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Welcome to Module 1 Hydrostatics and 
buoyancy 
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1.3 Stability of Floating Bodies
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This time we’ll look at stability of floating 
bodies. 
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Intended Learning Outcomes

At the end of this section, students will be able 

to:-

- Determine the metacentric height

- Predict the stability of a floating body

Unit  - Mod- Slide No. 4

 

The intended learning outcomes from this 
presentation are to be able to understand 
the stability of a floating body using 
metacentric height. 
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Re-cap: stationary floating body

5m

8m

15 tonnes

(unloaded)

Seawater, ρ = 1025 kg/m3

1.5m

• Example 3.1

• Min. Freeboard 0.5m

• Max. Load = ???

 

Before we look at stability, let’s do a quick 
recap of buoyancy with an example. This 
is a pontoon weighing 15 tonnes with the 
dimensions as shown.  
 
We’ve been told it needs to maintain a 
freeboard of at least half a metre, which 
implies a submerged depth of a metre. 
 
We want to know how much extra load it 
can support. The workout procedure’s in 
the text book if you need it. 
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• http://www.youtube.com/watch?v=EBcJXEHjnw8&featur

e=related

• Common glass brick size:

– 190 X 190 X 80 mm

– Mass 2.5 kg

Will it float?

 

The YouTube video shows a funny 
debate about whether or not a glass brick 
will float. I know it’s not a really serious 
example, but if we wanted to we could 
work out the density of a glass brick to 
predict whether it would float. Using 
density equals mass divided by volume 
you can calculate whether the density’s 
more or less than 1000 kg per cubic 
metre. 
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• Stability  ability to withstand rocking/tilting

• Stability is all about the location of the two competing 

forces:

W (weight) and F (buoyancy)

• Who can remember what a “couple” is?

Factors affecting stability

 

If a body’s floating, the buoyancy force is 
equal to the weight force. Stability is 
about the location of these two forces. A 
“couple” is two forces that are equal in 
magnitude, but separated by a distance. 
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Locations of W and F

G (centre of mass)

W = mg

B (centre of  buoyancy)

F = ρgVdisp

 

The weight force always acts through the 
body’s centre of mass. 
 
On the other hand, the buoyancy force 
acts through the centre of buoyancy, 
which is the centre of the displaced 
volume. 
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Whoops!  Wind, wave, etc.

G (unchanged)

W = mg

B* (new centre of  buoyancy)

F = ρgVdisp

This is a couple!

 

When a floating body is tilted in the water, 
like what happens when a wave comes 
past, 
 
the centre of mass is unchanged. 
 
However, the position of centre of 
buoyancy will be changed because the 
shape of the displaced volume has 
changed. 
 
So now there are two opposite directional 
forces, equal in magnitude, but separated 
by a distance. This is a “couple” 
 
And it’ll cause a moment that naturally 
corrects the tilt of the floating body. This 
continuously self-correcting moment is 
what causes floating objects to rock back 
and forth but not turn over completely. 
We call these stably floating bodies. 
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What about this one?

G

W

B

F

 

Now let’s look at a different floating body 
that has a much taller geometry. 
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What about this one?

G

W

B*

F

Unstable

 

This time, if it tilts over even a little bit, 
 
The couple formed by the weight and 
buoyancy forces will exacerbate the tilting 
and it’ll fall over into the water. It’s pretty 
intuitive for a simple shape like this, but 
we need to develop a more general way 
of describing the stability of a floating 
body if we’re going to consider more 
complicated systems. 
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Metacentric height, M

G

B*

F

M

B (initial)

W

M > G

 stable

 

The general way to describe stability is 
the metacentric height, M. Metacentric 
height’s a hypothetical point above the 
object. Geometrically, we define the 
metacentric height 
 
by drawing an imaginary vertical line 
through the new centre of buoyancy 
formed when an object is tilted, 
 
And joining it to a line connecting the 
centre of mass and the initial centre of 
buoyancy 
 
The intersection of these lines is the 
metacentric height, M. 
 
For a stable object, the position of 
metacentric height is above the centre of 
mass. 
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Metacentric height, M

G

B*

F

M

W

M < G

 unstable

B

 

If we repeat the procedure for an unstable 
object 
 
By drawing a vertical line up from the new 
centre of buoyancy 
 
Connecting a line through B and G 
 
And finding the intersection point, 
 
We can see that in the unstable case, the 
position of the metacentric height is below 
the centre of mass. 
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Metacentric height – calculated

Eqn 3.3

See Appendix 1

GM = BM - BG

 

Those examples involved tilting the body 
and somehow finding the new centre of 
buoyancy in the tilted case. What we 
need is a general mathematical way to 
predict whether a body is stable or not, 
without having to tilt it over. So what we 
really want is a formula to calculate 
metacentric height from the initial centre 
of buoyancy and the centre of mass. 
 
The textbook gives us an equation – 
please note the figure from the book 
shown here refers to the wrong equation 
number, which should be 3.3. What we’ve 
got is the distance GM, which is the 
distance from the centre of mass to the 
metacentre, given as the distance BM 
minus BG. So as long as we know 
enough about the mass distribution to 
calculate G and enough about the 
object’s volume and shape to calculate B, 
all we then need is BM, the distance from 
the centre of buoyancy to the metacentre. 
 
We’re given this simple equation for BM, 
which relates to the submerged volume V 
and the second moment of area of the 
shape. You can chase up the derivation 
in Appendix 1 of the textbook if you want 
to know where it comes from. 
 
Image source- Les Hamill 2011, 
Understanding hydraulics. 
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2nd Moment of area:  Iws

12

3lb
Iws 

b

l

For a rectangle, recall:

 

The BM term in the previous slide was 
found by dividing the second moment of 
area Iws by the submerged volume. Here, 
the subscript “ws” refers to the shape in 
the plane of the water surface, so imagine 
taking a horizontal slice through the 
object, perfectly level with the surface of 
the water. The picture here shows a 
rectangular object, like a pontoon. You 
can look up the second moment of area 
of a rectangle or you might remember it’s 
L B cubed over 12.  
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2nd Moment of area:  Iws

12

3lb
Iws 

l

b

For a rectangle, recall:

 

Obviously, depending on which way you 
orient L and B, you’re going to get two 
different values of Iws. In practical terms, 
these are the two different axes of 
stability – you can imagine the pontoon 
rocking back and forth, as well as side to 
side, and it’ll rock more in one direction 
than the other. Most shapes will have two 
axes of stability – imagine the hull of a 
typical ship, which has a long axis and 
short axis. From the point of view of 
calculating overall stability, you need to 
find the worst-case scenario which means 
you need to use the smallest value of BM. 
This means use the smallest value of Iws. 
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• Example 3.3

Metacentric height

7m

15m

3m 700x103N

1600x103N

3.5m

GM = BM - BG

BM = Iws / V

 

Let’s do an example. Here we’ve got a 
pontoon 15 by 7 metres and 3 metres 
deep, weighing 700 kilonewtons 
 
and it’s carrying a weight of 1600 
kilonewtons. This is a bit of a tricky one 
because the you need to calculate the 
position of the centre of mass based on 
the weight distribution. 
 
We’ve been told the centre of mass of the 
1600 kilonewton load is 3.5 metres above 
the bottom of the pontoon. You can 
assume the centre of mass of the base is 
half way up, so 1.5 metres above the 
bottom. You might have to go back and 
look at how to calculate the centroid of a 
composite shape in order to calculate the 
overall centre of mass. Then you’re going 
to have to work out the depth of 
immersion to figure out the centre of 
buoyancy and the submerged volume. 
 
Use the formula GM = BM – BG  
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With BM equal to Iws over V to determine 
the metacentric height and figure out if 
the object’s stable. Follow the example in 
the text book if you need to. 
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• GM = BM - BG

• Need to know location of G (centre of mass) and B 

(centre of buoyancy) – can be difficult

• Need to calculate IWS

Theoretical calculation - problems

 

Alright, so that last example was actually 
pretty complicated, and it shows one of 
the weaknesses of the theoretical 
approach to calculating the metacentric 
height. Imagine how much harder it’d be 
with a container ship loaded up with lots 
of different equipment and cargo. The 
centre of mass, centre of buoyancy and 
second moment of area are all so much 
more complicated in the real world. 
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Metacentric height – experimental

d

dx

W

w
GM J

 

Luckily there’s an experimental method to 
estimate the metacentric height, which is 
quite accurate and actually pretty simple 
to do. A jockey weight, which is a mass 
that’s small relative to the overall mass, is 
placed some distance away from the 
centre of the object. This induces a small 
tilting angle, which is technically called 
“list”. So long as we can measure the 
distance from the centre line and the 
angle of list, and we know the overall 
mass of the object, we can determine the 
metacentric height using this simple 
equation. 
 
Image source- Les Hamill 2011, 
Understanding hydraulics. 
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1t

d

dx

W

w
GM J

1000 t

dx

Metacentric height 

 

This animation shows the experimental 
method for calculating metacentric height. 
 
Imagine this ship has a mass of 1000 
tonnes 
 
and we place a jockey weight of 1 tonne 
on board.  
 
We then displace the jockey weight by a 
known distance dx 
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1t

Metacentric height 

 

Now the displaced 
 
jockey weight induces a list angle.  
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d

dx

W

w
GM J

dθ

Metacentric height 

 

We just measure the angle of list 
 
And the procedure is complete! 
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Example 3.3

• W=50x106 N

• wJ=300x103 N

• dx = 8m

• dθ=5 

• GM = ?

d

dx

W

w
GM J

Convert to 

radians

 

This is a really simple example – it’s just 
a matter of plugging in the numbers. 
 
Well, actually, the one slightly 
complicating factor is that you need to 
convert the angle from degrees to 
radians. Apart from that you shouldn’t 
have any trouble with this method. 
 
Image source- Les Hamill 2011, 
Understanding hydraulics. 
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• If GM is large, the vessel will rapidly correct from tipping

• Who thinks GM should be as large as possible?

Period of roll

 

The larger the metacentric height, the 
more rapidly the vessel’s going to correct 
from tipping because the couple created 
by the two forces will be larger. 
 
So you might be inclined to think that it’s 
good design to create a floating body that 
maximises the metacentric height – you 
could do this by playing around with the 
shape of the vessel, which would 
increase the Iws term, or perhaps you 
could change the internal weight 
distribution to lower the centre of mass. 
But it’s important to understand that doing 
this might have an undesirable effect 
because the body rocks back and forward 
too quickly. We refer to the speed of 
rocking as the “period of roll”. 
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• A low GM can be useful to minimise disruption to 

passengers / freight!

• Equation for period of roll:

Period of roll

GMW

I
t M


 2

Moment of inertia

i.e. NOT moment of area (Iws)

 

If your vessel is carrying freight or 
passengers, although you need it to be 
physically stable, you probably don’t want 
it rocking back and forth too fast. The 
lower the value of metacentric height, the 
slower the rocking. 
 
We’ve got a handy equation for 
calculating the period of roll here. It’s just 
2 pi times the square root of second 
moment of inertia divided by weight by 
metacentric height. If we want to make 
sure the rocking motion is slow, we need 
large values of t, so you can see that the 
smaller GM is, the larger t will be. 
 
It’s really important to note that the IM 
term here is the moment of inertia, which 
relates to the size and weight distribution 
of the vessel, and this is totally different to 
the Iws term we used earlier. 
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• W = 40 x 106 N

• IM = 55 x 106 kgm2

• Design options:

– GM = 2.0m

– GM = 1.0m

– GM = 0.5m

– GM = 0.25m

Example 3.5

What is t in 

each case?

GMW

I
t M


 2

 

Imagine you’ve got the ability to design a 
vessel in different ways that’ll result in 
metacentric heights varying from as high 
as 2 metres to as low as 25 centimetres. 
Okay, I don’t know how realistic this 
example is because I suspect the IM term 
would probably change in each case. But 
for the sake of practice let’s assume it’s 
as it says here, and IM stays constant. 
You can use the simple formula for period 
of roll to work out t  for each of the 
different design options and see what 
difference GM makes to the rocking. 
 
The workout procedure of Example 3.5 is 
available in the text book. 
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Summary 

• Stability of floating body

• Metacentric height – theoretical and experimental methods

• Period of roll

Unit # -- Slide No. 27

 

So, in summary, we have looked at the 
stability of floating bodies by calculating 
metacentric height theoretically and 
experimentally, and we briefly touched on 
the implications of metacentric height for 
the speed of an object’s rocking motion, 
using the period of roll calculation. 
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Thank you

Unit # -- Slide No. 28

 

If you have any questions or need 
clarification, please post a question or 
comment on the Discussion Forum. 
 
 

 


