
Abstract algebra
Groups

Dr. Yee Wei Law ⟨yeewei.law@unisa.edu.au⟩

2023-08-21

The mathematical area of abstract algebra, especially the theory of Galois fields,
plays an important role in cryptography.
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1 Introduction

Traditionally, mathematics has been separated into three main areas, namely al-
gebra, geometry and analysis [COFMR19, Preface].
Abstract algebra or modern algebra is the theory of algebraic structures [COFMR19,
Sec. 1.1].

• An algebraic structure is a set together with one or more binary operations on it
satisfying axioms governing the operations.

• The theory of these structures arose from the study of numbers (e.g., integers,
rationals, reals) and equations (e.g., polynomial equations).

• There are many algebraic structures, but the most relevant to us (engineers) are
groups, rings, fields, vector space and Hilbert space.

• A finite field or Galois field is a field with a finite number of elements.
• The theory of finite fields is a branch of abstract algebra that has come to the fore

because of its diverse applications in combinatorics, coding theory, cryptology,
and many others [KL21, Preface].

We start our journey in finite fields with groups, the most general type of “useful”
structure.

• Rings, fields and other “useful” structures are specific types of groups.
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2 Groups

A � popular introduction to group theory borrows the appeal of
the Rubik’s cube, but instead of going on a Rubik’s cube adven-
ture, let us start with the textbook definition:

Definition 1: Group [Lov22, Definition 1.2.1]

A pair (𝐺, ⋆), consisting of set 𝐺 and binary operation ⋆ on 𝐺, that satisfies
the three axioms:
Axiom 1 ⋆ is associative, i.e., (𝑎 ⋆ 𝑏) ⋆ 𝑐 = 𝑎 ⋆ (𝑏 ⋆ 𝑐), ∀𝑎, 𝑏, 𝑐 ∈ 𝐺.
Axiom 2 There exists an element 𝑒 ∈ 𝐺, called the identity of 𝐺, such that
𝑎 ⋆ 𝑒 = 𝑒 ⋆ 𝑎 = 𝑎, ∀𝑎 ∈ 𝐺.

Axiom 3 For each 𝑎 ∈ 𝐺, there exists an element 𝑎−1 ∈ 𝐺, called the inverse
of 𝑎, such that 𝑎 ⋆ 𝑎−1 = 𝑎−1 ⋆ 𝑎 = 𝑒.
� 𝑎−1 should be understood as a symbol rather than specifically as a
multiplicative inverse.

Notes:

• 𝐺 is customarily “abused” to denote not only the set but also the group.
• Axiom 2 implies 𝐺 ≠ ∅. 𝐺 can have a finite or infinite number of elements.
• The identity is also called the neutral element or unit element [Coh03, Sec. 2.1].

• A group’s identity is unique. Proof: Suppose 𝑒1 and 𝑒2 are
two different identities, then 𝑒1⋆𝑒2 = 𝑒1 = 𝑒2, contradicting
the original supposition.

• Axiom 3 implies (𝑎 ⋆ 𝑏)−1 = 𝑏−1 ⋆ 𝑎−1.
• Every element has exactly one inverse.
• A group is not necessarily abelian or commutative. An

abelian group satisfies the axiom: 𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎, ∀𝑎, 𝑏 ∈ 𝐺. AB=BA is an
abelian group.

It is customary to write

• ⋆ as ⋅ for generic groups, in contexts
where ⋅would not be misunderstood as
multiplication.

Multiplicative notation

𝑎−𝑛 = (𝑎−1)𝑛,
𝑎𝑛𝑎𝑚 = 𝑎𝑛+𝑚,
(𝑎𝑛)𝑚 = 𝑎𝑛𝑚.

• ⋆ as + for abelian groups, in contexts
where + would not be misunderstood
as addition.

Additive notation

(−𝑛)𝑎 = 𝑛(−𝑎),
𝑛𝑎 + 𝑚𝑎 = (𝑛 + 𝑚)𝑎,
𝑚(𝑛𝑎) = (𝑚𝑛)𝑎.
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Examples of groups (see [Sma16, Sec. A.6], [Gar01, Sec. 17.1]):

Example 1

The pairs ℚ+ ≜ (ℚ,+), ℝ+ ≜ (ℝ,+)
andℂ+ ≜ (ℂ,+) are abelian groups.

Example 2

The pairs ℚ∗ ≜ (ℚ⧵{0}, ⋅), ℝ∗ ≜ (ℝ⧵
{0}, ⋅) andℂ∗ ≜ (ℂ⧵{0}, ⋅) are abelian
groups.

Example 3

The pair ℤ+ ≜ (ℤ,+) is an abelian
group.
• The identity is 0.
• The inverse of 𝑎 ∈ ℤ is −𝑎 ∈ ℤ.

Example 4

The pair (ℤ, −) is not a group since
(𝑎 − 𝑏) − 𝑐 ≠ 𝑎 − (𝑏 − 𝑐).
The pair (ℤ, ×) is not a group since
only the inverse of 1 exists in ℤ.

Example 5

When 𝐺 = {0, 1, 2} and ⋆ is addi-
tion modulo 3, (𝐺, ⋆) is an abelian
group.
• Associativity and commutativity

are straightforward to prove al-
though tedious.

• The identity is 0.
• The inverses are 0, 2, 1 respectively.

Example 6

When 𝐺 = {1, 2} and ⋆ is multipli-
cation modulo 3, (𝐺, ⋆) is an abelian
group.
• Associativity and commutativity

are straightforward to prove al-
though tedious.

• The identity is 1.
• Each element is its own inverse.

The set of integers modulo 𝑛 has a special place in cryptography.

Definition 2: Congruence [LN94, Definition 1.4]

For 𝑛 ∈ ℕ and arbitrary 𝑎, 𝑏 ∈ ℤ, if 𝑎 − 𝑏 is a multiple of 𝑛, i.e., 𝑎 = 𝑏 + 𝑘𝑛 for
some integer 𝑘 (equivalent, 𝑏 = 𝑎 + 𝑙𝑛 for some integer 𝑙), we write

𝑎 ≡ 𝑏 mod 𝑛,

and say that 𝑎 is congruent to 𝑏 modulo 𝑛.

Congruence modulo 𝑛 is an equivalence relation:

Definition 3: Equivalence relation [LN94, p. 4]

A subset 𝑅 of 𝑆 × 𝑆 is called an equivalence relation on set 𝑆 if it is
reflexive: (𝑠, 𝑠) ∈ 𝑅, ∀𝑠 ∈ 𝑆; (1)
symmetric: (𝑠, 𝑡) ∈ 𝑅 ⟹ (𝑡, 𝑠) ∈ 𝑅, ∀𝑠, 𝑡 ∈ 𝑆; (2)
transitive: (𝑠, 𝑡), (𝑡, 𝑢) ∈ 𝑅 ⟹ (𝑠, 𝑢) ∈ 𝑅, ∀𝑠, 𝑡, 𝑢 ∈ 𝑆. (3)

If we collect all the elements of some set 𝑆 equivalent to some element 𝑠 ∈ 𝑆,
then we get the equivalence class of 𝑠, denoted by [DF99, Gar01]:

̄𝑠 = {𝑡 ∈ 𝑆|(𝑠, 𝑡) ∈ 𝑅}.

� Some texts [LN94] use the notation [𝑠] instead of ̄𝑠.
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If the equivalence relation 𝑅 is congruence modulo 𝑛, then for 𝑎 ∈ {0,… , 𝑛 − 1}, we
call the set

̄𝑎 = {𝑎 + 𝑘𝑛|𝑘 ∈ ℤ}

the congruence class or residue class of 𝑎.

• Given integer 𝑛, ℤ+𝑛 denotes the set
𝐺 = {0, 1,… , 𝑛 − 1} with addition mod-
ulo 𝑛 as the operation.

• ℤ+𝑛 is an additive abelian group
[LN94].

• Other notations include ℤ/𝑛+ [Gar01]
and (ℤ/𝑛ℤ)+ [DF99, Sma16].

• Given integer 𝑛, ℤ×𝑛 denotes the set
𝐺 = {1,… , 𝑛 − 1} with multiplication
modulo 𝑛 as the operation.

• For prime 𝑛, ℤ×𝑛 is a multiplicative
abelian group.

• Other notations include ℤ/𝑛× and
(ℤ/𝑛ℤ)×.

• � Symbols × and ∗ are interchange-
able.

Example 7

The group ℤ+3 contains three congruence classes, namely 0̄, 1̄ and 2̄. Notice
by slight abuse of notation,

̄𝑎 + 3 = ̄𝑎.

Since adding 3 to any congruence class cycles back to the congruence class,
ℤ+3 is an example of a cyclic group.

Definition 4: Cyclic group and generator [LN94, Definition 1.3]

A group 𝐺 is cyclic if there is an element 𝑎 ∈ 𝐺 such that for any 𝑏 ∈ 𝐺, there
is some integer 𝑗 with

• 𝑏 = 𝑎𝑗 if 𝐺 is multiplicative; or
• 𝑏 = 𝑗𝑎 if 𝐺 is additive.

The element 𝑎 is a generator of 𝐺.
Define

⟨𝑎⟩ = {
{𝑎0, 𝑎1,…} for multiplicative 𝐺,
{0𝑎, 1𝑎,…} for additive 𝐺,

then ⟨𝑎⟩ = 𝐺.

Not every element in a cyclic group is necessarily a generator.

Example 8

Any group ℤ+𝑛 is a cyclic group and the congruence class 1̄ is a generator. This
group has 𝑛 elements and we say the order of this group is 𝑛.

Definition 5: Order [LN94, Definitions 1.5 and 1.9]

Suppose group 𝐺 is finite, then the order of 𝐺, denoted by |𝐺|, is the number
of elements in 𝐺.
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The order of 𝑔 ∈ 𝐺 (where 𝑔 not necessarily a generator), denoted by |𝑔|, is the
smallest integer 𝑖 with

{
𝑔𝑖 = 1 for multiplicative 𝐺,
𝑖𝑔 = 0 for additive 𝐺.

The above double definition of “order” is motivated by these facts:

• |𝑔| = 𝑛 ⟺ |⟨𝑔⟩| = 𝑛, where ⟨𝑔⟩ is not necessarily 𝐺; see [Sma16, Lemma 100.31],
[FM19, Lemma 8.26], [Dav21, Corollary 4.27].

• If 𝑎 is an element of finite group 𝐺, then

{
𝑎|𝐺| = 1 for multiplicative 𝐺,
|𝐺|𝑎 = 0 for additive 𝐺 [Dav21, Corollary 8.16].

Lagrange’s theorem (see Theorem 3) facilitates a straightforward proof for the
above, so our ensuing discussion will lead to the immensely useful theorem.

Example 9

An element of ℤ∗𝑛 that has an inverse is called a unit (� not to be confused
with “unit element”).
An element of ℤ∗𝑛 is a unit iff gcd(𝑎, 𝑛) = 1 [Dav21, Lemma 4.4].
Proof: For necessity, observe that 𝑎𝑎−1 ≡ 1 mod 𝑛 if 𝑎−1 is the inverse of 𝑎.

Therefore, 𝑎𝑎−1 − 1 = 𝑘𝑛 for some integer factor 𝑘, or equivalently,
𝑎𝑎−1 − 𝑘𝑛 = 1, which by Bezout’s lemma, implies gcd(𝑎, 𝑛) = 1.
For sufficiency, gcd(𝑎, 𝑛) = 1 ⟹ 𝑎𝑠 + 𝑛𝑡 = 1 for some integer
coefficients 𝑠 and 𝑡. The coefficient 𝑠 satisfies the definition of an
inverse for 𝑎.

Denote by 𝑈𝑛 the set of units of ℤ∗𝑛 and by 𝜙(𝑛) — called Euler’s to-
tient function — the number of positive integers not exceeding 𝑛 which are
relatively prime to 𝑛.
Then, |𝑈𝑛| = 𝜙(𝑛) [Dav21, Corollary 4.7].

The order of a group says nothing about the number of generators in the group.

Example 10

The following table is a so-called Cayley table for ℤ+6 :
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1. Groups 5

operation (which we shall again write as + , although it is certainly not
ordinary addition) by

[fl] + [fc] = [fl + 6] , (1.1)

where a and ft are any elements of the respective sets [a] and [ft] and the
sum a + b on the right is the ordinary sum of a and b. In order to show that
we have actually defined an operation—that is, that this operation is well
defined—we must verify that the image element of the pair ([a],[ft]) is
uniquely determined by [a] and [ft] alone and does not depend in any way
on the representatives a and ft. We leave this proof as an exercise. Associa-
tivity of the operation in (1.1) follows from the associativity of ordinary
addition. The identity element is [0] and the inverse of [a] is [ - a]. Thus the
elements of the set {[0], [1 ] , . . . , [w - 1]} form a group.

1.5. Definition. The group formed by the set {[0], [ 1 ],...,[ n - 1 ]} of equiv-
alence classes modulo n with the operation (1.1) is called the group of
integers modulo n and denoted by Zn.

Zn is actually a cyclic group with the equivalence class [1] as a
generator, and it is a group of order n according to the following definition.

1.6. Definition. A group is called finite (resp. infinite) if it contains
finitely (resp. infinitely) many elements. The number of elements in a finite
group is called its order. We shall write \G\ for the order of the finite
group G.

There is a convenient way of presenting a finite group. A table
displaying the group operation, nowadays referred to as a Cayley table, is
constructed by indexing the rows and the columns of the table by the group
elements. The element appearing in the row indexed by a and the column
indexed by ft is then taken to be ab.

1.7. Example. The Cayley table for the group Z6 is:

-1-

[0]
[1]
[2]
[3]
[4]
[5]

[0]

[0]
[1]
[2]
[3]
[4]
[5]

[1]

[1]
[2]
[3]
[4]
[5]
[0]

[2]

[2]
[3]
[4]
[5]
[0]
[1]

[3]

[3]
[4]
[5]
[0]
[1]
[2]

[4]

[4]
[5]
[0]
[1]
[2]
[3]

[5]

[5]
[0]
[1]
[2]
[3]
[4] •

A group G contains certain subsets that form groups in their own
right under the operation of G. For instance, the subset {[0],[2],[4]} of Z6 is
easily seen to have this property.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139172769.003
Downloaded from https://www.cambridge.org/core. University of South Australia, on 18 Mar 2022 at 02:06:40, subject to the Cambridge Core

The group order is 6 and the number of generators is 1.
Notice {[0], [2], [4]} is cyclic in terms of congruence modulo 6. More precisely,
it is a cyclic subgroup of ℤ+6 .

Definition 6: Subgroup [LN94, Definition 1.8], [DF99, Sec. 2.1]

A subset 𝐻 of the group 𝐺 is a subgroup of 𝐺 if 𝐻 is itself a group with respect
to the operation of 𝐺.
Subgroups of 𝐺 other than the trivial subgroups, namely {𝑒} and 𝐺, are called
nontrivial subgroups of 𝐺. Subgroups of 𝐺 that are not 𝐺 itself are proper
subgroups.
We write

{
𝐻 ≤ 𝐺 when 𝐻 is a subgroup of 𝐺,
𝐻 < 𝐺 when 𝐻 is a proper subgroup of 𝐺.

Theorem 1: [LN94, Theorem 1.15(i)]

Every subgroup of a cylic group is cyclic.

Proof. Given multiplicative cyclic group 𝐺 = ⟨𝑎⟩, let 𝐻 be a nontrivial subgroup of
𝐺. Suppose 𝑎𝑏 ∈ 𝐻, then 𝑎−𝑏 ∈ 𝐻. This means 𝐻 contains at least one positive
power of 𝑎. Let 𝑑 be the least positive exponent such that 𝑎𝑑 ∈ 𝐻 (and of course
𝑎−𝑑 ∈ 𝐻). Suppose 𝑐 = 𝑑𝑞 + 𝑟, where 𝑞, 𝑟 ∈ ℤ and 0 ≤ 𝑟 < 𝑑, then 𝑎𝑐 × (𝑎−𝑑)𝑞 = 𝑎𝑟.
Since 𝑟 < 𝑑 but we assumed 𝑑 is the least positive exponent, 𝑎𝑟 ∉ 𝐻 ⟹ 𝑎𝑐 ∉ 𝐻.
Therefore we must have 𝐻 = ⟨𝑎𝑑⟩, a cyclic subgroup.

Example 11

Let the operation be multiplication modulo 8, then 𝐺 = {1̄, 3̄, ̄5, ̄7} is a cyclic
group [FM19, Example 8.23].

• ⟨1̄⟩ = {1̄} is a trivial cyclic subgroup of 𝐺.
• ⟨3̄⟩ = {1̄, 3̄} is a cyclic subgroup of 𝐺.
• ⟨ ̄5⟩ = {1̄, ̄5} is a cyclic subgroup of 𝐺.
• ⟨ ̄7⟩ = {1̄, ̄7} is a cyclic subgroup of 𝐺.

Note none of the elements is a generator.
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Theorem 2: [LN94, Theorem 1.15(ii)]

In a finite multiplicative cyclic group ⟨𝑔⟩ of order 𝑛, the element 𝑔𝑚, where
𝑚 ∈ ℕ, generates a subgroup of order 𝑛/ gcd(𝑚, 𝑛).

Proof. By definition of order, 𝑛 is the least positive integer such that 𝑔𝑛 = 1, where 1
is the identity element of ⟨𝑔⟩. It is straightforward to show that ⟨𝑔𝑚⟩ ≤ ⟨𝑔⟩. Suppose
|𝑔𝑚| = 𝑘, then 𝑘 is the least positive integer such that 𝑔𝑚𝑘 = 1. Furthermore, 𝑚𝑘
must be the least common multiple of 𝑚 and 𝑛, i.e.,

𝑚𝑘 = lcm(𝑚, 𝑛) ⟹ 𝑘 = 𝑚𝑛
𝑚 gcd(𝑚, 𝑛) =

𝑛
gcd(𝑚, 𝑛).

Example 12

Let the operation be multiplication modulo 10, then 𝐺 = {1̄, 3̄, ̄7, 9̄} is a cyclic
group [FM19, Example 8.24].

• ⟨1̄⟩ = {1̄} is a trivial cyclic subgroup of 𝐺.
• ⟨3̄⟩ = {1̄, 3̄, ̄7, 9̄} is a trivial cyclic subgroup of 𝐺.
• ⟨ ̄7⟩ = {1̄, 3̄, ̄7, 9̄} is a trivial cyclic subgroup of 𝐺.
• ⟨9̄⟩ = {1̄, 9̄} is a cyclic subgroup of 𝐺.

3̄ and ̄7 are generators of 𝐺. As shown above, 3̄2 = 9̄ does indeed have order
4/ gcd(2, 4) = 2.

Theorem 2 tells us something useful about the orders of cyclic subgroups. The next
theorem we are going to learn about will tell us something useful about the orders
of finite subgroups in general — cyclic or not cyclic — but first we need to know
what cosets are.

Definition 7: Coset [LN94, pp. 6-7], [DF99, p. 78], [Gar01, Secs. 17.3-17.4],
[Sma16, Definition 100.37], [Dav21, Sec. 8.1]

Let (𝐺, ⋆) be a group and 𝐻 ≤ 𝐺. For any 𝑔 ∈ 𝐺, the left coset of 𝐻 in 𝐺
(containing 𝑔) is defined as

𝑔 ⋆ 𝐻 = {𝑔 ⋆ ℎ|ℎ ∈ 𝐻}.

Similarly, the right coset of 𝐻 in 𝐺 (containing 𝑔) is defined as

𝐻 ⋆ 𝑔 = {ℎ ⋆ 𝑔|ℎ ∈ 𝐻}.

These alternative terms are equivalent:

• left/right coset of 𝐻 with respect to 𝑔
• left/right translate of 𝐻 by 𝑔
• left/right coset of 𝐺 modulo 𝐻

Any element of a coset is called a representative of the coset.
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In simpler terms, a coset is the result of taking a
subgroup and “shifting” it either on the left or on
the right.
• Two different “shifts” can result in the same coset.
• Left and right cosets coincide when the group op-

eration is commutative.
• If 𝐻 is a finite subgroup of 𝐺, then every coset of 𝐻

in𝐺 has the same number of elements as𝐻 [LN94,
Theorem 1.12].

Figure 1: Things that are not
cosets.

• Given 𝑔1 ≠ 𝑔2, both elements of 𝐺, if 𝐻 is a subgroup of 𝐺, then

{
𝑔1 ⋆ 𝐻 = 𝑔2 ⋆ 𝐻 ⟺ inv(𝑔1) ⋆ 𝑔2 ∈ 𝐻,
𝑔1 ⋆ 𝐻 ∩ 𝑔2 ⋆ 𝐻 = ∅ otherwise [Dav21, Theorem 8.5].

The same observation applies to right cosets. These imply cosets form a partition
of 𝐺.

• � Cosets (coupled with the original group operation) are not necessarily groups.
𝑔 ⋆ 𝐻 is a subgroup of 𝐺 ⟺ 𝑔 ∈ 𝐻 [Dav21, Theorem 8.5].

Definition 8: Index [LN94, Definition 1.13], [DF99, Sec. 3.2], [Gar01, Sec.
17.4], [Dav21, Sec. 8.4]

If the subgroup 𝐻 of 𝐺 only yields finitely many distinct left/right cosets of 𝐻
in 𝐺, then the number of such cosets is called the index of 𝐻 in 𝐺, and denoted
by |𝐺 ∶ 𝐻| or [𝐺 ∶ 𝐻].

Whether index is defined for left or right cosets does not matter because there are
as many distinct left cosets as right ones [Dav21, Theorem 8.8].

Example 13

This example is from [LN94, p. 6]. If 𝐺 = ℤ+12, then 𝐻 = ({0̄, 3̄, 6̄, 9̄}, +) ≤ 𝐺.
The left cosets of 𝐻 in 𝐺 are

0̄ + 𝐻 = 3̄ + 𝐻 = 6̄ + 𝐻 = 9̄ + 𝐻 ={0̄, 3̄, 6̄, 9̄},
1̄ + 𝐻 = 4̄ + 𝐻 = ̄7 + 𝐻 = 10 + 𝐻={1̄, 4̄, ̄7, 10},
2̄ + 𝐻 = ̄5 + 𝐻 = 8̄ + 𝐻 = 11 + 𝐻={2̄, ̄5, 8̄, 11}.

The right cosets of 𝐻 in 𝐺 are exactly the same as the left cosets.
There are three distinct left/right cosets of 𝐻 in 𝐺, so |𝐺 ∶ 𝐻| = 3. Notice
|𝐺 ∶ 𝐻| = 3 multiplied by |𝐻| = 4 is exactly |𝐺| = 12.

The preceding example paves way for the subsequent very important theorem:
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Theorem 3: Lagrange’s theorem [LN94, Theorem 1.14], [DF99, Theorem 8],
[Sma16, Theorem 100.38]), [FM19, Theorem 8.27], [COFMR19, Theorem 9.4.4],
[Dav21, Sec. 8.3]

If 𝐻 is a subgroup of finite group 𝐺, then

|𝐺| = |𝐺 ∶ 𝐻||𝐻|,

which implies the order of 𝐻 divides the order of 𝐺.

The utility of Lagrange’s theorem is immediately apparent. For example, we can
use it to deduce if𝐺 is a finite group with identity element 𝑒, then ̄𝑎|𝐺| = ̄𝑒, ∀𝑎 ∈ 𝐺.
Quick proof: If |⟨𝑎⟩| = 𝑚, then ̄𝑎𝑚 = ̄𝑒 and by Lagrange’s theorem, |𝐺| = 𝑘𝑚 for
some integer 𝑘, and thus

̄𝑎|𝐺| = ( ̄𝑎𝑚)𝑘 = ̄𝑒.

The next application of Lagrange’s theorem is an important theorem:

Theorem 4: Euler’s theorem [FM19, Corollaries 8.28–8.29], [Dav21, Corollar-
ies 8.15–8.17]
If positive integers 𝑎 and 𝑛 satisfy gcd(𝑎, 𝑛) = 1, then

𝑎𝜙(𝑛) ≡ 1 mod 𝑛,

where 𝜙(𝑛) is Euler’s totient function.

Proof. Consider the finite group ℤ∗𝑛 and its subgroup 𝑈𝑛 consisting of the units of
ℤ∗𝑛.
By Example 9, if 𝑎 ∈ 𝐺 and gcd(𝑎, 𝑛) = 1, then 𝑎 ∈ 𝑈𝑛 and |𝑈𝑛| = 𝜙(𝑛). By La-
grange’s theorem,

̄𝑎|𝐺| = 1̄ = ̄𝑎𝑘|𝑈𝑛|,

for some integer 𝑘. Therefore,

̄𝑎𝑘|𝑈𝑛| = ( ̄𝑎𝜙(𝑛))𝑘 = 1̄.

In order for the preceding equation to be true for any 𝑘,

̄𝑎𝜙(𝑛) = 1̄ ⟹ 𝑎𝜙(𝑛) ≡ 1 mod 𝑛.

When 𝑛 is a prime, Euler’s theorem leads to Fermat’s little theorem:

𝑎𝑝 ≡ 𝑎 mod 𝑝, (4)

for prime 𝑝. Fermat’s little theorem forms the basis of the RSA cryptosystem [Opp05,
Sec. 14.2.1.3].
Lagrange’s theorem also gives rise to the following theorem, which the Diffie-
Hellman key exchange protocol depends on:
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Theorem 5: [Sma16, Lemma 100.40], [Dav21, Corollary 8.19]

Any group of prime order is cyclic.

Proof. Suppose 𝑎 is a non-identity element of prime-order group 𝐺, then ⟨𝑎⟩ is a
subgroup of 𝐺, and Lagrange’s theorem necessitates that |⟨𝑎⟩| divides |𝐺|. Since
|𝐺| is prime, |⟨𝑎⟩| must be either 1 or |𝐺|, but by definition of 𝑎, |⟨𝑎⟩| ≠ 1. Therefore,
|⟨𝑎⟩| = |𝐺| ⟹ 𝐺 = ⟨𝑎⟩.
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