
Artificial neural networks and
backpropagation

Dr. Yee Wei Law ⟨yeewei.law@unisa.edu.au⟩

May 3, 2023

Contents

1 Introduction 1

2 Network architectures 3

3 Learning by error backpropagation 5

4 Brief historical notes 10

5 References 11

List of acronyms

ANN artificial neural network . 1
DNN deep neural network . 4
MLP multilayer perceptron . 4
MP McCulloch-Pitts . 2
XOR exclusive OR . 4

1 Introduction

An artificial neural network (ANN) is a computing scheme represented as a net-
work of artificial neurons, that models the brain’s processing functions.
Alternative names for ANNs include parallel distributed processing models, con-
nectionist models, self-organising systems, neurocomputers, neurocomputing sys-
tems, and neuromorphic systems [LL96, p. 207].

1

An artificial neuron is a simplistic math-
ematical model of a biological neuron,
which consists of three main parts (see
Figure 1): soma, dendrites and
axon.
• The axon terminates in strands called

axon terminals, and each axon termi-
nal terminates in a bulb-like organ
called a synapse.

• A neuron signals other neurons by
sending electrical pulses through its
synapses.

Dendrite

Soma (cell body)

Axon terminal

Myelinated axon trunk

Myelin sheat

Inputs

Outputs

 Input points = synapses

Output points = synapses

Figure 1: Structure of a typical neuron.
Figure from Wikipedia.

• A receiving neuron fires if its electrical potential reaches a threshold, and an
action potential of fixed strength and duration is transmitted through the axon
to the synaptic junctions to other neurons.

• Synapses are excitatory if they let passing pulses cause the firing of the receiving
neuron, or inhibitory if otherwise.

The McCulloch-Pitts (MP) neuron in Figure 2 is the earliest example of an artificial
neuron.

Processing
element

Output pathΣ

Connection/link

𝜑

𝑥0 = 1 𝑤0 = −𝑏

𝑥1

𝑥2

𝑥𝑛

𝑤1

𝑤2

𝑤𝑛

⋮ ⋮

𝑦

Figure 2: An MP neuron. The
weight 𝑤0 is usually negative so
𝑏 is usually positive.

The MP model captures the firing characteris-
tics of the biological neuron through the acti-
vation function 𝜑(⋅), which is applied to the
weighted sum of the input signals:

𝑦 = 𝜑 ⎛⎜⎜
⎝

𝑛
∑
𝑖=1

𝑤𝑖𝑥𝑖 − 𝑏⎞⎟⎟
⎠

= 𝜑 ⎛⎜⎜
⎝

𝑛
∑
𝑖=0

𝑤𝑖𝑥𝑖
⎞⎟⎟
⎠

, (1)

where 𝑤1, … , 𝑤𝑛 are the weights, 𝑥𝑖, … , 𝑥𝑛 are
the inputs, and 𝑏 is the bias or firing threshold.

In Figure 2,

• The bias (in negative) is treated as a weight corresponding to a unit input.
• A processing element, also called a node or unit, comprises a summing junction

∑ and an activation function 𝜑.

𝜑 plays a crucial role in the learning capabilities of a neuron.
Traditional options for 𝜑

• are either bipolar (ranges from −1 to +1) or unipolar (ranges from 0 to 1);
• include, as listed in [LL96, Sec. 9.2.1] and [Hay09, pp. 13-14], the Heaviside step

function, the signum (also called hard limiter) function, and sigmoid functions
(see Definition 1).

Definition 1: Sigmoid function [HM95]

A bounded differentiable real function that is defined for all real input values
and that has a positive derivative everywhere.

2

https://en.wikipedia.org/wiki/Artificial_neuron

In simpler terms, a sigmoid function is a strictly increasing but bounded func-
tion that is shaped like an ‘S’.

The standard sigmoid functions are:

• The logistic function 𝜑(𝑥) = (1 + 𝑒−𝑥)−1, which is often considered to be the
sigmoid function, rather than a type of sigmoid function.

• The hyperbolic tangent function 𝜑(𝑥) = tanh(𝑥).

When a processing element

• uses either the Heaviside step function or the signum function as the activation
function, it is called a linear threshold unit or threshold logic unit [LL96, G2́2];

• uses a sigmoid function, it is called a linear graded unit [LL96, p. 209].

Over the years, many more options for the activation function 𝜑 have been proposed
[DSC22].
Further discussion of 𝜑, including the role of 𝜑 in learning and contemporary op-
tions for 𝜑, is deferred to the Cyber Engineering Knowledge Base.
Subsequently,

• Sec. 2 covers the network structures/architectures, i.e., how neurons are con-
nected to each other.

• Sec. 3 covers the mechanism of learning called backpropagation.

2 Network architectures

Neurons perform computation in conjunction, which involves information passing
from one layer of neurons to another.
By design, there are no connections between neurons of the same layer.
Most ANNs use either the feedforward or the recurrent configuration.

• Feedforward network: Information is fed in the forward direction only, from
the input layer through the hidden layers (if any) to the output layer.

Hidden layers are so called because they are hidden from the
input and output [Hay09, p. 22].
A perceptron, as shown in Figure 3, is a single-layer feedfor-
ward neural network [LL96, Ch. 10], and thus has no hidden
layers.

�The input layer is not counted because it does not involve any
computation, and it is often referred to as layer 0.

The original perceptron by Rosenblatt [Ros57, Ros58] was built
around a single MP neuron [Hay09, Sec. 1.2].

𝑥1

𝑥2

𝑥𝑚

⋮

𝑦1

𝑦2

𝑦𝑝

⋮ ⋮

Figure 3: A per-
ceptron.

Perceptrons were designed to solve linearly separable classification problems [Hay09,
Sec. 1.2].

3

https://lo.unisa.edu.au/mod/glossary/showentry.php?eid=40942

Figure 4 shows an example of a linearly separable problem, where members of
two different classes can be separated by a line (equivalently, plane in a three-
dimensional space, hyperplane a higher-dimensional space).

Linearly separable: To
separate the two classes of
data points, infinitely many
lines can be found.

Linearly inseparable:
No lines can separate
these two classes of
data points.

Input Hidden Output

Figure 4: An example of a linearly sepa-
rable problem and an example of a lin-
early inseparable problem.

Figure 5: An example of a multilayer
perceptron: a fully connected 3-4-1
network.

A simple but not linearly separable problem is the computation of exclusive OR
(XOR), the solution of which requires a multilayer approach.
A multilayer perceptron (MLP), as shown in Figure 5, is a feedforward neural
network with two or more layers of neurons (i.e., one or more hidden layers) and
differentiable nonlinear activation functions [Hay09, Sec. 4.1].
Naming convention: An MLP with 𝑚 source nodes, ℎ𝑖 nodes in the 𝑖th hidden
layer, and 𝑝 nodes in the output layer is referred to as an 𝑚-ℎ1-ℎ2 ⋯-𝑝 network.
When every node in a layer is connected to every other node in the preceding
layer, that layer is fully connected or dense.
A network whose layers (not counting the input layer) are all dense is fully con-
nected [Hay09, p. 23].
The MLP is the most widely used feedforward configuration.
An MLP with more than three hidden layers is called a deep neural network
(DNN) [SCYE17].

• Recurrent network: When outputs are redirected as inputs to the same or
preceding layers, we get a feedback configuration.
Feedback networks with closed loops are called recurrent networks.

Many machine learning problems can readily be viewed as function approximation
problems.
Leshno et al. [LLPS93] proved that a multilayer feedforward network with a locally
bounded piecewise continuous activation function (which an MLP is a special case
of) can approximate any continuous function to any degree of accuracy if and only
if the activation function is not a polynomial.
More encouragingly, Barron [Bar93] proved that an MLP with only one hidden
layer can achieve an integrated squared error of order 𝑂(1/𝑛), where 𝑛 is the num-
ber of hidden neurons, independent of the dimension of the input vector space.
The universal approximation property described above makes MLPs useful for con-
trol, because it enables a controller to construct a model of a plant, and determine
control actions based on the model.

4

However, Leshno et al.’s and Barron’s theorems are existential rather than con-
structive, i.e., they do not specify how to construct the learning algorithms.

3 Learning by error backpropagation

The central role of ANNs is learning, which is the building of a mathematical model
relating inputs to outputs.
A learning process has three phases:

1. In the training phase, the learner derives a model based on samples from a
training set, i.e., derives 𝑓 given 𝑥 and 𝑦 = 𝑓 (𝑥).
Training adjusts the weights of an ANN but not the hyperparameters, which are
settings for controlling the behaviour of the learning algorithm [GBC16, Sec.
5.3].
Capacity hyperparameters are those that improve the accuracy of the learning
algorithm, e.g., polynomial degree in polynomial regression (see Example 1).
If learnt on the training set, capacity hyperparameters are always maximised,
causing overfitting.

Example 1

When performing polynomial regression (i.e., fitting a polynomial to an
input-output dataset), suppose training data was generated by sampling
a quadratic function. Figure 6 shows that
• When we fit a linear function to the data, we get an underfit.
• A quadratic function fit to the data generalises well to unseen points.
• When we fit a 9th-degree polynomial to the data, we get an overfit.

Figure 6: Examples of underfitting, appropriate capacity and overfit-
ting [GBC16, Figure 5.2].

Thus, the degree of the fitting polynomial is an example of a capacity hy-
perparameter [GBC16, Sec. 5.3].
A higher-degree polynomial tends to fit the training data better than a
lower-degree polynomial, but does not necessarily generalise well.

5

2. In the validation phase, the learner uses a validation set to estimate the gener-
alisation error during or after training to determine how the hyperparameters
should be updated. In other words, the subset of data used to guide the selection
of hyperparameter values is called a validation set [GBC16, p. 119].
Typically 80% of training data is used for training while the remainder is used
for validation [GBC16, p. 119].

3. In the testing phase, the learner applies that model to samples from a test set,
i.e., compares 𝑓learnt(𝑥) with 𝑦.
Whereas validation is an intermediate evaluation that determines the final model
(e.g., by choosing the best out of an array of candidate classifiers) to be used, test-
ing is an evaluation of the performance of the final model [Cic15].

Types of learning include:

• Supervised learning: For every input vector, an ANN receives the desired
output vector.
In training, the ANN’s weights are adjusted to minimise the difference between
its output and the desired output.
Training is repeated, in the sense that previously used training samples maybe
reapplied in a different order, until the weights converge to steady-state values.
Supervised learning is also called learning with a teacher.

• Unsupervised learning: Without additional information, an ANN has to dis-
cover patterns such as clusters in the input data.
In training, the ANN’s weights are adjusted to reflect the distribution of the
input samples.

The procedure used to perform the learning process is called a learning algorithm
or learning rule [LL96, p. 212]:

• Parameter learning involves adjusting the synaptic weights.
• Structure learning involves modifying the network structure, including the num-

ber of neurons and their connection types.

Most existing learning algorithms are parameter learning, and among them, the
error backpropagation (backpropagation or backprop for short) algorithm is the
most influential and serves as the basis for many later algorithms.

�Backprop and feedback are different concepts. In fact, backprop was designed
for MLPs rather than feedback networks.

Historically, the backprop algorithm existed before Rumelhart et al. [RHW86] pop-
ularised it and in effect rejuvenated interests in ANNs in the 1980s.
Unlike the perceptron algorithm [MR88], backprop is applicable to both linearly
separable and linearly inseparable problems. Furthermore, it can be used for both
supervised and unsupervised learning, but only supervised learning is considered
here.
The algorithm is comprehensively discussed in [Hay99, Sec. 4.3]. Here, a summary
of the algorithm is given, for which the symbols in Table 1 and Figure 7 are used.

6

Table 1: Symbols for discussing backprop
𝑁 Total number of time steps
𝑑𝑘[𝑛] Desired output of node 𝑘 at time step

𝑛
𝑦𝑘[𝑛] Output of node 𝑘 at time step 𝑛
𝑒𝑘[𝑛] 𝑑𝑘[𝑛] − 𝑦𝑘[𝑛]
𝑣𝑘[𝑛] Output of summing junction of node

𝑘 at time step 𝑛

𝜑 Activation function
𝜑′(𝑣) 𝜕 𝜑(𝑣)

𝜕𝑣
𝑤𝑘𝑗[𝑛] Weights for neuron 𝑘 at time step 𝑛
𝛿𝑘[𝑛] Local gradient for neuron 𝑘 at time

step 𝑛
𝜂 Learning rate

Section 4.3 Back-Propagation Algorithm · 187

Yo= +1

• • •

•
•
•

Neurolij Neuron k

+1

•
•
•

•
• •

FIGURE 4.4 Signal-flow graph highlightin~ the details of output neuron k connected to hidden
neuronj .

. Next we use the chain rule for the partial derivative aek(n)/ayj(n),and rewrite Eq. (4.17)
in the equivalent forrn

a~(n) = ~ e (n) aek(n) avk(n)
ayj(n) k k avk(n) ayj(n)

However, from Fig. 4.4, we note that

ek(n) = dk(n) - Yk(n)

neuron k is an output node

Hence

aek(n)
avk(n) = -<pk(vk(n))

We also note from Fig. 4.4 that for neuron k the induced local field is

m

vk(n) == 2: wkj(n)yj(n)
j=O

. (4.18)

(4.19)

(4.20)

(4.21)

where m is the total number of inputis (excluding the bias) applied to neuron k. Here
again, the synaptic weight wk0(n) is equal to the bias bk(n) applied to neuron k, and the

Output layerHidden layer

Desired output

Figure 7: Signal-flow graph for backprop [Hay99, FIGURE 4.4].

The main idea of the algorithm is to minimise the cost/loss function, expressed as
the average squared error energy:

ℰav ≜ 1
𝑁

𝑁
∑
𝑛=1

ℰ[𝑛], ℰ[𝑛] ≜ 1
2 ∑

𝑘
𝑒2

𝑘[𝑛], (2)

where 𝑘 indexes all output neurons, and 𝑒𝑘[𝑛] is as defined in Table 1.

� Detail: Logit, softmax and cross-entropy loss [Cha19, pp. 11-14]

In the contemporary formulation, the outputs of an ANN for a classification
task serve as probability values for all possible classes; the class associated
with the highest probability value is chosen as the predicted class.
For the outputs to serve as probability values, the outputs must be nonneg-
ative and add up to 1; the mathematical trick to ensure the outputs satisfy
these conditions is using the softmax function as the activation function of

7

the output layer:

𝜎(⃗𝑦[𝑛])𝑘 = 𝑒𝑦𝑘[𝑛]

∑𝑘 𝑒𝑦𝑘[𝑛] . (3)

The non-normalised values leaving the output neurons and entering the soft-
max function (acting as a normalisation function) are called logits.
The contemporary alternative to the loss function in (2) is the cross-entropy
loss function, defined as the negative log function of the output of the softmax
function corresponding to the ground-truth class.

The backprop algorithm runs in two passes:

• In the forward pass, the output of each neuron is computed starting from the
first hidden layer to the output layer.
All synaptic weights remain unchanged.
At the output layer, the error for each neuron is computed, i.e., for neuron 𝑘, the
error is 𝑒𝑘[𝑛] as defined in Table 1.

• In the backward pass, the first step is to compute the local gradient for each
output neuron, i.e., for neuron 𝑘 in the output layer, the local gradient 𝛿𝑘[𝑛] is
computed (using the chain rule in the process) as

𝛿𝑘[𝑛] ≜ − 𝜕ℰ[𝑛]
𝜕𝑣𝑘[𝑛] = 𝑒𝑘[𝑛] 𝜑′(𝑣𝑘[𝑛]). (4)

� Detail: Derivation of (4)
By the chain rule,

𝜕ℰ[𝑛]
𝜕𝑣𝑘[𝑛] = 𝜕ℰ[𝑛]

𝜕𝑒𝑘[𝑛]
𝜕𝑒𝑘[𝑛]
𝜕𝑦𝑘[𝑛]

𝜕𝑦𝑘[𝑛]
𝜕𝑣𝑘[𝑛] = 𝑒𝑘[𝑛] ⋅ (−1) ⋅ 𝜑′(𝑣𝑘[𝑛]).

The weight 𝑤𝑘𝑗[𝑛] is updated as

𝑤𝑘𝑗[𝑛 + 1] = 𝑤𝑘𝑗[𝑛] + Δ𝑤𝑘𝑗[𝑛], (5)

where Δ𝑤𝑘𝑗[𝑛] is defined by the delta rule, based on the method of gradient
descent, as

Δ𝑤𝑘𝑗[𝑛] ≜ −𝜂 𝜕ℰ[𝑛]
𝜕𝑤𝑘𝑗[𝑛] = 𝜂𝛿𝑘[𝑛]𝑦𝑗[𝑛]. (6)

𝜂 is the learning rate. The negative sign in (6) effects gradient descent, i.e., seeks
direction of change in 𝑤 that reduces ℰ.

8

https://developers.google.com/machine-learning/glossary#logits
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html#cross-entropy
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html#cross-entropy

� Detail: Derivation of (6)
By the chain rule,

𝜕ℰ[𝑛]
𝜕𝑤𝑘𝑗[𝑛] = 𝜕ℰ[𝑛]

𝜕𝑒𝑘[𝑛]
𝜕𝑒𝑘[𝑛]
𝜕𝑦𝑘[𝑛]

𝜕𝑦𝑘[𝑛]
𝜕𝑣𝑘[𝑛]

𝜕𝑣𝑘[𝑛]
𝜕𝑤𝑘𝑗[𝑛]

= 𝑒𝑘[𝑛] ⋅ (−1) ⋅ 𝜑′(𝑣𝑘[𝑛]) ⋅ 𝑦𝑗[𝑛] = −𝑒𝑘[𝑛] 𝜑′(𝑣𝑘[𝑛])𝑦𝑗[𝑛].

Substituting (4) into the preceding equation gives us

𝜕ℰ[𝑛]
𝜕𝑤𝑘𝑗[𝑛] = −𝛿𝑘[𝑛]𝑦𝑗[𝑛].

The error terms are propagated backward to the last hidden layer in the follow-
ing manner.
For neuron 𝑗 in this hidden layer, the local gradient 𝛿𝑗[𝑛] is defined as

𝛿𝑗[𝑛] ≜ − 𝜕ℰ[𝑛]
𝜕𝑣𝑗[𝑛] = ⎛⎜⎜

⎝
∑

𝑘
𝛿𝑘[𝑛]𝑤𝑘𝑗[𝑛]⎞⎟⎟

⎠
𝜑′(𝑣𝑗[𝑛]), (7)

where 𝑘 indexes all neurons connected to neuron 𝑗 on the right side neuron 𝑗.

By comparing equations (4) and (7), notice that the error term is 𝑒𝑘 for the
output neuron 𝑘, but ∑𝑘 𝛿𝑘[𝑛]𝑤𝑘𝑗[𝑛] for the hidden neuron 𝑗.

� Detail: Derivation of (7)
By the chain rule,

𝜕ℰ[𝑛]
𝜕𝑣𝑗[𝑛] = 𝜕ℰ[𝑛]

𝜕𝑦𝑗[𝑛]
𝜕𝑦𝑗[𝑛]
𝜕𝑣𝑗[𝑛]

= ⎛⎜⎜
⎝

∑
𝑘

𝜕ℰ[𝑛]
𝜕𝑒𝑘[𝑛]

𝜕𝑒𝑘[𝑛]
𝜕𝑦𝑗[𝑛]

⎞⎟⎟
⎠

𝜑′(𝑣𝑗[𝑛])

= ⎛⎜⎜
⎝

∑
𝑘

𝑒𝑘[𝑛] 𝜕𝑒𝑘[𝑛]
𝜕𝑣𝑘[𝑛]

𝜕𝑣𝑘[𝑛]
𝜕𝑦𝑗[𝑛]

⎞⎟⎟
⎠

𝜑′(𝑣𝑗[𝑛])

= ⎛⎜⎜
⎝

∑
𝑘

𝑒𝑘[𝑛] ⋅ − 𝜑′(𝑣𝑘[𝑛]) ⋅ 𝑤𝑘𝑗[𝑛]⎞⎟⎟
⎠

𝜑′(𝑣𝑗[𝑛]).

Substituting (4) into the above gives us

𝜕ℰ[𝑛]
𝜕𝑣𝑗[𝑛] = − ⎛⎜⎜

⎝
∑

𝑘
𝛿𝑘[𝑛]𝑤𝑘𝑗[𝑛]⎞⎟⎟

⎠
𝜑′(𝑣𝑗[𝑛]).

The weight 𝑤𝑗𝑖[𝑛] is updated as

9

𝑤𝑗𝑖[𝑛+1] = 𝑤𝑗𝑖[𝑛]+Δ𝑤𝑗𝑖[𝑛] = 𝑤𝑗𝑖[𝑛]−𝜂 𝜕ℰ[𝑛]
𝜕𝑤𝑗𝑖[𝑛] = 𝑤𝑗𝑖[𝑛]+𝜂𝛿𝑗[𝑛]𝑦𝑖[𝑛].

(8)

Compare (8) with (5)–(6).
The procedure is repeated for the layer to the left of the current layer, i.e., (7)
and (8) are invoked with the appropriate subscripts, until the first hidden layer
is reached.

Backpropagation with the delta rule has several limitations [Hay99, Sec. 4.16]:

• Mostly notably, convergence is not guaranteed and is slow. In fact, empirical
observations indicate that local convergence rates are linear.

• Secondly, it might be trapped in a local minimum, where a small change in the
synaptic weights increases the cost function. This is undesirable especially if the
global minimum is significantly lower than the local minimum.

• Furthermore, backpropagation does not scale for certain problems, in the sense
that the computation time increases exponentially with the number of inputs.

The equations (4)–(8) are based on the definition of the loss function in (2). For any
loss function, the general method of stochastic gradient descent is applicable.
Adam is a variation of the stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order moments [KB15].

• Adam is implemented in major machine learning libraries, including PyTorch,
Tensorflow and scikit-learn.

4 Brief historical notes

Research on the ANNs dates back to the 1940s, when McCulloch and Pitts pro-
posed their neuron model [SVdM96, pp. 3-4].
Rosenblatt invented perceptrons in the 1950s [Ros57, Ros58].
Minsky and Papert showed the theoretical limits of perceptrons in the 1960s, and
following that progress stalled for 20 odd years.
It is not until Hopfield revived the field in the 1980s that self-organising map and
backpropagation were proposed.
Today, ANNs continue to blossom, especially in the form of DNNs.
Algorithmically, ANNs can be used for pattern matching and classification, cluster-
ing, function approximation, prediction/forecasting, optimisation, content-addressable
memory, vector quantisation, control and more [JMM96].
Due to this rich set of features, ANNs have enabled a broad range of applications
in engineering, information technology, health sciences, natural sciences, finance,
security, and many other areas [JMM96].

10

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

5 References

[Bar93] A. Barron, Universal approximation bounds for superpositions of a sig-
moidal function, IEEE Transactions on Information Theory 39 no. 3
(1993), 930–945. https://doi.org/10.1109/18.256500.

[Cha19] E. Charniak, Introduction to Deep Learning, MIT Press, 2019. Available
at https://ebookcentral.proquest.com/lib/unisa/reader.action?

docID=6331506.
[Cic15] P. Cichosz, Data Mining Algorithms: Explained Using R, Wiley, 2015.

https://doi.org/10.1002/9781118950951.
[DSC22] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, Activation

functions in deep learning: A comprehensive survey and bench-
mark, Neurocomputing 503 (2022), 92–108, code at https://github.

com/shivram1987/ActivationFunctions. https://doi.org/10.1016/

j.neucom.2022.06.111.
[G2́2] A. Géron, Hands-On Machine Learning with Scikit-Learn,

Keras, and TensorFlow, 3rd ed., O’Reilly Media, Inc., 2022.
Available at https://learning.oreilly.com/library/view/

hands-on-machine-learning/9781098125967/.
[GBC16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT

Press, 2016. Available at http://www.deeplearningbook.org.
[HM95] J. Han and C. Moraga, The influence of the sigmoid function parame-

ters on the speed of backpropagation learning, in From Natural to Ar-
tificial Neural Computation (J. Mira and F. Sandoval, eds.), Springer
Berlin Heidelberg, Berlin, Heidelberg, 1995, pp. 195–201.

[Hay99] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.,
Pearson Education, Inc., 1999.

[Hay09] S. Haykin, Neural Networks and Learning Machines, 3rd ed., Pearson
Education, Inc., 2009.

[JMM96] A. Jain, J. Mao, and K. M. Mohiuddin, Artificial neural networks: a
tutorial, Computer 29 no. 3 (1996), 31–44. https://doi.org/10.1109/
2.485891.

[KB15] D. P. Kingma and J. L. Ba, Adam: A method for stochastic optimization,
in ICLR, 2015. Available at https://arxiv.org/abs/1412.6980.

[LLPS93] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedfor-
ward networks with a nonpolynomial activation function can approx-
imate any function, Neural Networks 6 no. 6 (1993), 861–867. https:
//doi.org/10.1016/S0893-6080(05)80131-5.

[LL96] C. Lin and C. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent Systems, Prentice Hall, 1996.

[MR88] J. McClelland and D. Rumelhart, Explorations in Parallel Distributed
Processing, MIT Press, 1988.

11

https://doi.org/10.1109/18.256500
https://ebookcentral.proquest.com/lib/unisa/reader.action?docID=6331506
https://ebookcentral.proquest.com/lib/unisa/reader.action?docID=6331506
https://doi.org/10.1002/9781118950951
https://github.com/shivram1987/ActivationFunctions
https://github.com/shivram1987/ActivationFunctions
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
http://www.deeplearningbook.org
https://doi.org/10.1109/2.485891
https://doi.org/10.1109/2.485891
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1016/S0893-6080(05)80131-5

[Ros57] F. Rosenblatt, The Perceptron: A Perceiving and Recognizing Automa-
ton (Project Para), Tech. Report 85-460-1, Cornell Aeronautical Labo-
ratory, Inc., January 1957.

[Ros58] F. Rosenblatt, The perceptron: A probabilistic model for informa-
tion storage and organization in the brain, Psychological Review 65
no. 6 (1958), 386–408. Available at https://oce.ovid.com/article/

00006832-195811000-00007.
[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning repre-

sentations by back-propagating errors, Nature 323 (1986), 533–536.
https://doi.org/10.1038/323533a0.

[SVdM96] J. A. Suykens, J. P. Vandewalle, and B. de Moor, Artificial Neural Net-
works for Modelling and Control of Non-Linear Systems, Springer New
York, NY, 1996. https://doi.org/10.1007/978-1-4757-2493-6.

[SCYE17] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, Efficient processing of
deep neural networks: A tutorial and survey, Proceedings of the IEEE
105 no. 12 (2017), 2295–2329. https://doi.org/10.1109/JPROC.2017.
2761740.

12

https://oce.ovid.com/article/00006832-195811000-00007
https://oce.ovid.com/article/00006832-195811000-00007
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/978-1-4757-2493-6
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740

	Introduction
	Network architectures
	Learning by error backpropagation
	Brief historical notes
	References

