Abstract algebra
 Groups

Dr. Yee Wei Law 〈yeewei.law@unisa.edu.au〉
2023-08-21

The mathematical area of abstract algebra, especially the theory of Galois fields, plays an important role in cryptography.

Contents

1	Introduction	1	3 References	10
2	Groups	2		

1 Introduction

Traditionally, mathematics has been separated into three main areas, namely algebra, geometry and analysis [COFMR19, Preface].
Abstract algebra or modern algebra is the theory of algebraic structures [COFMR19, Sec. 1.1].

- An algebraic structure is a set together with one or more binary operations on it satisfying axioms governing the operations.
- The theory of these structures arose from the study of numbers (e.g., integers, rationals, reals) and equations (e.g., polynomial equations).
- There are many algebraic structures, but the most relevant to us (engineers) are groups, rings, fields, vector space and Hilbert space.
- A finite field or Galois field is a field with a finite number of elements.
- The theory of finite fields is a branch of abstract algebra that has come to the fore because of its diverse applications in combinatorics, coding theory, cryptology, and many others [KL21, Preface].

We start our journey in finite fields with groups, the most general type of "useful" structure.

- Rings, fields and other "useful" structures are specific types of groups.

2 Groups

A popular introduction to group theory borrows the appeal of the Rubik's cube, but instead of going on a Rubik's cube adventure, let us start with the textbook definition:

Definition 1: Group [Lov22, Definition 1.2.1]

A pair (G, \star), consisting of set G and binary operation \star on G, that satisfies the three axioms:

Axiom $1 \star$ is associative, i.e., $(a \star b) \star c=a \star(b \star c), \forall a, b, c \in G$.
Axiom 2 There exists an element $e \in G$, called the identity of G, such that $a \star e=e \star a=a, \forall a \in G$.
Axiom 3 For each $a \in G$, there exists an element $a^{-1} \in G$, called the inverse of a, such that $a \star a^{-1}=a^{-1} \star a=e$.
A a^{-1} should be understood as a symbol rather than specifically as a multiplicative inverse.

Notes:

- G is customarily "abused" to denote not only the set but also the group.
- Axiom 2 implies $G \neq \varnothing$. G can have a finite or infinite number of elements.
- The identity is also called the neutral element or unit element [Coh03, Sec. 2.1].
- A group's identity is unique. Proof: Suppose e_{1} and e_{2} are two different identities, then $e_{1} \star e_{2}=e_{1}=e_{2}$, contradicting the original supposition.
- Axiom 3 implies $(a \star b)^{-1}=b^{-1} \star a^{-1}$.
- Every element has exactly one inverse.
- A group is not necessarily abelian or commutative. An abelian group satisfies the axiom: $a \star b=b \star a, \forall a, b \in G$.

It is customary to write

- \star as \cdot for generic groups, in contexts where • would not be misunderstood as multiplication.

Multiplicative notation

$$
\begin{aligned}
a^{-n} & =\left(a^{-1}\right)^{n}, \\
a^{n} a^{m} & =a^{n+m} \\
\left(a^{n}\right)^{m} & =a^{n m}
\end{aligned}
$$

- \star as + for abelian groups, in contexts where + would not be misunderstood as addition.

Additive notation

$$
\begin{aligned}
(-n) a & =n(-a), \\
n a+m a & =(n+m) a, \\
m(n a) & =(m n) a .
\end{aligned}
$$

Examples of groups (see [Sma16, Sec. A.6], [Gar01, Sec. 17.1]):

Example 1

The pairs $\mathbb{Q}^{+} \triangleq(\mathbb{Q},+), \mathbb{R}^{+} \triangleq(\mathbb{R},+)$ and $\mathbb{C}^{+} \triangleq(\mathbb{C},+)$ are abelian groups.

Example 3

The pair $\mathbb{Z}^{+} \triangleq(\mathbb{Z},+)$ is an abelian group.

- The identity is 0 .
- The inverse of $a \in \mathbb{Z}$ is $-a \in \mathbb{Z}$.

Example 5

When $G=\{0,1,2\}$ and \star is addition modulo $3,(G, \star)$ is an abelian group.

- Associativity and commutativity are straightforward to prove although tedious.
- The identity is 0 .
- The inverses are $0,2,1$ respectively.

Example 2

The pairs $\mathbb{Q}^{*} \triangleq(\mathbb{Q} \backslash\{0\}, \cdot), \mathbb{R}^{*} \triangleq(\mathbb{R} \backslash$ $\{0\}, \cdot)$ and $\mathbb{C}^{*} \triangleq(\mathbb{C} \backslash\{0\}, \cdot)$ are abelian groups.

Example 4

The pair $(\mathbb{Z},-)$ is not a group since $(a-b)-c \neq a-(b-c)$.
The pair (\mathbb{Z}, \times) is not a group since only the inverse of 1 exists in \mathbb{Z}.

Example 6

When $G=\{1,2\}$ and \star is multiplication modulo $3,(G, \star)$ is an abelian group.

- Associativity and commutativity are straightforward to prove although tedious.
- The identity is 1 .
- Each element is its own inverse.

The set of integers modulo n has a special place in cryptography.

Definition 2: Congruence [LN94, Definition 1.4]

For $n \in \mathbb{N}$ and arbitrary $a, b \in \mathbb{Z}$, if $a-b$ is a multiple of n, i.e., $a=b+k n$ for some integer k (equivalent, $b=a+\ln$ for some integer l), we write

$$
a \equiv b \quad \bmod n,
$$

and say that a is congruent to b modulo n.
Congruence modulo n is an equivalence relation:

Definition 3: Equivalence relation [LN94, p. 4]

A subset R of $S \times S$ is called an equivalence relation on set S if it is

$$
\begin{array}{ll}
\text { reflexive: }(s, s) \in R, & \forall s \in S ; \\
\text { symmetric: }(s, t) \in R \Longrightarrow(t, s) \in R, & \forall s, t \in S ; \\
\text { transitive: }(s, t),(t, u) \in R \Longrightarrow(s, u) \in R, \forall s, t, u \in S . \tag{3}
\end{array}
$$

If we collect all the elements of some set S equivalent to some element $s \in S$, then we get the equivalence class of s, denoted by [DF99, Gar01]:

$$
\bar{s}=\{t \in S \mid(s, t) \in R\} .
$$

A Some texts [LN94] use the notation [s] instead of \bar{s}.

If the equivalence relation R is congruence modulo n, then for $a \in\{0, \ldots, n-1\}$, we call the set

$$
\bar{a}=\{a+k n \mid k \in \mathbb{Z}\}
$$

the congruence class or residue class of a.

- Given integer n, \mathbb{Z}_{n}^{+}denotes the set - Given integer $n, \mathbb{Z}_{n}^{\times}$denotes the set $G=\{0,1, \ldots, n-1\}$ with addition modulo n as the operation.
- \mathbb{Z}_{n}^{+}is an additive abelian group • For prime $n, \mathbb{Z}_{n}^{\times}$is a multiplicative [LN94].
- Other notations include \mathbb{Z} / n^{+}[Gar01] • Other notations include \mathbb{Z} / n^{\times}and and $(\mathbb{Z} / n \mathbb{Z})^{+}$[DF99, Sma16]. $G=\{1, \ldots, n-1\}$ with multiplication modulo n as the operation. abelian group. $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
- Symbols \times and $*$ are interchangeable.

Example 7

The group \mathbb{Z}_{3}^{+}contains three congruence classes, namely $\overline{0}, \overline{1}$ and $\overline{2}$. Notice by slight abuse of notation,

$$
\bar{a}+3=\bar{a} .
$$

Since adding 3 to any congruence class cycles back to the congruence class, \mathbb{Z}_{3}^{+}is an example of a cyclic group.

Definition 4: Cyclic group and generator [LN94, Definition 1.3]

A group G is cyclic if there is an element $a \in G$ such that for any $b \in G$, there is some integer j with

- $b=a^{j}$ if G is multiplicative; or
- $b=j a$ if G is additive.

The element a is a generator of G.
Define

$$
\langle a\rangle= \begin{cases}\left\{a^{0}, a^{1}, \ldots\right\} & \text { for multiplicative } G, \\ \{0 a, 1 a, \ldots\} & \text { for additive } G\end{cases}
$$

then $\langle a\rangle=G$.
Not every element in a cyclic group is necessarily a generator.

Example 8

Any group \mathbb{Z}_{n}^{+}is a cyclic group and the congruence class $\overline{1}$ is a generator. This group has n elements and we say the order of this group is n.

Definition 5: Order [LN94, Definitions 1.5 and 1.9]

Suppose group G is finite, then the order of G, denoted by $|G|$, is the number of elements in G.

The order of $g \in G$ (where g not necessarily a generator), denoted by $|g|$, is the smallest integer i with

$$
\left\{\begin{array}{l}
g^{i}=1 \quad \text { for multiplicative } G, \\
i g=0 \text { for additive } G .
\end{array}\right.
$$

The above double definition of "order" is motivated by these facts:

- $|g|=n \Longleftrightarrow|\langle g\rangle|=n$, where $\langle g\rangle$ is not necessarily G; see [Sma16, Lemma 100.31], [FM19, Lemma 8.26], [Dav21, Corollary 4.27].
- If a is an element of finite group G, then

$$
\begin{cases}a^{|G|}=1 & \text { for multiplicative } G \\ |G| a=0 & \text { for additive } G[\operatorname{Dav} 21, \text { Corollary 8.16] }\end{cases}
$$

Lagrange's theorem (see Theorem 3) facilitates a straightforward proof for the above, so our ensuing discussion will lead to the immensely useful theorem.

Example 9

An element of \mathbb{Z}_{n}^{*} that has an inverse is called a unit (\mathbf{A} not to be confused with "unit element").

An element of \mathbb{Z}_{n}^{*} is a unit $\operatorname{iff} \operatorname{gcd}(a, n)=1$ [Dav21, Lemma 4.4].
Proof: For necessity, observe that $a a^{-1} \equiv 1 \bmod n$ if a^{-1} is the inverse of a. Therefore, $a a^{-1}-1=k n$ for some integer factor k, or equivalently, $a a^{-1}-k n=1$, which by Bezout's lemma, implies $\operatorname{gcd}(a, n)=1$. For sufficiency, $\operatorname{gcd}(a, n)=1 \Longrightarrow a s+n t=1$ for some integer coefficients s and t. The coefficient s satisfies the definition of an inverse for a.

Denote 1 by U_{n} the set of units of \mathbb{Z}_{n}^{*} and 2 by $\phi(n)$ - called Euler's totient function - the number of positive integers not exceeding n which are relatively prime to n.
Then, $\left|U_{n}\right|=\phi(n)[D a v 21$, Corollary 4.7].
The order of a group says nothing about the number of generators in the group.

Example 10

The following table is a so-called Cayley table for \mathbb{Z}_{6}^{+}:

+	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[1]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[0]$
$[2]$	$[2]$	$[3]$	$[4]$	$[5]$	$[0]$	$[1]$
$[3]$	$[3]$	$[4]$	$[5]$	$[0]$	$[1]$	$[2]$
$[4]$	$[4]$	$[5]$	$[0]$	$[1]$	$[2]$	$[3]$
$[5]$	$[5]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$

The group order is 6 and the number of generators is 1 .
Notice $\{[0],[2],[4]\}$ is cyclic in terms of congruence modulo 6. More precisely, it is a cyclic subgroup of \mathbb{Z}_{6}^{+}.

Definition 6: Subgroup [LN94, Definition 1.8], [DF99, Sec. 2.1]

A subset H of the group G is a subgroup of G if H is itself a group with respect to the operation of G.
Subgroups of G other than the trivial subgroups, namely $\{e\}$ and G, are called nontrivial subgroups of G. Subgroups of G that are not G itself are proper subgroups.

We write

$$
\begin{cases}H \leq G & \text { when } H \text { is a subgroup of } G \\ H<G & \text { when } H \text { is a proper subgroup of } G .\end{cases}
$$

Theorem 1: [LN94, Theorem 1.15(i)]

Every subgroup of a cylic group is cyclic.

Proof. Given multiplicative cyclic group $G=\langle a\rangle$, let H be a nontrivial subgroup of G. Suppose $a^{b} \in H$, then $a^{-b} \in H$. This means H contains at least one positive power of a. Let d be the least positive exponent such that $a^{d} \in H$ (and of course $\left.a^{-d} \in H\right)$. Suppose $c=d q+r$, where $q, r \in \mathbb{Z}$ and $0 \leq r<d$, then $a^{c} \times\left(a^{-d}\right)^{q}=a^{r}$. Since $r<d$ but we assumed d is the least positive exponent, $a^{r} \notin H \Longrightarrow a^{c} \notin H$. Therefore we must have $H=\left\langle a^{d}\right\rangle$, a cyclic subgroup.

Example 11

Let the operation be multiplication modulo 8 , then $G=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a cyclic group [FM19, Example 8.23].

- $\langle\overline{1}\rangle=\{\overline{1}\}$ is a trivial cyclic subgroup of G.
- $\langle\overline{3}\rangle=\{\overline{1}, \overline{3}\}$ is a cyclic subgroup of G.
- $\langle\overline{5}\rangle=\{\overline{1}, \overline{5}\}$ is a cyclic subgroup of G.
- $\langle\overline{7}\rangle=\{\overline{1}, \overline{7}\}$ is a cyclic subgroup of G.

Note none of the elements is a generator.

Theorem 2: [LN94, Theorem 1.15(ii)]

In a finite multiplicative cyclic group $\langle\mathrm{g}\rangle$ of order n, the element g^{m}, where $m \in \mathbb{N}$, generates a subgroup of order $n / \operatorname{gcd}(m, n)$.

Proof. By definition of order, n is the least positive integer such that $g^{n}=1$, where 1 is the identity element of $\langle\mathrm{g}\rangle$. It is straightforward to show that $\left\langle\mathrm{g}^{m}\right\rangle \leq\langle\mathrm{g}\rangle$. Suppose $\left|g^{m}\right|=k$, then k is the least positive integer such that $g^{m k}=1$. Furthermore, $m k$ must be the least common multiple of m and n, i.e.,

$$
m k=\operatorname{lcm}(m, n) \Longrightarrow k=\frac{m n}{m \operatorname{gcd}(m, n)}=\frac{n}{\operatorname{gcd}(m, n)}
$$

Example 12

Let the operation be multiplication modulo 10 , then $G=\{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$ is a cyclic group [FM19, Example 8.24].

- $\langle\overline{1}\rangle=\{\overline{1}\}$ is a trivial cyclic subgroup of G.
- $\langle\overline{3}\rangle=\{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$ is a trivial cyclic subgroup of G.
- $\langle\overline{7}\rangle=\{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$ is a trivial cyclic subgroup of G.
- $\langle\overline{9}\rangle=\{\overline{1}, \overline{9}\}$ is a cyclic subgroup of G.
$\overline{3}$ and $\overline{7}$ are generators of G. As shown above, $\overline{3}^{2}=\overline{9}$ does indeed have order $4 / \operatorname{gcd}(2,4)=2$.

Theorem 2 tells us something useful about the orders of cyclic subgroups. The next theorem we are going to learn about will tell us something useful about the orders of finite subgroups in general - cyclic or not cyclic - but first we need to know what cosets are.

Definition 7: Coset [LN94, pp. 6-7], [DF99, p. 78], [Gar01, Secs. 17.3-17.4], [Sma16, Definition 100.37], [Dav21, Sec. 8.1]

Let (G, \star) be a group and $H \leq G$. For any $g \in G$, the left coset of H in G (containing g) is defined as

$$
g \star H=\{g \star h \mid h \in H\} .
$$

Similarly, the right coset of H in G (containing g) is defined as

$$
H \star g=\{h \star g \mid h \in H\} .
$$

These alternative terms are equivalent:

- left/right coset of H with respect to g
- left/right translate of H by g
- left/right coset of G modulo H

Any element of a coset is called a representative of the coset.

In simpler terms, a coset is the result of taking a subgroup and "shifting" it either on the left or on the right.

- Two different "shifts" can result in the same coset.
- Left and right cosets coincide when the group operation is commutative.

- If H is a finite subgroup of G, then every coset of H Figure 1: Things that are not in G has the same number of elements as H [LN94, cosets.
Theorem 1.12].
- Given $g_{1} \neq g_{2}$, both elements of G, if H is a subgroup of G, then

$$
\begin{cases}g_{1} \star H=g_{2} \star H & \Longleftrightarrow \operatorname{inv}\left(g_{1}\right) \star g_{2} \in H, \\ g_{1} \star H \cap g_{2} \star H=\varnothing & \text { otherwise [Dav21, Theorem 8.5]. }\end{cases}
$$

The same observation applies to right cosets. These imply cosets form a partition of G.

- \boldsymbol{A} Cosets (coupled with the original group operation) are not necessarily groups. $g \star H$ is a subgroup of $G \Longleftrightarrow g \in H$ [Dav21, Theorem 8.5].

Definition 8: Index [LN94, Definition 1.13], [DF99, Sec. 3.2], [Gar01, Sec. 17.4], [Dav21, Sec. 8.4]

If the subgroup H of G only yields finitely many distinct left/right cosets of H in G, then the number of such cosets is called the index of H in G, and denoted by $|G: H|$ or $[G: H]$.

Whether index is defined for left or right cosets does not matter because there are as many distinct left cosets as right ones [Dav21, Theorem 8.8].

Example 13

This example is from [LN94, p. 6]. If $G=\mathbb{Z}_{12}^{+}$, then $H=(\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\},+) \leq G$. The left cosets of H in G are

$$
\begin{aligned}
& \overline{0}+H=\overline{3}+H=\overline{6}+H=\overline{9}+H=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}, \\
& \overline{1}+H=\overline{4}+H=\overline{7}+H=\overline{10}+H=\{\overline{1}, \overline{4}, \overline{\overline{7}}, \overline{10}\}, \\
& \overline{2}+H=\overline{5}+H=\overline{8}+H=\overline{11}+H=\{\overline{2}, \overline{5}, \overline{8}, \overline{11}\} .
\end{aligned}
$$

The right cosets of H in G are exactly the same as the left cosets.
There are three distinct left/right cosets of H in G, so $|G: H|=3$. Notice $|G: H|=3$ multiplied by $|H|=4$ is exactly $|G|=12$.

The preceding example paves way for the subsequent very important theorem:

Theorem 3: Lagrange's theorem [LN94, Theorem 1.14], [DF99, Theorem 8], [Sma16, Theorem 100.38]), [FM19, Theorem 8.27], [COFMR19, Theorem 9.4.4], [Dav21, Sec. 8.3]
If H is a subgroup of finite group G, then

$$
|G|=|G: H||H|,
$$

which implies the order of H divides the order of G.
The utility of Lagrange's theorem is immediately apparent. For example, we can use it to deduce if G is a finite group with identity element e, then $\bar{a}^{|G|}=\bar{e}, \forall a \in G$.
Quick proof: If $|\langle a\rangle|=m$, then $\bar{a}^{m}=\bar{e}$ and by Lagrange's theorem, $|G|=k m$ for some integer k, and thus

$$
\bar{a}^{|G|}=\left(\bar{a}^{m}\right)^{k}=\bar{e} .
$$

The next application of Lagrange's theorem is an important theorem:

Theorem 4: Euler's theorem [FM19, Corollaries 8.28-8.29], [Dav21, Corollaries 8.15-8.17]

If positive integers a and n satisfy $\operatorname{gcd}(a, n)=1$, then

$$
a^{\phi(n)} \equiv 1 \bmod n,
$$

where $\phi(n)$ is Euler's totient function.
Proof. Consider the finite group \mathbb{Z}_{n}^{*} and its subgroup U_{n} consisting of the units of \mathbb{Z}_{n}^{*}.
By Example 9, if $a \in G$ and $\operatorname{gcd}(a, n)=1$, then $a \in U_{n}$ and $\left|U_{n}\right|=\phi(n)$. By Lagrange's theorem,

$$
\bar{a}^{|G|}=\overline{1}=\bar{a}^{k\left|U_{n}\right|},
$$

for some integer k. Therefore,

$$
\bar{a}^{k\left|U_{n}\right|}=\left(\bar{a}^{\phi(n)}\right)^{k}=\overline{1} .
$$

In order for the preceding equation to be true for any k,

$$
\bar{a}^{\phi(n)}=\overline{1} \Longrightarrow a^{\phi(n)} \equiv 1 \quad \bmod n
$$

When n is a prime, Euler's theorem leads to Fermat's little theorem:

$$
\begin{equation*}
a^{p} \equiv a \quad \bmod p \tag{4}
\end{equation*}
$$

for prime p. Fermat's little theorem forms the basis of the RSA cryptosystem [Opp05, Sec. 14.2.1.3].
Lagrange's theorem also gives rise to the following theorem, which the DiffieHellman key exchange protocol depends on:

Any group of prime order is cyclic.

Proof. Suppose a is a non-identity element of prime-order group G, then $\langle a\rangle$ is a subgroup of G, and Lagrange's theorem necessitates that $|\langle a\rangle|$ divides $|G|$. Since $|G|$ is prime, $|\langle a\rangle|$ must be either 1 or $|G|$, but by definition of $a,|\langle a\rangle| \neq 1$. Therefore, $|\langle a\rangle|=|G| \Longrightarrow G=\langle a\rangle$.

3 References

[COFMR19] C. Carstensen-Opitz, B. Fine, A. Moldenhauer, and G. Rosenberger, Abstract Algebra: Applications to Galois Theory, Algebraic Geometry, Representation Theory and Cryptography, De Gruyter, 2019. https://doi.org/10.1515/9783110603996.
[Coh03] P. Сонн, Basic Algebra: Groups, Rings and Fields, Springer, 2003.
[Dav21] B. Davvaz, A first course in group theory, Springer, 2021. https://doi.org/10.1007/ 978-981-16-6365-9.
[DF99] D. S. Dummit and R. M. Foote, Abstract Algebra, 2nd ed., John Wiley \& Sons, Inc., 1999.
[FM19] D. R. Finston and P. J. Morandi, Abstract Algebra: Structure and Application, Springer Undergraduate Texts in Mathematics and Technology, Springer International Publishing Switzerland, 2019, corrected publication. https://doi.org/10. 1007/978-3-319-04498-9.
[Gar01] P. Garrett, Making, Breaking Codes: Introduction to Cryptology, Pearson, 2001.
[KL21] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 3rd ed., CRC Press, 2021. Available at https://ebookcentral. proquest.com/lib/unisa/detail. action?docID=6425020.
[LN94] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, revised ed., Cambridge University Press, 1994.
[Lov22] S. Lovett, Abstract Algebra: A First Course, 2nd ed., Chapman and Hall/CRC, 2022. https://doi.org/10.1201/9781003299233.
[Opp05] R. Oppliger, Contemporary Cryptography, Artech House, Inc., 2005.
[Sma16] N. P. Smart, Cryptography Made Simple, Information Security and Cryptography, Springer International Publishing Switzerland, 2016. https://doi.org/10.1007/ 978-3-319-21936-3.

