critically damped – fastest response without oscillation;
3. underdamped – fast return to set point but with considerable oscillation.

From these three general extremes, we can see that the selection of good control is a
tradeoff between the speed of response and deviation from the set point. A highly tuned
controller may become unstable if large disturbances occur, whereas a sluggishly tuned
controller provides poor performance but is very robust. What is typically required for most
process control loops is a compromise between performance and robustness.

When examining the response, there are several common performance criteria that can
be used for controller tuning, which are based on the characteristics of the system’s closed
loop response. Some of the more common criteria include overshoot, offset, rise time
and decay ratio. Of these simple performance criteria, control practitioners most often use
decay ratio.

Cyclic Radian Frequency

The cyclic radian frequency, ω, is defined as

ω = 2π f (5.1)

and

f = 1

period
. (5.2)

If Equation 5.2 is substituted into Equation 5.1, we obtain

ω = 2π

period
. (5.3)

Disturb- 
ance

Figure 1: Sample responses to a distur-
bance [SMY14, Figure 5.1]. Re-
sponse 3 allows the process vari-
able (PV) to return to the set-
point (SP)most quickly, although
the peak deviation is larger than
that of response 1.

For a controller to be useful, it must be able to track the set-point and reject disturbances. In general,
efficient disturbance rejection requires a high-gain controller. However, high-gain controllers are
associated with oscillatory step-SP responses [VZ10, Ch. 2]. For example, in Figure 1, we can see
three sample step-disturbance responses, and efficient disturbance rejection entails some oscillation
in the response. Here lies the basis for the Ziegler-Nichols tuning rules: for efficient disturbance
rejection, the controller is tuned to approximately achieve a specified level of damping. The level of
damping is specified as quarter decay ratio / quarter amplitude damping.

Definition: Decay ratio

. . . is the ratio of the second highest peak to the highest peak, as illustrated in Figure 2.

Detail: Decay ratio of second-order systems

Using the definitions of A,B,C in Figure 2, we know from Lecture 4 that for second-order
systems, the peak time is given by tB = π

ωn

√
1−ζ2

, and

B

A
= exp(−ζωntB) = exp

(
− πζ√

1− ζ2

)
,

The second peak time is given by tC = 3π
ωn

√
1−ζ2

, so

C

B
=

C

A
· A
B

= exp

(
− 3πζ√

1− ζ2

)
· exp

(
πζ√
1− ζ2

)
= exp

(
− 2πζ√

1− ζ2

)
.
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Figure 5.2 Second- or higher-order typical response to a set point change.

The cyclic radian frequency can also be related to the undamped natural frequency, ωn,
and the damping coefficient, ξ :

ω = ωn

√
1 − ξ 2. (5.4)

Overshoot

Overshoot is the amount the response exceeds the steady-state final value. Referring to
Figure 5.2, the overshoot can be defined as

B

A
= e

−πξ
/√

1−ξ2

. (5.5)

Decay Ratio

The decay ratio is the ratio of the amplitude of an oscillation to the amplitude of the
proceeding oscillation, C/B in Figure 5.2. More specifically, we can define the quarter
decay ratio (QDR), which lies between critical damping and underdamping:

QDR = C

B
= 1

4
. (5.6)

The decay ratio is often used to establish whether the controller as tuned is providing a
satisfactory response. The QDR or similar has been shown through experience to provide
a reasonable tradeoff between minimum deviation from the set point after an upset and
the fastest return to the set point. The penalty of QDR is that some oscillation does occur,
leading to many recommending less than QDR for process control. For a second-order
system it can be shown that

C

B
= e

−2πξ
/√

1−ξ 2

. (5.7)

Rise Time

The rise time is the time required by the transient response to initially reach the final
steady-state value.

7-1 Quarter Decay Ratio Response by Ultimate Gain 305

Figure 7-1.1 Response of the loop with the controller gain set
equal to the ultimate gain K,,. T, is the ultimate period.

the ultimate gain. This step is carried out in discrete gain increments, bumping
the system by applying a small change in set point at each gain setting. To prevent
the loop from going unstable, smaller increments in gain are made as the ultimate
gain is approached.

3. From a time recording of the controlled variable such as Fig. 7- 1.1, the period of
oscillation is measured and recorded as T,, the ultimate period.

For the desired response of the closed loop, Ziegler and Nichols specified a decay

\

ratio of one-fourth. The decay ratio is the ratio of the amplitudes of two successive
oscillations. It should be independent of the input to the system and should depend only
on the roots of the characteristic equation for the loop, Typical quarter decay ratio
responses for a disturbance input and a set point change are shown in Fig. 7-1.2.

Once the ultimate gain and period are determined, they are used in the formulas of
Table 7- 1.1 for calculating the controller-tuning parameters that produce quarter decay
ratio responses.

Table 7-1.1 shows that the introduction of integral mode forces a reduction of 10%
in the gain of the PI controller as compared to the proportional controller gain. Deriv-
ative mode, on the other hand, allows an increase in both the proportional gain and the
integral rate (a decrease in integral time) of the PID controller as compared to the PI
controller. This is because the integral mode introduces a lag in the operation of the
feedback controller, whereas the derivative mode introduces an advance or lead. This
will be discussed in more detail in Chapter 9.
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Figure 2: Decay ratio is C/B. Image
from [SMY14, Figure 5.2].

Figure 3: The quarter decay ratio requirement applies to
both (a) step-disturbance responses, and (b)
step-input responses. Image from [SC97, Figure
7-1.2].

Therefore, the decay ratio of a second-order system is given by

C

B
= exp

(
− 2πζ√

1− ζ2

)
. (1)

A quarter decay ratio specifies a decay ratio of 1/4 for both step-disturbance responses, and step-
input responses (see Figure 3). The quarter decay ratio criterion has been shown through experience
to provide a reasonable trade-off between minimum deviation from the set-point after an upset and
the fastest return to the set-point [SMY14, p. 121]. Ziegler and Nichols’ empirical observation was
that if a PID controller can condition system responses to have a quarter decay ratio, the controller
should provide good disturbance rejection — this objective is described as “aggressive” in the lit-
erature. However, a quarter decay ratio is widely considered to be too underdamped/oscillatory
for most process control applications [SMEDI10, Sect. 12.3.3]. After all, the Ziegler and Nichols
designed their rules for US Naval servo control applications [SMY14, p. 126]. Nevertheless, the
quarter decay ratio criterion serves as a reasonable starting point for tuning. In fact, Ziegler and
Nichol’s tuning rules were widely adopted by controller vendors for routine use in the 1940s. A sim-
ple demonstration of the disturbance rejection capability of a Ziegler-Nichols-tuned PID controller
is available at https://youtu.be/7qw7vnTGNsA.
With the quarter decay ratio criterion inmind, Ziegler andNichols proposed two empirical tuning

rules, which are over time known by many names:

1. step response / open-loop / step test / process reaction curve;

2. frequency response / closed-loop / continuous cycling / constant cycling / sustained oscillation.

Both rules follow the framework of

• performing some system response experiments on the plant;
• extracting the characteristic features of the process dynamics from the experiments; and
• determining the controller parameters from the features.
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2.1 Step response method
Themethod is based on

• measuring the features of a process reaction curve (system response to a step input or step distur-
bance) obtained in open loop (with the controller disconnected); and

• using the measured features to approximately model the plant as
– either an integrator plus dead time (IPDT) transfer function, which takes the form

Ke−Ls

s
, (2)

whereK is the gain, L is the transport lag;
– or a first-order plus dead time (FOPDT) transfer function, which takes the form

Ke−Ls

Ts+ 1
, (3)

whereK is the gain, T is the time constant, and L is the transport lag.

IPDT transfer functions are formodeling open-loop unstable / non-self-regulating processes, whereas
FOPDT transfer functions are for open-loop stable / self-regulating processes [SMEDI10, p. 227].
A large variety of plants in the process control industry can in fact be approximately modeled us-
ing these transfer functions [XCA07, Sect. 6.2]. Ziegler and Nichols developed their step response
method by simulating a larger number of different IPDT and FOPDT processes, and correlating the
controller parameters with features of the step response [ÅH04]. The controller parameters corre-
lated with quarter decay ratios gave rise to the tuning rule.

The procedure of the method is as follows:
1. Disconnect the controller and let the system settle into steady state.

2. Introduce a step input of amplitude r, and estimate the reaction rate, R def
= max(ẏ(t)), and

transport lag L (see Figure 4). The estimation can be done using the MATLAB code in
Listing 1.

Listing 1: MATLAB code for fitting the process reaction curve.
% Inputs:

% y: An array representing the output response.

% t: An array of time stamps. Set -point change assumed to happen at t(1),

% but t(1) may not be 0.

% Outputs:

% R: Reaction rate.

% L: Transport lag.

if s == true % self -regulating processes

[R, I] = max(diff(y)./ diff(t)); % reaction rate

L = t(I)-t(1) - (y(I)-y(1))/R; % transport lag

M = y(end)-y(1); % amplitude of output

T = M/R; % time constant
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else

R = (y(end)-y(end -1))/(t(end)-t(end -1));

M = y(end)-y(1); % amplitude of output

L = t(end)-t(1) - M/R; % transport lag

end

The estimated features are used to approximately model the plant with
• an IPDT transfer function if the process is non-self-regulating:

K

s
e−Ls =

R/r

s
e−Ls,

where R is the estimated reaction rate, r is the known amplitude of the input, L is the
estimated transport lag;

• or an FOPDT transfer function if the process is self-regulating:

K

Ts+ 1
e−Ls =

M/r

Ts+ 1
e−Ls,

whereM = RT is the estimated amplitude of the output, r is the known amplitude of the
input, T is the estimated time constant, L is the estimated transport lag.

3. Calculate the controller gains based on the formulas in Table 1.

Section 8–2 / Ziegler–Nichols Rules for Tuning PID Controllers 569
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models.) Such rules suggest a set of values of and that will give a stable oper-
ation of the system. However, the resulting system may exhibit a large maximum over-
shoot in the step response, which is unacceptable. In such a case we need series of fine
tunings until an acceptable result is obtained. In fact, the Ziegler–Nichols tuning rules
give an educated guess for the parameter values and provide a starting point for fine tun-
ing, rather than giving the final settings for and in a single shot.

Ziegler–Nichols Rules for Tuning PID Controllers. Ziegler and Nichols pro-
posed rules for determining values of the proportional gain integral time and de-
rivative time based on the transient response characteristics of a given plant. Such
determination of the parameters of PID controllers or tuning of PID controllers can be
made by engineers on-site by experiments on the plant. (Numerous tuning rules for PID
controllers have been proposed since the Ziegler–Nichols proposal. They are available
in the literature and from the manufacturers of such controllers.)

There are two methods called Ziegler–Nichols tuning rules: the first method and the
second method. We shall give a brief presentation of these two methods.

First Method. In the first method, we obtain experimentally the response of the
plant to a unit-step input, as shown in Figure 8–2. If the plant involves neither integra-
tor(s) nor dominant complex-conjugate poles, then such a unit-step response curve may
look S-shaped, as shown in Figure 8–3. This method applies if the response to a step
input exhibits an S-shaped curve. Such step-response curves may be generated experi-
mentally or from a dynamic simulation of the plant.

The S-shaped curve may be characterized by two constants, delay time L and time
constant T. The delay time and time constant are determined by drawing a tangent line
at the inflection point of the S-shaped curve and determining the intersections of the
tangent line with the time axis and line c(t)=K, as shown in Figure 8–3. The transfer

Td

Ti,Kp,

TdKp, Ti ,

TdKp, Ti ,

Figure 4: The process reaction curve of
a self-regulating process [Oga10,
Figure 8-3]. The inflection point
is where the angle of the tangent
reaches a maximum, or equiv-
alently, where the second-order
derivative of the curve reaches 0.
NoteM = RT .

Table 1: Formulas for the Ziegler-Nichols step response method [SMY14, p. 126], [DB11, Table 7.8],
[Oga10, Table 8-1].

Controller type Kp Ti Td
P r/(RL)

PI 0.9r/(RL) L/0.3

PID 1.2r/(RL) 2L 0.5L
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A PID controller tuned using the step response method has the transfer function

C(s) =
1.2r

RL

(
1 +

1

2Ls
+ 0.5Ls

)
=

1.2r

RL

(
2Ls+ 1 + L2s2

2Ls

)
=

0.6r

RL2

(Ls+ 1)2

s
,

∴ C(s) =
0.6r

R

(s+ 1/L)2

s
. (4)

Thus, the step response method places double zeros at −1/L, allowing the controller to be imple-
mented in the series form. This was intentional since the series form was the norm at the time
Ziegler and Nichols worked on their tuning rules.
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L = 0.082800

(a) (b)

Figure 5: Process reaction curves for Example 1.

Example 1

Suppose a process reaction curve is obtained as in Figure 5(a). Fitting the curve using Listing 1
gives us the parameters in Figure 5(b).
(a) Apply the Ziegler-Nichols step response method to tune a PID controller. Denote this

controller by C1(s).

(b) Suppose the plant transfer function is actually

G(s) =
1

s2 + 2ζωns+ ω2
n
, where ζ = 1/

√
2, ωn = 4.

Use Control System Designer’s PID tuner and its Ziegler-Nichols step response rule to
tune a PID controller. Denote this controller by C2(s).

(c) Compare C1(s) with C2(s) in terms of their step-input response and step-disturbance
response.

Solution:

(a) FromFigure 5(b), we haveK, T andL, but not r andRwhich are required by the formulas
in Table 1. However,

Kr = M = RT =⇒ r

R
=

T

K
= 8.7783.
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Plugging the values r/R = 8.7783 and L = 0.0828 into Eq. (4), we get the PID transfer
function

C1(s) =
0.6r

R

(s+ 1/L)2

s
=

5.2669(s+ 12.0773)2

s
.

(b) Launch Control System Designer with the following code:
zeta = 1/sqrt (2); omegan = 4;

G = tf(1, [1 2*zeta*omegan omegan ^2]);

controlSystemDesigner(G);

On the “CONTROL SYSTEM” tab, among “Tuning Methods”, select “PID Tuning”, as
shown in Figure 6. The PID transfer function can be obtained as

C2(s) =
3.3534(s+ 12.1)2

s
,

which is different from C1(s).

(c) While obtaining the step-input response is straightforward, the step-disturbance response
requires some effort. From Lecture 3, we know

E(s) =
R(s)

1 + C(s)G(s)
− G(s)D(s)

1 + C(s)G(s)
,

assuming the disturbance going into the plant is D(s), not −D(s). When R(s) = 0,

Y (s) = R(s)− E(s) =
G(s)D(s)

1 + C(s)G(s)
,

so the disturbance-to-output transfer function is G(s)

1 + C(s)G(s)
(this is actually the load

sensitivity function introduced in Lecture 3). Using this transfer function, we can plot
the step-disturbance responses. Figure 7 compares the step-input responses attributed to
C1(s) and C2(s); and the step-disturbance responses attributed to C1(s) and C2(s). Inter-
estingly, C1(s), tuned using the textbook version of the step response method, provides
better transient response and disturbance rejection than C2(s), which is tuned using the
MATLAB version of the step response method. Nevertheless, in both cases, the step-
input response is more oscillatory than is generally acceptable, so some further manual
tuning is necessary.

2.2 Frequency response method
The idea is to determine the proportional gain that sends the closed-loop system to the verge of in-
stability, where the system stays in a state of continuous cycling (sustained oscillation with a constant
amplitude). The proportional gain is then decreased to the point that gives a quarter decay ratio.
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Figure 6: The PID tuner in Control System Designer.
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Figure 7: Step-input responses and step-disturbance responses for comparison in Example 1.

The procedure of the method is as follows:
1. Set proportional gain to low, and both integral gain and derivative gain to zero.

2. Increase the proportional gain until the system reaches the boundary of instability; this is
when a constant-amplitude limit cycle occurs.
• The corresponding proportional gain is called the ultimate gain or critical gain, denoted

Ku.
• The corresponding period of oscillation is called the ultimate period or critical period,
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denoted Tu.
If Kgm is the plant’s gain margin (see next lecture), and ωgm is the gain margin frequency
(also see next lecture), thenKu = Kgm, and Tu = 2π/ωgm.

3. Calculate the controller gains based on the formulas in Table 2.

Table 2: Formulas for the Ziegler-Nichols frequency response method [SMY14, p. 128], [DB11, Ta-
ble 7.7], [Oga10, Table 8-2].

Controller type Kp Ti Td
P 0.5Ku

PI 0.45Ku Tu/1.2

PID 0.6Ku Tu/2 Tu/8

A PID controller tuned using the frequency response method has the transfer function

C(s) = 0.6Ku

(
1 +

2

Tus
+

Tus

8

)
=

0.6Ku

8Tu

(
8Tus+ 16 + T 2

us
2

s

)
=

0.075Ku

Tu

(Tus+ 4)2

s
,

∴ C(s) = 0.075KuTu

(
s+ 4/Tu

)2
s

. (5)

Thus, the frequency response method places double zeros at −4/Tu, allowing the controller to be
implemented in the series form.

Example 2

Consider the non-self-regulating plant

G(s) =
1

s(s2 + 2ζωns+ ω2
n)
, where ζ = 1/

√
2, ωn = 4.

The ultimate gain and ultimate period are found using the MATLAB code below to be Ku =

90.5097 and Tu = 1.5708.
G = tf(1, [1 2*zeta*omegan omegan ^2 0]);

[Ku , ~, Wgm , ~] = margin(G);

Tu = 2*pi/Wgm;

(a) Apply the Ziegler-Nichols frequency response method to tune a PID controller. Denote
this controller by C1(s).

(b) Use Control SystemDesigner’s PID tuner and its Ziegler-Nichols frequency response rule
to tune a PID controller. Denote this controller by C2(s).

(c) Apply the Ziegler-Nichols step response method to tune a PID controller. Denote this
controller by C3(s).
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(d) CompareC1(s),C2(s) andC3(s) in terms of their step-input response and step-disturbance
response.

Solution:

(a) PluggingKu = 90.5097 and Tu = 1.5708 into Eq. (5), we get the PID transfer function

C1(s) = 0.075KuTu
(s+ 4/Tu)

2

s
=

10.6630(s+ 2.546)2

s
.

At the ultimate gain, we can clearly see from Figure 8 that the uncompensated system is
indeed in a state of sustained oscillation.

(b) Following the method in Example 1(b) (except this time we choose “Ziegler-Nichols fre-
quency response” rather than “Ziegler-Nichols step response”), we can obtain the PID
transfer function as

C2(s) =
10.6630(s2 + 5.09s+ 6.48)

s
,

which is very close to C1(s).

(c) Using Listing 1, we can fit the unit step response ofG(s) with R = 0.0650 and L = 0.3536

(see Figure 9). Plugging these values into Eq. (4), we get the PID transfer function

C3(s) =
9.6(s2 + 5.6569s+ 8)

s
.

(d) Following the method in Example 2(c), we can obtain the plots in Figure 10. C1(s) and
C2(s) are so close that the corresponding responses overlap in the plots. The plots show
that C1(s), tuned by the frequency response method, provides better transient response
and disturbance rejection than C3(s), which is tuned by the step response method.
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Figure 8: The sustained oscillation of the uncompensated system G(s) in Example 2 when the pro-
portional gain is set to the ultimate gain.

10



0 20 40 60 80 100 120 140
0

2

4

6

8

10
Original process reaction curve

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25
Fitted process reaction curve

R = 0.062500
r/R = 16.000000
L = 0.353553
1/L = 2.828427

Figure 9: Process reaction curves for Example 2.
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Figure 10: Step-input responses and step-disturbance responses for comparison in Example 2.

3 Comparison
Essentially, the step response method is based on building a parametric model of the plant, whereas
the frequency response method is nonparametric. The step response and frequency response meth-
ods have their pros and cons:

Step response method [SMEDI10, p. 227]
• Caremust be taken tomake sure the set-point
change is not so large that it sends the pro-
cess into saturation or any nonlinear region,
and yet not so small that the response is over-
whelmed by noise. Other than this, the step
response method is robust — few things can
go wrong.

• Less time-consuming and less disruptive
to implement than the frequency response
method.

• Applicable to open-loop unstable processes.

Frequency response method [SMEDI10, p.
224]
• In many applications, placing a plant in its
continuous cycling state (stability limit) is
hazardous — think runaway chemical reac-
tions.

• Can be time-consuming for processes with
slow dynamics.

• Not applicable to open-loop unstable pro-
cesses.

Both methods tend to produce oscillatory responses and large overshoots for set-point changes.
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More conservativemethods such as the Tyreus-Luybenmay be preferable [SMEDI10, p. 225], [Yu06,
p. 18]. The Tyreus-Luybenmethod is similar to the Ziegler-Nichols frequency response method, ex-
cept that
• It is not applicable to P controllers.
• It trades off disturbance rejection and settling time for higher damping and robustness [ÅH06,
Sect. 2.7]. Recall the concept of robustness in Lecture 3.

Table 3: Formulas for the Tyreus-Luyben method [ÅH06, Table 2.5], [SMEDI10, Table 12.4], [Yu06,
Table 2.2].

Controller type Kp Ti Td
PI Ku/3.2 2.2Tu
PID Ku/2.2 2.2Tu Tu/6.3

Theprocedure for the Tyreus-Luybenmethod is the same as that for the Ziegler-Nichols frequency
response method, with the exception being the formulas in Table 3 are to be used instead. A PID
controller tuned using the Tyreus-Luyben method has the transfer function

C(s) =
Ku

2.2

(
1 +

1

2.2Tus
+

Tus

6.3

)
=

Ku

2.2

(
6.3 · 2.2Tus+ 6.3 + 2.2T 2

us
2

6.3 · 2.2Tus

)
,

∴ C(s) =
KuTu
13.86

(s+ 0.4931/Tu)(s+ 5.8070/Tu)

s
. (6)

Example 3

For the plant in Example 2, repeated here for convenience:

G(s) =
1

s(s2 + 2ζωns+ ω2
n)
, where ζ = 1/

√
2, ωn = 4,

tune a PID controller using the Tyreus-Luyben method, and compare the controller with the
controller C1(s) from Example 2 in terms of their step-input response and step-disturbance
response.
Solution: Plugging the valuesKu = 90.5097 and Tu = 1.5708 from Example 2 into Eq. (6), we
obtain the PID transfer function

C2(s) =
KuTu
13.86

(s+ 0.4931/Tu)(s+ 5.8070/Tu)

s
=

10.258(s+ 3.697)(s+ 0.3139)

s
.

The plots in Figure 11 show that the Tyreus-Luyben version of the controller, C2(s), is worse
in terms of disturbance rejection and settling time, but better in terms of lower overshoot than
the Ziegler-Nichols version, C1(s).

Tuning a PID controller does not need to stop at Ziegler-Nichols, Tyreus-Luyben or any other
tuning rule. Software like MATLAB provides easy-to-use graphical tools for PID tuning. Revisiting
Example 2, if G implements the plant, and C implements the controller tuned by the Ziegler-Nichols
frequency response method, then the MATLAB command
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Step-input Response
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Figure 11: Step-input responses and step-disturbance responses for comparison in Example 3.

Figure 12: The GUI of pidTuner displaying plots for reference tracking and disturbance rejection.
Above, G is the plant in Example 2, and the baseline controller is the Ziegler-
Nichols frequency-response PID controller in Example 2. We can see the hand-tuned
PIDF controller outperforms the baseline PID controller. For more information
about pidTuner, on a MATLAB Command Window, type “web(fullfile(docroot,
'control/getstart/tune-pid-controller-to-balance-tracking-and-disturbance-

rejection.html'))”.

pidTuner(G, C)

invokes pidTuner with C as the baseline controller. The PID Tuner allows us to tune the controller to
get better damping and disturbance rejection without sacrificing settling time (see Figure 12). The
important options include
• the controller type,
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• the response time (a faster response comes at the price of other performance variables),
• the transient behavior (choose more “aggressive” for better disturbance rejection, but more “ro-
bust” for robustness).
Nevertheless, neither Control System Designer’s PID tuner nor pidTuner is the be-all end-all PID

tuning tool. For the plant
G(s) =

s+ 6

(s+ 1)(s+ 3)(s2 + 4)
,

both tools fail to generate a stabilizing PID controller. This can be surprising considering how we
have successfully used root locus to design a stabilizing PID controller for G(s) in the previous lec-
ture. Repeating themessage from the previous lecture: where tuning rules and automated tuners fall
short, we always have the basics to turn to, which in this case is root locus.
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