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Intended Learning Outcomes

At the end of this section, students will be able 

to:-

• describe basic fluid dynamics and viscosity by 

generalising using empirical formulae and 

coefficients

• apply the Reynolds number to fluid dynamics 

calculations to account for different types of flow 

• perform fluid dynamics calculations using the 

continuity and energy equations.

 

The intended learning outcomes from this 
presentation are to be able to perform a series of 
calculations related to fluid dynamics accounting 
for different types of flow. You’ll also learn how 
and when to use the continuity and energy 
equations of fluid dynamics. 
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Fluids dynamics
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Lets start by looking at fluid dynamics. 
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• Hydrostatics  simple!

Hydrostatics

 

So far we’ve been looking at hydrostatics,  
 
which  deals with the weight of water in a 
system. It considers stationary fluids, where 
there’s no friction, turbulence or viscosity effects.  
 
Image source: Microsoft clip art 
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• Hydrostatics  simple!

• Fluid dynamics  complex!

Fluid dynamics

 

Whereas Hydrostatics was fairly straightforward,  
 
Our next area of study, fluid dynamics, or fluid 
flow, is relatively complex.  
 
Image source: Microsoft clip art 
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• Assume ideal liquid

• No viscosity or 

turbulence

• Frictionless & 

incompressible

• Replace complex 

physical interactions 

with simple empirical 

formulae & coefficients

Simplify

 

To work with fluid dynamics, we need to simplify 
by using assumptions. 
 
The first assumption’s that fluid behaves as an 
“ideal liquid”, which means 
 
no viscosity or turbulence is present, and 
 
it’s frictionless and incompressible. 
 
The really complex physical interactions that 
occur in fluid dynamics are replaced with simple 
empirical formulae and coefficients.  
 
Image source: Microsoft clip art 
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Represents a complex system in a simple way

What is an empirical formula?

$ Crude oil P0

$ Refining R

$ Tax T

$ Retail M

Price cycle C

Pp = f (Po, R, T, M, C) 

 

Okay, you might not be familiar with what we 
mean by “empirical formula”. 
 
An empirical formula represents a complex 
system in simple way. 
 
An example of complex system is the price of 
petrol. It depends on several variables including 
 
crude oil price, refining costs, tax, retail margin, 
and some sort of weekly price cycle. 
 
Representing the price of petrol using all these 
variables is really complex.   
 
Image source: Microsoft clipart 
http://www.travel-australia.org/money.html 
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Empirical formula for US gas price

y = 0.0272x + 0.9226
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However, if we’re not too fussy about capturing 
the detailed dynamics of the petrol price, we can 
just plot the petrol price against the crude oil 
price, and deduce an empirical formula for petrol 
price 
 
based on the straight line equation of this graph. 
It’s strength is that it becomes a simple 
calculation, reducing the complexity. The 
weakness of an empirical formula like this is that 
it doesn’t tell us any detail about the underlying 
processes, like all of those variables we 
identified on the previous slide – but it works well 
enough anyway. In fluid dynamics, most of the 
time we employ similar assumptions so we can 
avoid dealing with all the microscopic 
complexities of fluid movements, and only 
consider the behaviour of the bulk fluid as a 
function of key parameters. 
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Simplifying viscosity

How much a fluid

resists a

shear force

 

One of the fundamental physical properties 
affecting fluid flow is the viscosity. Viscosity is a 
measure of how much a fluid resists a shear 
force. As an example, honey is a high viscosity 
fluid, whereas water has less viscosity. The 
viscosity of the fluid impacts on the internal 
friction of fluid flow and in practical terms, high 
viscosity fluids are more resistant to movement. 
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Understanding viscosity

AV

d

 

To understand viscosity, 
 
consider this picture of fluid sitting between two 
flat plates of area A,  separated by a distance d, 
 
and now imagine one of the plates is being 
moved a velocity V. 
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Dynamic viscosity 

V
A

d

F = μAV/d

 

Technically, viscosity is used to find the force 
that would be needed to move that plate with a 
given velocity, and would depend on its area. 
The force F is equal to (dynamic viscosity, mew,  
times area A, times velocity V) divided by 
distance, d. 
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• The velocity profile in response to an applied shear force

Another way to look at μ

Shear Stress  τ = F/A

Distance from bottom plate, y

Velocity, u

dy/du = μ/τ

 

There’s another way to look at the viscosity, 
which is to consider the velocity profile in 
response to an applied shear stress. 
 
Shear stress (tau) is force divided by area. The 
slope of the given line affects how velocity 
responds to the force. What we’re really seeing 
here is that the further we move away from the 
bottom plate, which is the distance y in this 
graph, the greater the velocity we can achieve 
from a given shear stress. The slope of the line is 
given as the dynamic viscosity (mew) over shear 
stress (tau). 
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Another way to look at μ

Shear Stress  τ = F/A

y

u

dy/du = μ/τ

High viscosity:

Reluctant to 

deform

 

For a High viscosity liquid, like honey or thick oil, 
the given force will provide only a small velocity. 
You can imagine trying to drag a knife through 
honey – it’s a lot harder than slicing a knife 
through water and a relatively large force only 
results in a relatively small velocity. Try this at 
home and enjoy a tasty snack while you’re doing 
it! 
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Another way to look at μ

Shear Stress  τ = F/A

dy/du = μ/τ

Low viscosity:

Easy to deform
y

u

 

For low viscosity fluid, like water, the same 
amount of force will give a much higher velocity.  
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• Viscosity is temperature 

dependent

• A “Newtonian fluid” has 

constant μ at a given 

temperature

– We will only be 

considering Newtonian 

fluids!

Dynamic viscosity µ

 

Viscosity changes with temperature. As an 
example, consider what happens when you heat 
honey in the microwave  - it becomes very thin. 
In contrast a “Newtonian fluid” has a constant 
dynamic viscosity at a given temperature. We’ll 
only be considering “Newtonian fluids” in our fluid 
dynamics so if you’re particularly interesting in 
the dynamics of honey flow, I apologise. 
 
Image source: microsoft clipart 
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• ν = μ / ρ

• Don’t confuse ν and  μ !!!

• Units:

– Dynamic viscosity μ 

M/LT  (e.g. kg/ms)

– Kinematic viscosity ν

L2/T   (e.g. m2/s)

Kinematic viscosity v

 

Mew was dynamic viscosity; sometimes viscosity 
is expressed as Kinematic viscosity, which  is 
dynamic viscosity divided by the density of the 
fluid. 
 
The two types of viscosity have different units. 
 
The dimensional expression of dynamic viscosity 
is mass divided by (length × time); so, a typical 
unit would be kilograms per metre-second. 
Kinematic viscosity is expressed as length 
squared over time so a typical unit is metres 
squared per second. 
Image source: microsoft clipart 
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• Yes, but it is used to calculate the Reynold’s number 

(Re) which we WILL be using.

I thought we’re going to ignore viscosity?

 

Although we’re not going to worry about 
calculating viscosity or looking at how viscosity 
might change with temperature, we do need to 
use a value of viscosity to calculate what’s called 
the Reynold’s number. Reynold’s number tells us 
about the nature of fluid flow in pipes and 
channels.  
 
Image source: microsoft clipart 
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Different types of flow
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So let’s look at different types of flow. 
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• “Transitional flow”  in-between

Laminar vs turbulent flow

 

Flow can be laminar or turbulent, or in between, 
which is called transitional. Laminar flow involves 
fluid particles moving along parallel pathlines, 
whereas turbulent flow involves a tumbling, 
crashing motion. 
 
Image source: http://blog.nialbarker.com/wp-
content/uploads/2010/03/laminar_turbulent_flow.
gif 
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Laminar vs turbulent flow

 

Laminar flow involves slow, even movement of 
water typical of viscous fluids. We don’t actually 
see much laminar flow in water engineering, but 
one exception is ground water which flows very 
slowly. It’s far more common in water 
engineering to come across fast moving fluids 
that show turbulent flow. Or we might see flow 
somewhere in between laminar and turbulent, 
which is known as transitional.  
 
Image source: Microsoft clipart 
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Laminar flow and velocity

 

Lets consider three positions 1, 2 and 3 in a pipe 
of fixed diameter. For laminar flow, at all points 
there’s almost constant velocity. We’d expect the 
fluid to be moving faster in the middle than at the 
edges of the pipe because towards the edges it’s 
being slowed down due to friction. But the point 
here is that in laminar conditions, the velocity 
profile is relatively even. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Turbulent flow and velocity

 

If we move to a turbulent flow situation, with the 
same points 1, 2 and 3 in the pipe as before, the 
velocities are more erratic and would change 
over time as the fluid bounces along in a 
tumbling motion. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• We use the Reynolds number, Re

Determining the flow type



VD
Re

Density

Velocity

Conduit size

e.g. pipe diameter

Dynamic 

viscosity

 

A few slides back we mentioned the Reynold’s 
number. 
 
This is used to determine whether the flow is 
laminar or turbulent. 
 
Reynold’s number = 
 
density rho, 
times velocity  V 
times conduit size, D, 
all divided by the dynamic viscosity, mew. 
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Pipes Open channels

Laminar flow Re < 2000 Re < 500

Transitional flow Re = 2000-4000 Re = 500-2000

Turbulent flow Re > 4000 Re > 2000

Reynolds number & flow type

 

Large values of Reynolds number correspond to 
turbulent conditions, and smaller values 
correspond to laminar flow. In a pipe, if the 
Reynold’s number is less than 2000, the flow 
condition is considered to be laminar; for values 
over 4000, it’s turbulent and in between 2000 
and 4000, the flow’s referred to as “transitional”. 
These values have been found by experimental 
work and this is an example of the empirical 
nature of fluid dynamics. 
 
Image source: Microsoft clipart 
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Pipes Open channels

Laminar flow Re < 2000 Re < 500

Transitional flow Re = 2000-4000 Re = 500-2000

Turbulent flow Re > 4000 Re > 2000

Reynolds number & flow type

 

In open channels, the experiments have shown 
that the same basic relationship holds except 
that the critical values of the Reynolds number 
are different to pipes. In open channels if 
Reynold’s number is less than 500, flow’s 
laminar; for over 2000, it’s turbulent and in 
between it’s transitional.  
 
Image source: Microsoft clipart 
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• D = 0.1m

• Q (flow rate) = 0.025 m3/s

• ρ = 1000 kg/m3

• μ = 1.005 x 10-3 kg/ms

• Laminar or turbulent flow?

Example 4.1



VD
Re

 

Here’s an example where we want to know if 
flow’s laminar, turbulent or transitional. The 
situation is a fairly high flow rate of 25 litres per 
second, in a 10 centimetre diameter pipe. The 
value of dynamic viscosity here is a typical value 
for water under fairly normal temperature 
conditions. 
 
So here you just need to work out the Reynolds 
number. If you get stuck at all, check the 
example in the text book. 
 
Image source: Microsoft clipart 
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Continuity equation
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The next section is the continuity equation. 
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• “Steady”  constant 

discharge with respect to time

• “Unsteady”  varying 

discharge with respect to time

• Simplify!

Steady vs Unsteady

 

Flow can be steady, if the discharge is constant 
with respect to time. 
 
Flow can also be unsteady, if there’s varying 
discharge with respect to time. 
 
Unsteady situations, like large pipe systems, are 
complicated to analyse. In this introductory 
course for water engineering, we’ll ignore minor 
fluctuations and assume flow is steady. 
 
Image: microsoft clipart 
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• Uniform flow

• Non-uniform flow

Uniform vs Non-uniform

 

Flow can also be uniform or non-uniform. 
 
In uniform flow, fluid passes through a constant 
cross-sectional area and the velocity of the fluid 
is constant everywhere. 
 
In non-uniform flow, fluid passes through a 
changing cross sectional area and as a result, 
the velocities are different in the different 
sections of pipe. In this case the smaller 
diameter pipe will carry a higher velocity and the 
larger diameter pipe will carry a smaller velocity, 
even though both parts of the pipe have the 
same flow rate passing through them. 
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• V1A1 = V2A2

Continuity equation

A1

A2

V1

V2

Velocity X Area

= Volumetric Flow Rate

 

Let’s look at that in a bit more detail. 
 
Here we’re introducing what’s called the 
“continuity equation”, which says that the product 
of the velocity and the cross-sectional area is 
constant. So the velocity V1 in the thin section, 
which has cross sectional area A1, is equal to 
the V2A2. You can see that this means V2 is 
going to be smaller than V1 in order to balance 
the continuity equation. 
 
It’s important to note that the Velocity, V times 
Area, A is the volumetric flow rate, which we 
usually call Q. 
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• Example 4.3

• Q3 = 2Q2

• D3 = ???

• Q1 = ???

Continuity equation

1

2

3

1.77 m/s

1.43 m/s

250mm

321 QQQ 

332211 AVAVAV 

 

Here’s another example of the continuity 
equation. 
 
In this case we’ve got a flow entering from the 
left, which is Q1. Assuming there are no leaks, 
this inflow has got to be balanced by the outflow, 
which is Q2 plus Q3. 
 
If we substitute Q equals V times A from the 
previous slide, we can see V1A1 equals V2A2 
plus V3A3. 
 
Now, in this particular example we’ve been given 
a bit of extra information which is that we know 
the flow in pipe number 3, Q3, is equal to double 
the flow rate in pipe 2. 
 
We want to find out the diameter of D3 and the 
flow rate in the inflowing pipe, Q1. See how you 
go with it, and as usual the solution procedure’s 
available in the text book. 
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Let’s stop for a minute and think about the sorts 
of engineering involved in a large-scale water 
pipe. When we’re supplying water to cities, it’s 
pretty common to transport water over at least a 
few kilometres, in pipes over a metre in diameter. 
Water in a pipe like this could easily have a mass 
of many thousands of tonnes, a similar mass as, 
say, a large freight train or cargo ship. So when 
we try to get it to speed up, slow down or change 
direction there’s a huge amount of momentum 
that needs to be considered. 
 
Image source- 
http://upload.wikimedia.org/wikipedia/commons/7
/7d/800px-
Trans_Alaska_Pipeline_Denali_fault_shift.JPG  
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• Q = Volumetric flow rate (volume / time)

• So ρQ = Mass flow rate (mass / time)

• Recall that momentum is mass X velocity

and

• Force is rate of change of momentum

Momentum of moving water

 12
12 VV

t

M

t

MVMV
F 




 

Volumetric flow rate, Q, is volume divided by 
time. 
 
So if we multiply the volumetric flow rate by 
density, it becomes a mass flow rate, mass over 
time. 
 
Hopefully you can remember from your physics 
that momentum is mass times velocity, and 
 
Force can be expressed as the rate of change of 
momentum over time. 
 
If we rearrange this slightly, we can actually 
express force as the mass flow, which we said 
was rho times Q, multiplied by the change in 
velocity. 
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The momentum equation

 12 VVQF  

 1211 VVVAF  

Vectors!

 

The momentum equation is force F, equals 
density rho, times flow rate Q, times by the 
velocity change (V2 minus V1). 
 
Strictly we should write this with vector signs 
 
Because directions are required in momentum 
equations. What we mean here is we’re 
interested in the change in velocity, not speed. 
So as water gets carried around a bend in a 
pipe, even if it’s moving at a uniform speed, 
there’ll be a force exerted on the pipe bend. As 
we said before, large pipelines carry an 
enormous mass of water. The supports for bends 
in the pipe need careful structural engineering to 
account for not just the physical weight of the 
water but also the force due to the water 
changing direction. 
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• Determining the external force (e.g. that the pipe exerts 

on the water) when water changes direction

Using momentum equation

 

Let’s look at how the momentum equation can be 
used to determine the external force when water 
changes direction. 
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• ∑FX = ρQ(V2X - V1X),    ∑FY = ρQ(V2Y - V1Y)

“Control volume” concept

This is like a “Free body diagram” in mechanics

 

This image shows a horizontal pipe bend, which 
turns through angle theata. Because momentum 
and velocity are vectors, we need to resolve 
them into X and Y components for analysis. 
What the momentum equation really says is that 
it’s the net force, or the vector sum of all forces, 
that’s equal to rho Q V2 minus V1. 
 
So the sum of the forces in the X-direction are 
equal to the momentum equation in the  X-
direction and the sum of the forces in the Y-
direction equals the momentum equation in the 
Y-direction. 
 
Now what we’re going to do is take what’s called 
a “control volume” and use it to find the reaction 
force, FR acting on a pipe bend. 
 
The Control volume concept’s similar to the free 
body diagram you might have used in 
mechanics. By working out the different forces 
acting on the control volume we can find the net 
force and solve the momentum equation. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Equating forces on pipe bends

Recall that Force = Pressure X Area

Balancing forces in X-direction:

P1A1 – P2A2cosθ – FRX = ρQ(V2cosθ - V1)

Balancing forces in Y-direction:

-P2A2sinθ + FRY = ρQ(V2sinθ)

θ

 

Using the pressure in the pipe and the cross-
sectional area, we can work out the forces acting 
on each end of the control volume, which will be 
P1A1 and P2A2.  
 
So we work out the net force in the X direction, 
which is P1A1, minus the X component of P2A2, 
minus the X component of the reaction force FR. 
And this equals the momentum equation using 
the X component of the two velocities. 
 
Then we do the same thing in the Y-direction. In 
this case both the P1A1 term and the V1 term 
disappear, because neither of those have a Y 
component. Obviously this time we use “sin” 
instead of “cos”. 
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Example 4.4

0.3m 60 

∑FX = ρQ(V2X - V1X),    ∑FY = ρQ(V2Y - V1Y)

 

So here’s an example to practise on. You’ll need 
to be able to do similar calculations. You’ve been 
given the pipe diameter and the angle of the 
bend. 
 
We’re also told the pipe’s running at a pressure 
equivalent to 30 metres of water, which you’ll 
need to convert to Pascals using P equals rho G 
H. And the flow rate’s 100 litres a second. See if 
you can work out the reaction force FR using the 
procedure we’ve just gone through. Check the 
procedure in the text book if you need to. Don’t 
forget to re-combine your X and Y components 
at the end to work out the overall magnitude and 
direction of FR. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Nozzles

 

When we force water through a nozzle or some 
other contraction, the cross-sectional area 
reduces so the velocity increases according to 
the continuity equation. Because this is a change 
in velocity there has to be a change in 
momentum and that means there’ll be a reaction 
force. Imagine holding a garden hose with a high 
flow rate coming out of a tight nozzle on the end 
– hopefully you can imagine that you might feel a 
significant force. Anyway, we can use the same 
control volume concept as before to work out the 
reaction force. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Example 4.5

Nozzles

∑FX = ρQ(V2X - V1X)

 

Here’s an example. This is a nozzle-type 
contraction where water flows from a wide 
diameter into a small diameter pipe, so the 
velocity undergoes an increase. 
 
We’ve been told water’s flowing at 420 litres a 
second, which is actually a pretty high flow rate. 
The big pipe’s 60 centimetres in diameter and 
the small pipe’s half as wide. We’ve been given 
upstream and downstream pressures in “metres 
of water” which you’ll have to convert to Pascals 
just like last time. Use the control volume 
concept to solve the momentum equation. In this 
case it’s simpler because it’s all happening in 
one direction, so you don’t have to resolve it into 
X and Y components. Consult the text book if 
you need to. 
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• The momentum coefficient, β

• Accounts for the fact that the velocity V is not actually 

uniform over the whole area A 

• So ∑F = βρQ(V2 - V1)

Velocity assumptions

A V

 

We said at the beginning that we’d make a few 
assumptions. Well, our first “fudge” factor is for 
velocity. We know that velocity actually varies 
across a pipe, from being very small at the edges 
to a maximum in the middle. To account for the 
non-uniformity of velocity, we’ll introduce a 
momentum coefficient, “beta”. 
 
For simplicity, the momentum coefficient is 
assumed to be 1 but it’s included so you can 
adjust it to correct for non-uniformity if you need 
to. 
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Energy equation
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Next we look at the energy equation 
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• Conservation of Energy:

Energy can be neither 

created nor destroyed, it 

can only change form

• How many different 

forms of energy do you 

know about?

The energy (Bernoulli) equation

 

The energy or Bernoulli equation comes from the 
concept of the conservation of energy, 
 
that is that energy can be neither created nor 
destroyed, it can only change form.  
 
Try to brainstorm the different forms of energy 
you’re aware of. 
 
Image http://en.wikipedia.org/wiki/Albert_Einstein 
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• Gravitational   mgz

• Kinetic  ½mv2

• Pressure  PAL = PV

• Total energy = sum of these

= mgz + ½mv2 + PV

Total energy of a fluid

 

The total energy of a fluid is the sum of the 
Gravitational, kinetic and pressure energies. The 
gravitational energy equals mass m, times 
gravity g, times elevation, z; 
 
Kinetic energy equals half mass  m, times the 
velocity v squared;  
 
The pressure energy is probably not one you’re 
familiar with. It equals pressure, P, times area A 
times length L, or Pressure times volume, V.  
 
So the total energy of a fluid can be given by this 
formula 
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mgz + ½mv2 + PV

Divide through by m:

gz + ½v2 + PV/m

Now divide through by g:

A more convenient form

ρ = m / V

So this is 1/ ρ

g

P

g

V
z




2

2

= total energy

 

To simplify this calculation, first of all 
 
the total energy gets divided by mass. 
 
Now on the end here we’ve got volume divided 
by mass, which is the inverse of density, rho. 
 
Now we divide by gravity; so the total energy 
equation becomes just elevation, z, plus the 
(velocity squared over 2 g) plus (pressure 
divided by rho g). The Z term is elevation head, 
the “V squared on 2 g” term is velocity head, and 
the “P on rho g” term is pressure head. 
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• V1A1 = V2A2

Continuity & energy equations

z1, V1, P1

z2, V2, P2

g

P

g

V
z

g

P

g

V
z


2

2

2
2

1

2

1
1

22


z increases

V decreases

What happens to P ?

 

The Energy equation is an important additional 
calculation to complement the continuity 
equation.  
 
For example, lets consider water moving uphill in 
a pipe that is changing from narrow to wide 
diameter. 
 
At the other end we’ll have a different value of Z, 
a different velocity and maybe a different 
pressure. 
 
Based on the geometry, presumably we can tell 
what the difference in elevation is going to be 
 
And from the continuity equation we can work 
out what happens to V 
 
But what about pressure? 
 
Because of the conservation of energy, we know 
that the total energy at point 1 is equal to the 
total energy at point 2, so this brings together all 
of the terms. It’s a really powerful relationship. 
For instance if we know the pressure P1, and we 
can work out the change in elevation and the two 
velocities, we can use the energy equation to 
work out the pressure P2. Or if we measure the 
pressure difference we can actually use this to 
work out flow rate, as long as we know the two 
pipe diameters. We’ll look at these concepts 
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more in next week’s lecture on flow 
measurement, and in the second practical. 
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Real fluids
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In real fluids, 
 
we also need to add energy head losses to 
account for friction when the fluid passes from 
point 1 to point 2. But we’ll deal with those in 
lecture 6. 
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• Pipe diameter
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The energy equation is a powerful tool, but there 
are lots of variables – Z1, V1, P1, Z2, V2, P2... 
Luckily, there are some useful tricks we can 
apply to work out fluid flow. Here’s an example 
from the text book. We’ve got a 20cm diameter 
pipe with water being siphoned out of a tank to a 
location 3.2 metres below the water surface. We 
want to know the velocity of water in the pipe. 
You can assume the water level in the tank stays 
constant and there are no energy head losses. 
The energy equation looks complicated but 
here’s the first trick. 
 
Let point 1 be a point on the water surface of the 
tank. It’s perfectly valid. The nice thing about this 
is that it’s a relatively stationary body of water so 
the velocity can be assumed to be zero. And 
being on the water surface, we’re at atmospheric 
pressure so P1 = zero too. 
 
Next we up set our point 2 at the outlet, which is 
also at atmospheric pressure. 
 
So if you evaluate the energy equation from point 
1 to point 2,  
 
V1 
P1 
And P2 all cancel, so you can determine the 
velocity V2 from the elevation difference Z1 
minus Z2. Hopefully then you can figure out how 
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to solve V3 and P3 using the energy equation. 
Use the textbook for help if you need to. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Pipe is horizontal

• V1 = 1.54 m/s

• V2 = 2.65 m/s

• P1 = 20 kPa

• P2 = 16.89 kPa

• Energy head loss = ???

Example 4.10
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Here’s an example where you’ve been given 
everything you need to calculate the total energy 
upstream and downstream of a pipe contraction. 
 
You need to calculate the difference in total 
energy in order to work out what the head loss is 
between the two points. Hopefully you won’t 
need to follow the worked example but it’s in the 
book if you need it. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Like momentum coefficient (β), accounts for non-

uniformity of actual velocity

• Some typical values:

Energy coefficient, α

Situation α β

Laminar flow in pipes (rare) Up to 2.00 -

Turbulent flow in pipes (normal) 1.01-1.10 1.02

Regular open channels / spillways 1.10-1.20 1.03-1.07

Natural streams 1.15-1.50 1.05-1.17

Flooded river valley 1.50-2.00 1.17-1.33

 

Another coefficient we use to simplify fluid 
dynamics is the energy coefficient, alpha. Just 
like the momentum coefficient, the energy 
coefficient also deals with the non-uniformity of 
actual velocity. Usually, the value of energy 
coefficient is little higher than 1 but for normal 
pipe flow it doesn’t account for much more than 
about 10% difference. 
 
 



Introduction to Water Engineering 
Slide 52 

Drag & lift

 

Other considerations in fluid dynamics include 
Drag and lift. We’re not spending time on this, 
apart from alerting you to the basic concept – 
you can read more about it. The general idea is 
that when an object moves through a fluid, the 
drag force is proportional to velocity squared and 
the frontal area of the object, and different 
shaped objects have different coefficients of 
drag. This diagram is from figure 4-30 in the 
textbook and just shows the approximate drag 
coefficient, Cdr, of various body shapes at 
Reynold’s values of 10 to the power of 5. So right 
up the top you can see a half tube with the open 
section facing into the fluid, which has a really 
high coefficient of drag, over 2, whereas a half-
tube facing the other way is closer to a drag 
coefficient of one. We’ll come back to drag in 
week 10 when we look at dimensional analysis. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Summary 

- Fluid dynamics

- Different types of flow

- Continuity equation

- Energy equation.

 

So, in summary, we’ve looked at simplifying and 
characterising fluid flow using the Reynolds 
number, and we’ve used the concepts of 
volumetric continuity and conservation of energy 
to solve fluid dynamics problems that involve 
changes in velocity, elevation and pressure. 
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Thank you

 

If you’ve got any questions or desire further 
clarification please post a question or comment 
on the Discussion Forum. 
 
 

 


