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Lecture 8: Controller design by heuristic tuning
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1 Introduction

Lecture 5 introduced PID control, while Lecture 6 explained the roles of P, I and D actions. Further-
more, in the previous lecture, we learnt how to use root loci to tune PID controllers. However, the
root locus method requires a model of the plant/system. When this model is hard to come by, we
can resort to empirical/heuristic tuning rules.
Tuning rules are a set of formulas for calculating controller gains based on
1. some information about the plant, which can be a model or some measurable characteristics of
the plant, and
2. some performance criterion, which can be disturbance rejection, desired dominant poles, stability
margins, or some other requirement.

Attention: Disturbance

In this lecture, by “disturbance”, we mean “load disturbance”, aka “input disturbance”.

Different rules suit different plants, and there is no one-size-fits-all solution. It is therefore not sur-
prising the topic of PID controller tuning rules has been researched for decades. In fact, the hand-
book [O’D09] catalogs more than 200 tuning rules. MATLAB itself has at least three PID tuners:

« Control System Designer’s PID tuner: This is embedded in the Control System tab of the Control
System Designer (see [Figure 6€). This tuner supports rule-based automatic tuning (auto-tuning
for short) — which is the process of automatically identifying the plant model and tuning the
controller based on that model [Vis06] — with limited interactivity.

« GUI-based PID tuner: This is invocable by the command pidTuner and accessible through Simulink
(see[Figure 12)). This tuner is more general and offers a high level of interactivity.




Version 1.1: Removed references to frequency response lecture.


« Command-based PID tuner: This is the toned-down version of pidTuner invocable by the com-
mand pidtune. It offers limited and noninteractive configurable options through the function
pidtuneOptions.

In this lecture, we will learn about two heuristic tuning rules called the Ziegler-Nichols tuning
rules. Heuristic tuning rules are handy because they do not require a model of the system. They
serve as a good starting point for learning, and for tuning, they serve as a baseline for comparison
with more advanced rules.

2 Ziegler-Nichols
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For a controller to be useful, it must be able to track the set-point and reject disturbances. In general,
efficient disturbance rejection requires a high-gain controller. However, high-gain controllers are
associated with oscillatory step-SP responses [VZ10, Ch. 2]. For example, in we can see
three sample step-disturbance responses, and efficient disturbance rejection entails some oscillation
in the response. Here lies the basis for the Ziegler-Nichols tuning rules: for efficient disturbance
rejection, the controller is tuned to approximately achieve a specified level of damping. The level of
damping is specified as quarter decay ratio | quarter amplitude damping.

Definition: Decay ratio

... is the ratio of the second highest peak to the highest peak, as illustrated in [Figure 2]
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Figure 2: Decay ratio is C'/B. Image  Figure 3: The quarter decay ratio requirement applies to
from [SMY14, Figure 5.2]. both (a) step-disturbance responses, and (b)
step-input responses. Image from [SC97, Figure

7-1.2].

Therefore, the decay ratio of a second-order system is given by

Cc 2m(
5 = eXp (—_1 = C2> . (1)

A quarter decay ratio specifies a decay ratio of 1/4 for both step-disturbance responses, and step-
input responses (see[Figure 3)). The quarter decay ratio criterion has been shown through experience
to provide a reasonable trade-off between minimum deviation from the set-point after an upset and
the fastest return to the set-point [SMY14, p. 121]. Ziegler and Nichols’ empirical observation was
that if a PID controller can condition system responses to have a quarter decay ratio, the controller
should provide good disturbance rejection — this objective is described as “aggressive” in the lit-
erature. However, a quarter decay ratio is widely considered to be too underdamped/oscillatory
for most process control applications [SMEDI10, Sect. 12.3.3]. After all, the Ziegler and Nichols
designed their rules for US Naval servo control applications [SMY14, p. 126]. Nevertheless, the
quarter decay ratio criterion serves as a reasonable starting point for tuning. In fact, Ziegler and
Nichol’s tuning rules were widely adopted by controller vendors for routine use in the 1940s. A sim-
ple demonstration of the disturbance rejection capability of a Ziegler-Nichols-tuned PID controller
is available at https://youtu.be/7qw7vnTGNsA.

With the quarter decay ratio criterion in mind, Ziegler and Nichols proposed two empirical tuning
rules, which are over time known by many names:

1. step response / open-loop / step test / process reaction curve;
2. frequency response / closed-loop / continuous cycling / constant cycling / sustained oscillation.
Both rules follow the framework of

o performing some system response experiments on the plant;
o extracting the characteristic features of the process dynamics from the experiments; and
o determining the controller parameters from the features.


https://youtu.be/7qw7vnTGNsA

2.1 Step response method

The method is based on

« measuring the features of a process reaction curve (system response to a step input or step distur-
bance) obtained in open loop (with the controller disconnected); and

« using the measured features to approximately model the plant as

- either an integrator plus dead time (IPDT) transfer function, which takes the form

Ke 1L
, (2)
where K is the gain, L is the transport lag;
- or a first-order plus dead time (FOPDT) transfer function, which takes the form
K efLs
— ()
s+1

where K is the gain, T is the time constant, and L is the transport lag.

IPDT transfer functions are for modeling open-loop unstable | non-self-regulating processes, whereas
FOPDT transfer functions are for open-loop stable / self-regulating processes [SMEDI10, p. 227].
A large variety of plants in the process control industry can in fact be approximately modeled us-
ing these transfer functions [XCAOQ7, Sect. 6.2]. Ziegler and Nichols developed their step response
method by simulating a larger number of different IPDT and FOPDT processes, and correlating the
controller parameters with features of the step response [AH04]. The controller parameters corre-
lated with quarter decay ratios gave rise to the tuning rule.

The procedure of the method is as follows:

1. Disconnect the controller and let the system settle into steady state.

2. Introduce a step input of amplitude r, and estimate the reaction rate, R & max(y(t)), and
transport lag L (see |[Figure 4). The estimation can be done using the MATLAB code in

Listing

Listing 1: MATLAB code for fitting the process reaction curve.
% Inputs:
% y: An array representing the output response.

% t: An array of time stamps. Set-point change assumed to happen at t(1),

% but t(1) may not be 0.
% Outputs:

% R: Reaction rate.

% L: Transport lag.

if s == true %
[R, I]1 = max(diff(y)./diff(t)); %
L= t(I)-t(1) - (y(I)-y(1))/R; %
M = y(end)-y(1); %
T = M/R; %

self-regulating processes
reaction rate

transport lag

amplitude of output

time constant



else

R = (y(end)-y(end-1))/(t(end)-t(end-1));
M = y(end)-y(1); % amplitude of output
L = t(end)-t(1) - M/R; % transport lag

end

The estimated features are used to approximately model the plant with

o an IPDT transfer function if the process is non-self-regulating:

where R is the estimated reaction rate, r is the known amplitude of the input, L is the
estimated transport lag;

« or an FOPDT transfer function if the process is self-regulating:

K 6—Ls _ M/T e—Ls
Ts+1 Ts+1 ’

where M = RT is the estimated amplitude of the output, r is the known amplitude of the
input, 7T is the estimated time constant, L is the estimated transport lag.

3. Calculate the controller gains based on the formulas in
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Table 1: Formulas for the Ziegler-Nichols step response method [SMY14, p. 126], [DB11}, Table 7.8],
[Ogal0, Table 8-1].

Controller type Ky T; T,
p r/(RL)
PI 0.9r/(RL) L/0.3
PID 1.2r/(RL) 2L  05L




A PID controller tuned using the step response method has the transfer function

1.2r 1 1.2r (2Ls+1+ L?s? 0.6r (Ls + 1)?
= (14+=——+4+05Ls | = =
) =TFL ( Tors 00 S) RL < 2Ls ) RIZ 5
0.6r (s + 1/L)>
. C(s) = (s+ 1/L)" (4)

R S

Thus, the step response method places double zeros at —1/L, allowing the controller to be imple-
mented in the series form. This was intentional since the series form was the norm at the time
Ziegler and Nichols worked on their tuning rules.
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Figure 5: Process reaction curves for Example

Example 1

Suppose a process reaction curve is obtained as in[Figure 5{(a). Fitting the curve using Listing]]]
gives us the parameters in [Figure 5{(b).

(a) Apply the Ziegler-Nichols step response method to tune a PID controller. Denote this
controller by C (s).

(b) Suppose the plant transfer function is actually

1

G =
(s) $2 4+ 2Cwns + w2’

where ¢ = 1/v/2,w, = 4.

Use Control System Designer’s PID tuner and its Ziegler-Nichols step response rule to
tune a PID controller. Denote this controller by Cs(s).

(c) Compare C}(s) with Cy(s) in terms of their step-input response and step-disturbance
response.

Solution:

(a) From|[Figure 5(b), we have K, T and L, but not r and R which are required by the formulas
in(Table 1 However,

Kr=M =Rl = = 8.7783.

=1~

r
R




Plugging the values /R = 8.7783 and L = 0.0828 into Eq. (4), we get the PID transfer

function
_ 0.6r(s+1/L)*  5.2669(s + 12.0773)?

R S s

Cl (S)

(b) Launch Control System Designer with the following code:

zeta = 1/sqrt(2); omegan = 4;
G = tf(1, [1 2*xzeta*omegan omegan’2]);
controlSystemDesigner (G);

On the “CONTROL SYSTEM” tab, among “Tuning Methods”, select “PID Tuning’, as
shown in The PID transfer function can be obtained as

3.3534(s + 12.1)2
Co(s) = ( ) |

S

which is different from C(s).

(c) While obtaining the step-input response is straightforward, the step-disturbance response
requires some effort. From Lecture 3, we know

_ B G)DGs)
B) = 5 0am) T+ CHE0)

assuming the disturbance going into the plant is D(s), not —D(s). When R(s) = 0,

G(s)D(s)

Y(s) = R(s) ~ Bls) = 13 Sy

)
G(s)
T+ 0()00)
sensitivity function introduced in Lecture 3). Using this transfer function, we can plot
the step-disturbance responses. compares the step-input responses attributed to
C1(s) and C5(s); and the step-disturbance responses attributed to ' (s) and Cs(s). Inter-
estingly, C'1(s), tuned using the textbook version of the step response method, provides
better transient response and disturbance rejection than Cs(s), which is tuned using the
MATLAB version of the step response method. Nevertheless, in both cases, the step-
input response is more oscillatory than is generally acceptable, so some further manual
tuning is necessary.

so the disturbance-to-output transfer function is (this is actually the load

2.2 Frequency response method

The idea is to determine the proportional gain that sends the closed-loop system to the verge of in-
stability, where the system stays in a state of continuous cycling (sustained oscillation with a constant
amplitude). The proportional gain is then decreased to the point that gives a quarter decay ratio.
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Figure 7: Step-input responses and step-disturbance responses for comparison in Example

The procedure of the method is as follows:

1. Set proportional gain to low, and both integral gain and derivative gain to zero.

2. Increase the proportional gain until the system reaches the boundary of instability; this is
when a constant-amplitude limit cycle occurs.

o The corresponding proportional gain is called the ultimate gain or critical gain, denoted

K.
 The corresponding period of oscillation is called the ultimate period or critical period,



denoted T,,.

If Ky, is the plant’s gain margin (see next lecture), and wy,, is the gain margin frequency
(also see next lecture), then K, = K, and T, = 27 /wgp,.

3. Calculate the controller gains based on the formulas in|Table 2]

Table 2: Formulas for the Ziegler-Nichols frequency response method [SMY14, p. 128], [DB11, Ta-
ble 7.7], [Ogal0, Table 8-2].

Controller type | K, T; T,
p 0.5Ky
PI 045K, T,/1.2
PID 0.6K, Tu/2 T,/8

A PID controller tuned using the frequency response method has the transfer function

2 T 0.6K, (8T 16 + 722 0.075K, (T, 4)?
C’(s):O.6Ku(1+ + “S>: U< us + 16+ u8>: u (Tys +4)

Tus 8 8T, s T, s
2
(s+4/T)

- C(s) = 0.075K,T, -

(5)

Thus, the frequency response method places double zeros at —4/T7;,, allowing the controller to be
implemented in the series form.

Example 2

Consider the non-self-regulating plant

1
s(s% + 2Cwp s + w?)

G(s) = ., where ¢ = 1/V2,w, = 4.
The ultimate gain and ultimate period are found using the MATLAB code below to be K, =
90.5097 and T, = 1.5708.

G = tf(1, [1 2*xzeta*omegan omegan”2 0]);
[Ku, ~, Wgm, ~1 = margin(G);
Tu = 2*xpi/Wgm;

(a) Apply the Ziegler-Nichols frequency response method to tune a PID controller. Denote
this controller by C' (s).

(b) Use Control System Designer’s PID tuner and its Ziegler-Nichols frequency response rule
to tune a PID controller. Denote this controller by Ca(s).

(c) Apply the Ziegler-Nichols step response method to tune a PID controller. Denote this
controller by Cs(s).




(d) Compare C(s),Ca(s)and Cs(s) in terms of their step-input response and step-disturbance
response.

Solution:

(a) Plugging K, = 90.5097 and T, = 1.5708 into Eq. (5)), we get the PID transfer function

(s+4/T,)*  10.6630(s + 2.546)*

Ci(s) = 0.075K, Ty -

At the ultimate gain, we can clearly see from that the uncompensated system is
indeed in a state of sustained oscillation.

(b) Following the method in Example b) (except this time we choose “Ziegler-Nichols fre-
quency response” rather than “Ziegler-Nichols step response”), we can obtain the PID

transfer function as
10.6630(s? + 5.09s + 6.48)
Cy(s) = ,

S

which is very close to C(s).

(c) Using Listing|[1} we can fit the unit step response of G(s) with R = 0.0650 and L = 0.3536
(see[Figure 9). Plugging these values into Eq. (4), we get the PID transfer function

9.6(s2 + 5.6569s + 8
Cs(s) = ( )

S

(d) Following the method in Example [2(c), we can obtain the plots in C1(s) and
Ca(s) are so close that the corresponding responses overlap in the plots. The plots show
that ' (s), tuned by the frequency response method, provides better transient response
and disturbance rejection than C3(s), which is tuned by the step response method.
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Figure 8: The sustained oscillation of the uncompensated system G(s) in Examplewhen the pro-
portional gain is set to the ultimate gain.
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Figure 10: Step-input responses and step-disturbance responses for comparison in Example

3 Comparison

Essentially, the step response method is based on building a parametric model of the plant, whereas
the frequency response method is nonparametric. The step response and frequency response meth-

ods have their pros and cons:

Step response method [SMEDII10, p. 227]

o Care must be taken to make sure the set-point
change is not so large that it sends the pro-
cess into saturation or any nonlinear region,
and yet not so small that the response is over-
whelmed by noise. Other than this, the step
response method is robust — few things can
g0 wrong.

o Less time-consuming and less disruptive
to implement than the frequency response
method.

« Applicable to open-loop unstable processes.

Frequency response method [SMEDI10,

224]

 In many applications, placing a plant in its
continuous cycling state (stability limit) is
hazardous — think runaway chemical reac-
tions.

« Can be time-consuming for processes with
slow dynamics.

« Not applicable to open-loop unstable pro-
cesses.

P:

Both methods tend to produce oscillatory responses and large overshoots for set-point changes.
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More conservative methods such as the Tyreus-Luyben may be preferable [SMEDI10, p. 225], [Yu06,

p. 18]. The Tyreus-Luyben method is similar to the Ziegler-Nichols frequency response method, ex-

cept that

o Itis not applicable to P controllers.

« It trades off disturbance rejection and settling time for higher damping and robustness [AHO6),
Sect. 2.7]. Recall the concept of robustness in Lecture 3.

Table 3: Formulas for the Tyreus-Luyben method [AHO6, Table 2.5], [SMEDI10, Table 12.4], [Yu06,

Table 2.2].
Controller type | K, T; T,
PI K,/32 22T,
PID K,/2.2 22T, T,/6.3

The procedure for the Tyreus-Luyben method is the same as that for the Ziegler-Nichols frequency
response method, with the exception being the formulas in are to be used instead. A PID
controller tuned using the Tyreus-Luyben method has the transfer function

C(s)

K L Tus) Ky (63-2.2Tus 6.3+ 2.2T72s”
292 29T,s 63) 22 6.3-2.2T),s ’

KTy (s +0.4931/T,)(s + 5.8070/T,)
- 13.86 s

Example 3

For the plant in Example 2, repeated here for convenience:

2.C(s) . (6)

1
"~ 5(s2 4 2Cwns + w2)’

G(s) where ¢ = 1/v/2,w, = 4,

tune a PID controller using the Tyreus-Luyben method, and compare the controller with the
controller (1 (s) from Example 2|in terms of their step-input response and step-disturbance
response.

Solution: Plugging the values K, = 90.5097 and T, = 1.5708 from Example[2]into Eq. (€)), we
obtain the PID transfer function

KT, (s+0.4931/T,)(s + 5.8070/T,) _ 10.258(s + 3.697)(s + 0.3139)
~ 13.86 s N s

CQ (S) .
The plots in show that the Tyreus-Luyben version of the controller, C5(s), is worse
in terms of disturbance rejection and settling time, but better in terms of lower overshoot than
the Ziegler-Nichols version, C(s).

Tuning a PID controller does not need to stop at Ziegler-Nichols, Tyreus-Luyben or any other
tuning rule. Software like MATLAB provides easy-to-use graphical tools for PID tuning. Revisiting
Example 2} if G implements the plant, and C implements the controller tuned by the Ziegler-Nichols
frequency response method, then the MATLAB command

12
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Figure 11: Step-input responses and step-disturbance responses for comparison in Example
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Figure 12: The GUI of pidTuner displaying plots for reference tracking and disturbance rejection.

Above, G is the plant in Example and the baseline controller is the Ziegler-
Nichols frequency-response PID controller in Example 2| We can see the hand-tuned
For more information

PIDF controller outperforms the baseline PID controller.
about pidTuner, on a MATLAB Command Window, type “web(fullfile(docroot,

"control/getstart/tune-pid-controller-to-balance-tracking-and-disturbance-
rejection.html’))”.
pidTuner (G, C)
invokes pidTuner with C as the baseline controller. The PID Tuner allows us to tune the controller to
get better damping and disturbance rejection without sacrificing settling time (see|Figure 12). The

important options include
o the controller type,
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o the response time (a faster response comes at the price of other performance variables),

« the transient behavior (choose more “aggressive” for better disturbance rejection, but more “ro-
bust” for robustness).
Nevertheless, neither Control System Designer’s PID tuner nor pidTuner is the be-all end-all PID

tuning tool. For the plant
5+6

(s+1)(s+3)(s2+4)

both tools fail to generate a stabilizing PID controller. This can be surprising considering how we
have successfully used root locus to design a stabilizing PID controller for G(s) in the previous lec-
ture. Repeating the message from the previous lecture: where tuning rules and automated tuners fall
short, we always have the basics to turn to, which in this case is root locus.

G(s) =
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