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Welcome to Module 2 Pipe flow 
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Flow Measurement
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Let’s start by looking at flow measurement. 
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Intended Learning Outcomes

At the end of this section, students will be able 

to:-

- Understand how the energy equation can be used to 

measure flow from pressure differences

- Calculate flow from measurements using devices 

including venturi meter, pitot tube, orifice and sharp 

crested weir.

 

The learning outcomes are presented here – we’ll look 
at how the flow or discharge of a stream of liquid in a 
pipe or open channel can be calculated with the energy 
equation and an observed pressure difference using a 
variety of devices including the venturi meter, pitot 
tube, orifice and sharp crested weir. 
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Energy Equation re-cap
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Just re-capping from the last presentation, we 
introduced the energy equation. Remember that the 
sum of elevation head, Z, velocity head (V squared on 
2 g) and pressure head (P on rho g) at point 1 is equal 
to sum of those at point 2 
 
plus we also mentioned that energy head losses need 
to be considered because there’s friction between the 
fluid and the pipe as it moves from point 1 to point 2. 
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• Assuming we know pipe size, we know area A

• What we really need is velocity, V

Measuring flow  Q = VA
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Generally we should be able to expect 
 
that we’ll know the cross sectional area of a pipe A 
 
Then what we really need, to measure flow rate, is 
actually the velocity V because Q = VA from the 
continuity equation. 
 
Based on the geometry of the system we should also 
be able to assume we know the elevations at two 
different locations, Z1 
 
and Z2 and if it happens that the pipe’s horizontal, then 
 
The Z terms cancel out. 
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• Start by assuming energy head losses are negligible 

(don’t worry, they come back!)

Inferring V from P
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Just while we’re getting familiar with the concept, we 
can start by assuming that our pipe’s horizontal, and 
that energy head losses 
 
are negligible in the energy equation. So the remaining 
components in the energy equation suggest an 
important relationship between velocity and pressure. 
This forms the basis of using pressure measurements 
to work out the velocity in a pipe. 
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• In this system P1 = P2 and V1 = V2, so we can’t solve 

anything!

Inferring V from P
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For a uniform pipe, 
 
the pressures at point 1 and point 2 are equal, and the 
velocities at point 1 and point 2 are equal. So in that 
case, we can’t solve anything. It wouldn’t do any good 
to measure the two pressures here because we know 
they’re going to be equal. 
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• What about this?

Aha!
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But check this out. 
 
What if we induce a change in velocity by forcing the 
flow into a smaller pipe. Now the velocity V2 is going to 
be higher than V1. 
 
So now it makes sense to take a reading of upstream 
pressure 
 
And downstream pressure. We should expect P2 to be 
lower than P1, because the energy equation has to 
balance. What’s happening is point 1 has lower velocity 
head but higher pressure head, whereas point 2 has 
higher velocity head and lower pressure head. 
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Inferring V from P
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So we use the fact 
 
that there’s relatively large pressure and small velocity 
upstream 
 
And the opposite situation downstream with high 
velocity and low pressure. 
 
Then we use the principle of total energy 
 
and the fact that the upstream energy equals the 
downstream energy to relate the velocities to a 
measurable pressure differential. 
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In order to infer velocity V from the pressure differential, 
we need to rearrange the energy equation. 
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• Trick 1:

Define H as the measured head difference

• Trick 2:

Use the continuity equation and the known cross 

sectional areas A1 and A2

A couple of extra tricks...
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Here’s a neat trick – 
 
define head difference H as the measured pressure 
difference, so we’re not interested in the absolute 
values P1 and P2 anymore. This simplifies two of the 
variables in the equation to a single variable, which is 
easy to measure in practice. Also, it’s easy to measure 
this in metres of water. 
 
But the most important trick is to use continuity 
equation to relate the two velocities to one another 
based on the two different cross-sectional areas of the 
pipes. 
 
Rearranging the continuity equation, the upstream 
velocity is equal to downstream velocity multiplied by 
the ratio of the two cross-sectional areas, 
 
or vice versa. Now as long as we know the two pipe 
cross-sectional areas, which should be straightforward, 
then the two unknowns, V1 and V2, can be simplified to 
a single unknown. 
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Putting these tricks to work, 
 
we can substitute for the downstream velocity V2 and 
the pressure head difference, or H. 
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So we can simplify the 4 unknowns in the energy 
equation to a single unknown, V1, as a function of the 
pipe sizes and a measured head difference H. 
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So now we just need to do a bit of fancy footwork to 
rearrange this into an expression for velocity 
 
Start by taking out a factor of V1 squared on 2g 
 
Put 2g on the other side 
 
Get v1 squared by itself 
 
And finally take the square root. So as long we can 
measure the head difference H, and we know the two 
pipe areas A1 and A2, we can quite easily use a 
sudden pipe contraction to measure the water velocity. 
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• Several devices utilise the change in cross sectional 

area in this manner

– Venturi meter

– Orifice plate (small orifice)

Flow measuring devices
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Several devices including 
 
venturi meter 
 
and orifice plate utilise this process, where they induce 
a change in cross sectional area to measure the flow 
rate. 
 
To find flow rate we just use Q = VA 
 
Now, remember how we started out by ignoring head 
losses? Well, obviously that assumption could throw off 
the accuracy of our measurement so we have to 
correct for the loss of energy as water gets squeezed 
through the device. 
 
We just use a coefficient of discharge CD  for 
correcting the energy head. If CD is equal to 1, it 
means there’s no head loss. The values of CD are 
found by experiments, and for a Venturi meter, which 
involves a gentle contraction and expansion, 
 
it’s pretty close to 1, about 0.97. On the other hand an 
orifice plate involves squeezing the fluid through a hole 
and is pretty disruptive to the overall flow. 
 
Cd values for the orifice meter are in the realm of 0.6 
as a result. 
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Venturi meter

We account for this in the 

coefficient of discharge CD

 

Here’s a somewhat complicated drawing that shows 
what’s happening inside a Venturi meter. Fluid’s flowing 
from left to right, and comes in with a particular  
 
elevation head, pressure head and velocity head. The 
Venturi meter forces the water through a contraction.  
 
Now assuming the system’s horizontal, the elevation 
head hasn’t changed, but we’ve induced a higher 
velocity so now the total head is made up of a higher 
velocity head and a lower pressure head. Notice that 
the total energy is a little bit lower than before, because 
already there’s been some friction and as a result 
there’s been a loss of energy. At the top of this picture, 
there’s a total energy line for an ideal fluid with no 
energy losses. 
 
So the fluid keeps trundling along the Venturi meter 
and the device is designed to slowly expand back out 
to release the water at its original diameter. When this 
happens, we’ve got the same elevation head and 
because it’s returned to its original diameter we’ve got 
to have the same velocity head as we had at the start. 
But overall energy is lower due to energy head losses 
and this is accounted for in a lower pressure head than 
we had going into the Venturi meter. 
 
If we track the total energy line and account for energy 
losses due to friction, it’ll go down something like this. 
Different parts of the system might induce more loss 
and others might induce less, so the rate of energy loss 
or the slope of the line changes along the way. But it 
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always goes down, because we can’t gain energy out 
of nowhere. 
 
Like we said on the previous slide, we account for real-
world energy losses over the whole meter by throwing 
in a coefficient of discharge that we get from 
experimental data. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
 
 
 

Slide 18 

• CD = 0.97

• P1/ρg measured = 950mm

• P2/ρg measured = 200mm

Example 5.1
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Alright, here’s an example of a Venturi meter where we 
know the two diameters are 100 mm and 60 mm. 
 
Let’s assume a coefficient of discharge of 0.97, fairly 
typical for a Venturi meter 
 
And we’ve been told the upstream pressure head has 
been measured as 950 mm of water. Expressing the 
measurement in this way might mean that they didn’t 
measure the pressure in Pascals, but they actually 
measured the height of water using a piezometer or 
manometer. So the measurement given is for P1 on rho 
g. 
 
Likewise P2 on rho g has been measured at 200 mm, 
so we can work out the head difference H from these 
two values. 
 
Using the equation we derived before, you should be 
able to work out the flow rate in the pipe. The workout 
procedure’s in the text book if you need it. 
 
 

Slide 19 
Pitot tube
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A Pitot tube is a totally different physical method to 
measure the flow rate, but it also involves measuring 
two different pressures. Have a close look at the 
diagram here, and look at points 1 and 2. 
 
Assuming it’s been put in on the horizontal, the 
elevation head cancels. Now, Point 1’s located in the 
pipe where fluid’s flowing along, so it’s going to have 
both a velocity head component and a pressure head 
component. It’s important to realise that if we use some 
pressure-measuring device, be it a piezometer, 
manometer, or a Bourdon gauge, it only tells us the 
pressure head component at that point. The diagram 
here shows a piezometer with water up to a level 
corresponding to P1 on rho g, which is the pressure 
head. Now have a look at Point 2. This is at the 
entrance to the Pitot tube itself, which is usually a nice, 
streamlined tube designed for minimum flow disruption, 
with a little hole in the end. Water enters the Pitot tube 
but once it’s filled up, it becomes stationary. So in the 
tube, and all the way out to the entrance, 
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the velocity’s zero. So what’s actually happened now is 
that we’ve converted all of the velocity head that we 
had at point 1 into straight pressure head at point 2. 
 
Rearranging we get the velocity head expressed in 
terms of the difference in observed pressure head, and 
again we can simplify this to a single reading, H. 
 
Finishing it off we get V equal to root 2 g H, which is a 
very common relationship found between head and 
velocity. 
 
To account for any disturbance caused by the device, 
we introduce a coefficient C, which is just like the 
coefficient of discharge we used before. Typical values 
for a Pitot tube are very close to 1, about 0.98 or 0.99. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Pitot tube

 

In a clever Pitot tube, with a tube inside a tube, the 
outer holes measure the static pressure, which was P1 
in the previous version, while the inner tube measures 
the combined pressure, P2. Apart from the physical 
layout this type of Pitot tube it's no different from the 
previous one we looked at. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Example 5.2

Pitot tube

gHCV 21 

 

Here’s a really easy example where the two 
measurements have been taken. 
 
Just be careful with these sorts of problems because 
the wording can be a bit confusing. The P1 on rho g 
measurement is called the “static pressure head”, 
which means it’s the static component of the combined 
pressure and velocity heads, and the P2 on rho g 
measurement is called the “stagnation pressure head”, 
which sounds similar but it’s talking about the pressure 
developed inside the Pitot tube, where the flowing 
water has stagnated and become stationary. 
 
You shouldn’t need to consult the textbook to work this 
out, but check your answer if you get stuck. 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• “Small” (diameter << driving head)

Flow through orifices
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Orifice just means “hole”. Let’s consider water flowing 
out of a tank through a small orifice. By “small orifice”, 
we just mean the diameter is much smaller than driving 
head. 
 
Let’s take a close up view of this orifice. Water rushes 
out through the hole and contracts slightly before 
expanding again. You might have seen water coming 
out of a tap doing the same thing. The contraction is 
called the “vena contracta”. 
 
Before we apply the energy equation, we’ll select two 
points. Point 1 can be at the top of the water surface, 
where there’s atmospheric pressure so we know that’ll 
simplify our calculation slightly. We choose point 2 at 
the vena contracta and there’s atmospheric pressure 
here too, so that’s both our pressure terms eliminated 
from the energy equation. 
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Derivation of discharge
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Okay so putting the energy equation together, 
 
our pressure terms are gone straight away, 
 
And assuming the water in the tank is basically 
stationary, V1 is close enough to zero to disregard. 
 
So we’ve got 3 terms in our equation 
 
And if we let H be the driving head, which is the 
difference between Z1 and Z2,  
 
Then this starts to look a bit familiar 
 
We end up with the velocity being equal to root 2 g H, 
just the same as the Pitot tube, and as I said, this is a 
pretty common head-velocity relationship. 
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Coefficient of contraction
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If we want to convert that velocity into a flow rate, we 
need to know the cross sectional area 
 
because Q = VA. This means we need to know how 
much the water contracts at the Vena contracta. 
 
If we have an orifice of area A 
 
And water contracts to a cross-sectional area aJ at the 
vena contracta 
 
Then we can express the coefficient of contraction Cc 
as aJ on A. 
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• Actual velocity through orifice < theoretical 

– Coefficient of velocity  CV

– Accounts for energy losses

• Overall coefficient of discharge CD = CC x CV

• Q = CDAV

• But CV typically close to 1, e.g. 0.95-0.99

• So CD is mostly influenced by CC

Coefficient of velocity

 

What we find in practice is that 
 
the actual velocity coming through an orifice is less 
than the theoretical value we get by the previous 
calculation. 
 
A coefficient of velocity CV is used 
 
to account for energy losses. 
 
Then, an overall coefficient of discharge is found by 
multiplying the coefficient of contraction by the 
coefficient of velocity. 
 
So the discharge Q through an orifice is this coefficient 
of discharge CD times area times velocity, which we 
found by the previous equation. 
 
As it happens, the value of the coefficient of velocity is 
pretty close to 1, so the main factor influencing CD is 
the coefficient of contraction.  
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Types of orifice & CD values

 

Like the coefficient of discharge for a Venturi meter or 
the coefficient of a Pitot tube, experimental work has 
found a range of different values of CD for different 
types of orifice. The coefficient can be as low as 0.5 or 
for a nice smooth orifice it could be close to 1. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Orifice diameter: 50mm

• CD = 0.62

Example 5.3

1

2

H

(a) What is the discharge if head in 

tank is maintained at 2.5 m ?

(b) What is the % reduction in 

discharge if head is reduced by 50% 

to 1.25 m ?

gHACQ D 2

 

Here’s an example of a sharp orifice on the side of a 
tank, with a coefficient of discharge of 0.62. The hole’s 
circular with diameter 50 millimetres. 
 
The first question asks what the discharge would be if 
the tank level is 2.5 metres, and assume it’s being 
continuously refilled so it stays constant.  
 
The second question asks what the reduction in 
discharge would be for a 50% reduction in driving head. 
Do you think it would halve the discharge? Or more? Or 
maybe less. You’ll have to crunch the numbers to find 
out. 
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• We can use the observed 

distance travelled by a jet of 

water to determine the 

actual velocity, and hence 

the coefficient of velocity, 

CV

• Derivation p. 135:

Jet trajectory
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If there’s a small hole in the tank, 
 
the stream of water flowing out will follow a fairly 
predictable jet trajectory, covering a distance X while 
falling through a height Y. Studying the jet trajectory 
can be used to help work out the coefficient of velocity, 
CV. 
 
We won’t go into the derivation here, but you can look it 
up in the textbook if you like. 
 
The two equations we have are velocity equal to the 
distance X times root G on 2 Y, and 
 
The coefficient of velocity CV equal to X on 2 root Y H. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Orifice D = 25 mm

• H = 1.42 m

• Jet horizontal distance

x = 1.25 m

• Jet vertical distance

y = 0.3 m

• Jet diameter at vena 

contracta = 20 mm

Example 5.4
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Here’s a jet trajectory example. 
 
Say we’ve got a 25 millimetre, or one inch, hole. 
 
We’ve got a driving head of 1.42 metres 
 
And we observe the jet shoots out a distance of 1.25 
metres 
 
while falling through a height of 30 centimetres. 
 
Let’s say we can observe the diameter of the vena 
contracta where the flow’s reduced to 20mm 
 
The first thing to work out is Cc, which is very 
straightforward since we’ve got the diameters and can 
easily convert these into areas. Next up we want to use 
the X and Y measurements to calculate the coefficient 
of velocity. Again, this shouldn’t be too difficult for you. 
See how you go. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Submerged small orifice
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In a submerged orifice, we’re talking about a situation 
where one tank discharges water into another one via 
an orifice. 
 
Obviously we can apply energy equation here, just like 
anywhere else; 
 
If we take point 1 at the water surface, we can neglect 
the velocity 
 
and pressure here. 
 
Now, let’s define the elevation difference Z1 minus Z2 
as H1, as the diagram shows here. 
 
Next up we express the pressure head at point 2 in 
terms of the depth of water, H2. 
 
Chucking these into the energy equation and 
rearranging  
 
we get the velocity through the orifice as a function of 
the difference in tank water levels 
 
which becomes an expression fairly similar to the 
equation we derived for orifice flow earlier, except this 
time the driving head is the head difference between 
the two tanks. This should make some sort of intuitive 
sense, because we can see that as water flows from 
one tank to the other, the water levels are going to 
equalise, and as they do that, the flow rate will drop. 
Eventually the tanks will have equal water levels and 
there won’t be any flow between them. 
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• CD typically 0.6-0.62

Coefficient of discharge

1

2

H1

H2

 212 2 HHgV 

 212 HHgACQ D 

 

As always we need to insert a coefficient of discharge 
for actual flow rate, and typical values for sumerged 
orifices are around 0.6. 
 
So our velocity equation 
 
Becomes a general discharge equation for flow 
between two tanks. 
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• Used just like a Venturi meter, including same 

discharge equation

Orifice meter

 

An orifice meter consists of a flat plate inserted into a 
pipe, with an orifice in the middle of the plate. Pressure 
is measured upstream and downstream of the hole, 
where the downstream measurement captures fluid 
moving through a vena contracta. The equations for 
calculating flow from these pressure measurements are 
identical to those of a Venturi meter. As we said earlier, 
this type of meter tends to disrupt flow pretty severely 
and as a result the coefficient of discharge is a lot lower 
than that of a Venturi meter. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• “Small” (diameter << driving head)

• “Large” (diameter similar to driving head)

• With a small orifice, head could be assumed not to 

vary over the height of the orifice

• Problem now is that head varies

Large orifice flow

 

Okay, so we covered small orifice flow, where the size 
of the orifice was small relative to the head driving the 
flow. 
 
Now in a large orifice, the size of the hole is big enough 
that it’s on a similar order to the driving head. 
 
with a small orifice, head could be assumed not to vary 
over the height of the orifice, which is why the equation 
had a single H value. 
 
In the large orifice, the problem is that hole is big 
enough that driving head actually varies significantly 
from the top of the hole to the bottom. 
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Large orifice flow

11 2gHV 
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hbghQ   2

 

So now we need to consider the driving head at the 
bottom, 
 
H2 
 
and the driving head at the top, H1. 
 
This causes a different fluid velocity at the top and 
bottom, and obviously it’ll change across the whole 
height of the orifice too. 
 
What we need to do is consider the orifice as a stack of 
little incremental areas, delta A 
 
So at each depth, there’s a portion of flow, delta Q, 
which is the product of the velocity at that depth times 
delta A. 
 
Substituting the “V equals root 2 G H” equation for 
velocity, and letting delta A equal the width of the orifice 
times an incremental height delta H, we get a 
differential equation that we can integrate over the 
whole height. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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A little friendly integration...
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It’s not the hardest integration 
 
in the world 
 
Assuming a constant width, which implies a rectangular 
orifice, “B root 2 G” comes out the front and we’re left 
integrating “root H dH” over the interval from H1 to H2. 
 
Hopefully you know all about how to integrate powers 
like this, so we end up with two-thirds out the front and 
H to the 3/2 in the integrated bit. 
 
This expands to Q equals two-thirds times the width b, 
times root 2 G, times H2 to the 3/2 – H1 to the 3/2. 
 
But that’s the theoretical discharge 
 
Of course we have to throw in a coefficient of discharge 
CD. 
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Now let’s do an example where we’ve got a large 
orifice 
 
2 metres high and 4 metres across 
 
With the top of the orifice 90 centimetres below the 
water surface. 
 
Let’s compare the answer we get if we treat it as a 
large orifice 
 
Compared with a small orifice. 
 
Because it’s a theoretical comparison we can ignore 
CD in these equations. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Sharp-crested weir

 

A weir is a flow measurement device used for open 
channel flow, so it’s physically totally different to things 
like the Venturi meter and Pitot tube. The figure here 
shows a sharp-crested weir.  
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Sharp-crested weir

undesirable

 

Weir discharge measurement involves carefully 
measuring the depth of water flowing over a sharp 
crest. The equations we’re going to use for this all 
assume that water flows over the crest freely, with air 
directly below the stream of water as it leaves the crest. 
 
Under certain circumstances, especially if the crest 
spans across the entire channel, it’s possible to get the 
water clinging to the crest, which is undesirable as the 
equations no longer correspond to the measurements 
being taken. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Weirs

 

As usual we need to view this situation through the lens 
of the energy equation, considering a point 1 upstream 
of the weir and a point 2 just after the crest. This picture 
is obviously not very realistic because water 
discharging over a crest doesn’t horizontally flow 
through the air like this! 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Discharge equation for large orifice:

• If V1 = 0, then discharge equation for sharp-crested weir:

Recall  large orifice flow
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The simplest way to view a weir is if you assume the 
upstream velocity is zero, 
 
so it becomes basically a tank discharging through a 
large orifice, where the orifice happens to be located 
right up at the top of the tank with no wall above it. 
 
In this simple case, we can just use the large orifice 
equation 
 
And because the top of the orifice is the water surface, 
H1 becomes zero 
 
So under the idealistic assumption that upstream 
velocity is zero, we can get an approximation of 
discharge  
 
Just by measuring the water depth H over the crest and 
applying a simplified orifice equation. 
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• After all, this is supposed to be a flow 

measurement device!!

But what if V1 ≠ 0 ?

Derivation on p. 146
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That’s all well and good, but we might not be totally 
comfortable assuming the velocity upstream is zero. 
 
I mean after all, the purpose of the weir is to measure 
discharge, which implies that there is some flow taking 
place. 
 
So let’s go back and build up the energy equation 
again. 
 
You can find the full derivation in the textbook 
 
The main thing to watch here is the clever way we build 
up the energy equation. To start with, take a look the 
elevation head, Z2. This is built up of the elevation 
head Z1 , plus H1, which gets us to the water surface, 
minus the depth h which is because we’re considering 
some arbitrary point located somewhere in stream 
flowing over the weir. 
 
Now upstream, considering some arbitrary depth in the 
channel, we’ve got a pressure head, which is P1 on rho 
G, equal to h1. So we can see that h1 is going to 
appear on both sides of the energy equation, which 
should mean it cancels out. And the elevation head at 
point 1 is Z1 too, so that’s going to appear on both 
sides. It’s starting to look good. 
 
Okay, now going back downstream to point 2, here we 
can make a simplifying assumption that pressure P2 is 
zero. Remember how I told you these equations 
assume there’s air underneath the flow as it leaves the 
crest? That’s important here, so we can assume the 
discharging stream of water is at atmospheric pressure. 
So P2 equals zero. 
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Alright, let’s get into it. 
 
Here’s our energy equation. Upstream we’ve got 
elevation head Z1 plus velocity head V1 squared on 2 
G plus pressure head, which we said was equal to h1. 
Downstream we’ve got all that mess from before, Z1 
plus h1 minus h, plus the velocity head V2 squared on 
2 G. And remember we assumed P2 was zero. 
 
So first things first, cancel out the Z1 and h1 terms. 
 
Now we’ve just got the two velocity heads and the 
height h, which remember is just an arbitrary depth in 
the discharge stream. 
 
Rearranging this gives V2 as a function of V1 and h, 
and we’re going to use this in the same style of 
integration as we used when we built up our expression 
for large orifice flow. 
 
So if we consider a little portion of the overall flow, delta 
Q, this is equal to the expression for velocity V2, times 
the width b, times the incremental height, delta h. 
 
 

Slide 43 
Integrating...
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of water above 

the crest of the 

weir

 

I know this might look daunting, but the integration 
really isn’t that much harder than the orifice equation. 
 
Again assume a uniform width b,  
 
And all that happens is we end up with the upstream 
velocity head, V1 squared on 2 G, stuck in our 
integration. 
 
This time we’re integrating over the interval from 0 to 
big H, because we’re going from the water surface 
down to the weir crest as shown in the picture here. 
 
So it comes out into an equation that looks a little 
unpleasant, but it’s not really too bad. 
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• To begin with, we don’t know V1 so we just 
assume V1=0

• This gives an approximate flow rate, which
we use to calculate an approximate V1

• Then substitute your approx. V1 to the 
equation and repeat
– New Q  new V1  substitute  repeat

– STOP when consecutive Q values are within 
an acceptable tolerance (e.g. Correct to 3 sig. 
fig.’s)

Iterative approach...
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Okay, great, we’ve got this huge equation for 
measuring discharge but one of the parameters is 
velocity – so it sort of looks like a self-defeating 
situation, doesn’t it? I mean, if we knew the value of V1, 
then we’d know the value of discharge, right? 
 
The way forward is a process called iteration, which 
involves starting with a guess. Let’s start by assuming 
V1 is zero. 
 
Now we can calculate an approximate flow rate 
 
Just from the measurement of the height of water over 
the weir, which is convenient. 
 
This isn’t the real flow rate, but it’s probably a 
reasonably good approximation depending on how fast 
the upstream water is travelling.  
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Now we can use this approximate Q value, via the Q = 
VA relationship, to give us an approximate value for V1. 
It’s still not going to be correct, but it’ll be a little bit 
closer than the original guess of zero. 
 
Now with our slightly better guess of V1, we can plug 
this into the discharge equation, 
 
which will get us a new, even better value of Q, which 
we use to get a new value of V1, new Q, new V1, new 
Q, and so on. Obviously you could go on repeating this 
procedure forever without stopping – you’ll never quite 
get the true answer, whatever that is, using this 
method. So you need to set some realistic level of 
tolerance, and then you can stop when you get two 
consecutive values of V1 that are within that tolerance. 
Maybe this would be when you get two values that are 
within a particular number of significant figures, 
corresponding to the level of precision in the data 
you’ve been provided in the problem at hand. You’ll find 
we use this sort of trial-and-error approach a fair bit for 
problems in water engineering. 
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• Example 5.7

Rectangular weirs
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Here’s an example of water flowing through a small 
channel, and going over a sharp-crested weir. What 
we’re going to do here is calculate the flow rate first 
with the assumption that V1 is zero, and then go 
through the iteration procedure we just learnt, to find a 
more accurate value. 
 
The two fundamental pieces of info we need are the 
length of the weir crest, b 
 
And the height of water over the crest, H. With the 
coefficient of discharge given as 0.62, you’ve got 
enough data to calculate an approximate flow rate 
assuming V1 is zero. But when we go through the 
iterative procedure, we need a little bit more information 
 
Because we calculate the approximate upstream 
velocity by Q = V on A, 
 
We need to know the dimensions of the cross-sectional 
area upstream 
 
Fortunately we’ve been given the channel width, which 
is 40 centimetres 
 
And an additional height, which we can use to work out 
the overall water depth to give us the cross-sectional 
area of flow. See how you go with the iterative 
approach, and remember to stop when you reach an 
appropriate level of convergence between your Q 
values. The textbook can help guide you through this 
example if you need help. 
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But in practice...

• It’s common to ignore V1

• Why?

– Velocity in an open channel is usually quite 

small (i.e. < 1 ms-1)  V1
2 even smaller

divided by 2g (=19.62)  even smaller

– Typically affects total upstream energy head 

by several millimetres so usually not a big 

error if we neglect it

 

Okay, we needed to go through that iterative process to 
show how to get the true answer, and in some cases 
we might really need this high level of accuracy. But in 
reality we can often neglect the upstream velocity. 
 
The reason it’s not such a problem to ignore upstream 
velocity is that typical speeds in channel flow are pretty 
slow, like less than a metre per second. When we turn 
this into a velocity head, we square it, so it gets even 
smaller,  
 
and then we divide it by almost 20 
 
so it ends up that typical values of velocity head in a 
channel are on the order of just a few millimetres, and 
in a lot of cases this is small enough to ignore. 
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Triangular (V-notch) weirs

• Similar derivation as 

before, but now  b

varies with  h

 

Another common type of weir is the triangular, or V-
notch, weir. 
 
The derivation of the discharge equation for a V-notch 
weir 
 
starts out the same as the rectangular weir 
 
Except now the width varies depending on the depth of 
water flowing across the weir 
 
We can use geometry to express the width b as a 
function of the weir angle and water depth, which feeds 
back into the integration 
 
And the key thing to note now is that  we end up with 
an extra h term in the integration 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Triangular weir equation

• Skipping the integration...
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So without boring you with the integration steps,  we 
end up with this equation for discharge over a V-notch 
weir, assuming negligible upstream velocity. I know it 
looks complex but it’s really not. 
 
For a start, all this stuff is just a bunch of constants 
 
So the main thing going on here is that because we 
started out the integration with an extra h term, the final 
result is that flow is proportional to H to the 5 on 2,  
 
which is exactly one power higher than we had in the 
rectangular case. 
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Example 5.8
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Let’s do an example where we’ve got a particular flow 
rate and we want to know what the corresponding 
height of water over the weir crest would be. 
 
This means you’re going to have to rearrange the 
discharge equation to solve for h. 
 
Water’s flowing at 53 litres a second and the V-notch 
weir has a total angle theta of 60 degrees. Assume a 
coefficient of discharge of 0.6 
 
Once you’ve got your answer, repeat the calculation to 
see what the height of water would be over a 
rectangular weir 30 centimetres wide. The textbook will 
help if you get stuck. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Calibrating what?

– Coefficients

• Example 5.9 (Excel)

Calibration

 

All of the devices we’ve looked at today have some sort 
of coefficient in them to correct for real-world effects 
like energy head losses. In most of the examples we’ve 
covered, you were just given a value of coefficient of 
discharge. But you might wonder how we actually go 
about finding those coefficients. Imagine, for example, 
that you’re developing your own flow measurement 
device based on the pressure-velocity relationships 
we’ve looked at here. Let’s use an Excel example to 
look at how you might go about calibrating the 
coefficient of discharge for a given flow meter, based 
on experimental measurements. The example we’ll 
look at is example 5.9 from the textbook. This type of 
analysis is also the basis of the calculations you’ll have 
to do for your practical on flow measurement. 
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Summary 

Variety of discharge measuring devices:

• Venturi meter, Pitot tube, orifice and sharp crested weir

• all exhibit a power relationship between velocity and pressure head

• V  h0.5, or h1.5, or h2.5 …

 

So in summary, we’ve looked at a variety of discharge 
measuring devices including venturi meter, pitot tube, 
orifice and sharp crested weir. These are all related to 
one another by the fact that each device exhibits a 
power relationship between velocity and pressure 
head. In some cases like the Venturi meter and Pitot 
tube, velocity’s proportional to the square root of a 
pressure head difference. In weirs the velocity’s 
proportional to head to the power of 3 on 2 for a 
rectangular weir, and the power goes up to 5 on 2 for a 
V-notch weir. 
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Thank you

 

If you’ve got any questions or need some further 
clarification please post a question or comment on the 
Discussion Forum. 
 
 

 


