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Module 2  Pipe Flow 
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Welcome to the third presentation in Module 2 
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2.3 Flow through pipelines

DO NOT REMOVE THIS NOTICE. Reproduced and communicated on behalf of the University of South Australia pursuant to Part VB of the copyright Act 1968 (the Act) or with permission of the 

copyright owner on (29/3/08) Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act. DO NOT REMOVE THIS NOTICE.  

Okay, let’s look at flow through pipelines. 
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Intended Learning Outcomes

At the end of this section, students will be able 

to:-

- Application of energy equation

-Branched pipe problems

-Friction and energy losses

 

The learning outcomes are presented here – we’ll look 
at the applications of energy equations to pipe flow, 
including flow through branching pipe lines and we’ll 
look at energy losses due to friction. 
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Energy Equation re-cap
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In the last two lectures we used the energy equation. 
We briefly touched on the fact that when we move 
between two points, 
 
there’s some energy that gets lost because of friction. 
This time, we’re going to focus on those energy head 
losses and look at ways to predict them. 
 
So just recapping – the energy equation includes 
pressure head or piezometric head 
 
Which forms part of the total head. The elevation head, 
Z, and velocity head, V squared on 2 g, tend to be fixed 
by the geometry of the system, so the friction head 
losses manifest themselves as a loss of pressure 
energy from one point to the next. 
 
 

Slide 6 

Total Head Line (THL) assuming no 

losses
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Energy Equation re-cap

 

This figure shows flow in an arbitrary pipe. There are 
two piezometers to measure piezometric heads. 
 
At the upstream point we’ve got elevation head, Z1 
 
Plus the pressure head, P1 on rho g 
 
And of course the velocity head. Downstream, after the 
water’s gone through some length of pipe, 
 
let’s say we’ve ended up at the same elevation Z2, 
 
And now we’ve got a smaller pressure head 
 
And the same velocity head as before, because the 
pipe’s the same diameter. 
 
Now if we plotted a total head line from the two points 
 
assuming no head losses in the energy equation 
 
Then we’d end up with a gap at the downstream end. 
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The true total head line’s going to slope down, because 
there’s energy head losses due to friction in the pipe. 
This is why the downstream pressure P2 is smaller 
than P1. 
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Now, assuming we’re dealing with a uniform diameter 
pipe, the velocities are going to be the same. 
 
So we can just draw a line connecting the piezometric 
levels, which we call the hydraulic gradient line. 
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• We’ll be:

– Considering full pipes (flowing under pressure)

• not half-full pipes or channels containing air at 

atmospheric pressure

– Using the Energy (Bernoulli) Equation

– Looking at “Natural” flows and losses

• No pumps to artificially boost flow or head

(they come later!)

Reservoir-pipeline flow

 

For this Introductory course of Water Engineering, we’ll 
 
look at full pipes under pressure. 
 
In later hydraulics courses you’ll look at stormwater and 
sewer pipes which tend to run only partly full and 
contain air at atmospheric pressure. 
 
The equation we’re going to use over and over again is 
the energy or Bernoulli equation we introduced in the 
previous lecture 
 
Importantly, for now we’re just considering gravity-
driven flow 
 
Later we’ll look at pumps which are used to add energy 
to a system. 
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Reservoir-pipeline flow
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Here we’ve got a basic reservoir with water flowing 
through a syphon to a discharge point somewhere 
below. If we take the discharge elevation to be zero, 
then at the downstream end we’ve got 
 
Pressure head, P2 on rho g 
 
And here we’ve got a big gap to get up to the total head 
line. The gap has got to be a combination of 
 
Velocity head plus whatever head losses happened 
along the pipe 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Reservoir-pipeline flow
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Now imagine we close a valve at the end of the pipe. 
 
Now watch what’s happening to the pressure in the 
piezometer here. It’s rising up and up until when the 
valve’s fully closed,  
 
P2 on rho G is effectively equal to the upstream 
elevation in the reservoir. There aren’t any head losses 
in this system because the water isn’t moving.  
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
 
 
 

Slide 12 

• Major losses

– Pipe friction (Darcy equation)

• Minor losses

– Sudden expansion or contraction

– Elbow bend

– Valves & other hindrances

• In general, hF or hL ∝ V 2 (see Table 6.1)

• Obviously no flow  no head loss!

Head loss caused by moving water

gD

LV
hF

2

2


 

Head loss is only caused by moving fluid. 
 
We tend to divide losses into two types. Major losses 
refer to the friction due to the water rubbing along the 
pipe surface, and we use an equation called the Darcy 
Equation for this. 
 
The key thing in the Darcy equation is the lambda term, 
which is the Darcy friction factor. L and D just refer to 
the length and diameter of the pipe. So you can see 
that the things that contribute to high friction head loss 
are long pipes, and small diameters. 
 
Then when we talk about Minor losses, we’re talking 
about friction as the water goes through a sudden 
expansion or contraction in the pipe, or goes round a 
sharp bend, passes through a valves or basically just 
encounters anything that disrupts the flow. You might 
remember last time we looked at flow measurement 
devices and some of those were more disruptive to the 
flow than others, which meant we had to introduce a 
coefficient of discharge to account for the friction head 
losses. 
 
In general, major and minor losses are both 
proportional to the velocity squared, which is why  
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We don’t get any head loss in a pipe with no water 
flowing through it. It’s important to note that just 
because we call these things Major and Minor losses, it 
doesn’t necessarily mean Major losses are always 
bigger. For a short pipe system with lots of bends, 
valves, junctions and so on, the minor losses might 
actually dominate. But for a long pipe without many 
interruptions, it’ll be dominated by major losses. Table 
6.1 in the text book shows some calculations for head 
loss in a couple of common situations. 
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Example 6.1

1. Entrance head loss

2. Friction head loss (pipe 1)

3. Change-of-section head loss

4. Friction head loss (pipe 2)

5. Exit head loss

 

Here’s a qualitative example of what happens to the 
energy head line in a pipe connecting two reservoirs. 
We start at the water surface in the upper reservoir, 
 
and the first thing that happens is we lose a bit of 
energy due to friction as the water enters the pipe. 
 
This is called entrance head loss. 
 
Then as we move along the pipe we lose more and 
more energy. This is because of friction in the pipe, 
which keeps sucking energy out of the system all the 
way. Because it’s a constant diameter pipe for this bit, 
the velocity’s constant and that means the friction head 
loss is constant – so it’s a linear decrease in energy as 
we go along. 
 
Then the total energy takes another hit due to friction in 
the join between the two pipes as the water enters a 
larger-diameter pipe, 
 
Which we call a “change of section” head loss. 
 
Then it continues losing energy due to the friction in the 
bigger pipe. What you’ll notice though is that the rate of 
energy loss is less, or in other words the slope of the 
energy line isn’t as steep. What’s happening here is 
that the velocity’s now less, because we’re in a bigger 
pipe, and since friction head loss is proportional to 
velocity, there’s not as much loss. 
 
The final energy level has to be the water level in the 
lower tank, but the last thing you’ll notice right at the 
end of the energy line is that the energy drops off 
suddenly – what’s happening here is that we’ve got a 
little loss of energy, 
 
called an exit head loss, a bit like the entrance head 
loss at the start. The exit loss in this case is actually 
just considered to equal the velocity head because all 
the velocity gets dissipated in the reservoir. So that’s 
what we might expect our total energy line to look like 
from one water level to the next. The hydraulic gradient 
line, which is the line that doesn’t include the velocity 
head, is doing similar things to the total energy line, 
except it’s got a strange little gain at the change of 
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section, which is different to what happens in the total 
energy line. Why do you think this might be? If you 
can’t work it out, look at the example in the textbook. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Example 6.2 
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Now let’s throw some sort of realistic numbers on this 
example and see what it looks like. We want to know 
what the flow’s going to be in this system. This is tricky 
because we’ve got two velocities – water’s running at a 
higher velocity in the first pipe and then it goes into a 
bigger pipe and slows down. 
 
We’ve been told the smaller pipe diameter is 30 
centimetres and it feeds into a 60 centimetre diameter 
pipe. 
 
So you can use the continuity equation to get one of 
the two velocities as a function of the other one, which 
means you’ll only have the one velocity to solve. 
 
Then we’ve been given a physical elevation difference 
of 53 metres between the two water surfaces. 
 
The pipes are each 1 kilometre long, 
 
which we’ll use in the Darcy equation to calculate the 
Major losses, given a Darcy friction factor of 0.04 
 
We’ll take the entrance head loss to be 0.5 V1 squared 
on 2 G, 
 
We’ve been told the minor head loss due to the 
junction’s equal to this equation from Table 6.1 
 
And the exit loss is just the velocity head as it comes 
out of the second pipe. Okay, so you want to evaluate 
the energy equation between the two water surfaces 
labelled A and B here, so your pressure and velocity 
terms are zero. Then you’ve got the elevation 
difference, 53 metres, equals the sum of all these head 
losses. Have a go at it yourself, and if you need some 
help check out the example in the textbook. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Can be tricky!

• Multiple unknowns – requires solution via simultaneous 

equations

• Typically requires a computer to solve iteratively

Branching pipelines

 

Alright, believe it or not, that was a simple example. In 
reality we have to consider branching pipelines,  
 
Which can be a lot harder to cope with. 
 
For branching of pipelines, typically we’ve got a number 
of unknowns, like the velocities in several different 
pipes. 
 
We typically use simultaneous equations to solve sets 
of multiple unknowns. Depending on the equations we 
get, we might be able to solve them directly or we might 
have to use a computer to solve them iteratively.  
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Pipe Length Diameter λ

1 0.5km 1.2m 0.04

2 0.3km 0.9m 0.06

3 0.4km 0.6m 0.05

Example 6.8

Neglect minor losses

ZA = 680m

ZC = 640m

ZD = 590m
gD

LV
hF

2

2
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Figure 6.8

 

Here’s an example of a branched pipe system. 
 
First of all we’ve been given a whole lot of information 
about the pipes – their length, diameter and lambda 
value for the friction calculation. 
 
We’ve been told in this case we can neglect the minor 
losses 
 
so all we need to work out is the Darcy equation. 
 
In this case we’ve got water flowing from one reservoir 
to two different reservoirs, each with a different surface 
water level. So we’ve got the elevations of the water 
surfaces which are going to drive the flow in each pipe. 
 
You’ve got three unknowns, which are the three pipe 
velocities. The trick here is to divide and conquer. As 
long as you can build up three equations, you should 
be able to solve them somehow to get your three 
velocities. So first, you set up an equation for the flow 
just in pipes 1 and 2 and you ignore pipe 3. Then it’s 
just like the previous example, where you’ve got an 
elevation difference equal to a head loss, and actually 
it’s easier because you can neglect minor losses. 
 
Next up we ignore pipe 2, and just consider flow 
through pipes 1 and 3 using exactly the same 
procedure. So we should end up with two equations, 
one containing the unknown velocities in pipe 1 and 
pipe 2, and the other containing the velocities from 
pipes 1 and 3. We still need a third equation if we want 
to solve the three unknowns. 
 
The third equation is simple – just apply the continuity 
equation at the junction and this’ll bring together all 
three velocities as a function of the respective pipe 
diameters. Now you’ll have 3 equations and 3 
unknowns and one way or another you should be able 
to solve it. As usual you can consult the textbook for 
help if you need to. 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Recall laminar & turbulent flow (Topic 4)

• Reynold’s number

Determining pipe friction losses



VD
Re

 

Okay, so in the last example we had lambda given to 
us for each pipe, so it was easy to work out the friction 
loss using the Darcy equation. Now we want to look at 
how to estimate friction losses when you don’t know 
lambda. First of all we need to know what sort of flow’s 
going through the pipe. Hopefully you remember 
learning about laminar versus turbulent flow when we 
first looked at fluids in motion. 
 
We use the Reynolds number to determine whether the 
flow is laminar, turbulent or transitional.  Remember 
that the Reynolds number is density times velocity 
times diameter of the pipe divided by viscosity. 
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• For laminar flow, Poiseuille equation:

• For turbulent flow, Darcy equation:

• (not to be confused with Darcy’s Law!)

Determining pipe friction losses
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Thinner pipe 

greater friction

QUESTION: 

What is the 

power of the 

relationship 

between hF and 

D?

 

Once we know whether we’ve got laminar or turbulent 
flow, we can work out the friction loss. 
 
We only actually use the Darcy equation when we’ve 
got turbulent flow. Friction loss in laminar flow 
conditions can be determined using a different 
equation, called the Poiseuille equation. 
 
Pay attention to the use of kinematic viscosity in the 
numerator term in this equation. For turbulent flow, this 
is where we use the Darcy equation. 
 
If you go on to study geotechnical engineering or 
groundwater hydrology, you’ll come across something 
called Darcy’s law, which is a different equation – don’t 
confuse the two! 
 
It’s important to recognise the significance of the 
diameter term in pipe flow. The thinner the pipe, the 
greater the friction loss. You should also think about the 
relationship between hF and D for a given flow rate, 
remembering that a given flow rate passing through a 
smaller diameter pipe leads to a much larger velocity 
than a large diameter pipe. So the pipe diameter has a 
very significant influence on friction loss. 
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• In Darcy equation

• λ  Friction factor

• Depends on:

– Reynolds number,  Re

– Relative roughness  k/D

Determining pipe friction losses

k

D

 

Okay, so we’ve got a simple equation for friction losses 
in laminar flow but turbulent flow’s a lot more common 
and we still don’t know where the friction factor, or 
lambda, comes from. 
 
Lambda depends on a couple of important terms. 
 
Firstly, it’s related to the Reynolds number, so we don’t 
just use Reynolds number to work out whether we’ve 
got laminar or turbulent flow, we also use it to work out 
essentially how turbulent the flow is, so we can 
estimate what’s happening with the friction. 
 
The other parameter influencing lambda is the “relative 
roughness”.  
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• In Darcy equation

• λ  Friction factor

• Depends on:

– Reynolds number,  Re

– Relative roughness  k/D

• Roughness could be from rust, 

scale, joints, etc

Determining pipe friction losses

k

D

 

When we talk about relative roughness, we mean the 
size of any bumps or protrusions on the inside of the 
pipe wall, relative to the pipe diameter. Big bumps in a 
small pipe leads to a large k/D term, and vice versa. So 
this is really another way that the pipe diameter 
influences friction. 
 
Typically protrusions are from a combination of the pipe 
material and the joins. In old steel pipes there might be 
rust, or depending on the water quality there might be 
mineral deposits called scale. Some pipe joins are 
relatively smooth on the inside of the pipe, and some 
are more intrusive. 
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• Some example values of k (mm)

– 0.003 e.g. perspex, glass

– 0.03   e.g. uncoated steel

– 0.3 e.g. uncoated cast iron

– 3 e.g. partially corroded pipes

– 300 e.g. straight, natural channel

• Remember: Relative  roughness  k/D !

• See Table 6.2 for longer list

Roughness values

These are 

absolute

 

Here are some values of k, which means we’re talking 
about the physical bump size in millimetres. 
 
Smooth materials like perspex and glass have 
extremely small bumps, less than a hundredth of a 
millimetre. 
 
Uncoated steel’s typically about an order of magnitude 
higher, 
 
Going to cast iron takes us up by another order of 
magnitude 
 
And again for partially corroded pipes with significant 
rust – so here we’re talking about protrusions averaging 
about 3 millimetres in size 
 
We wouldn’t be using Darcy’s equation in channel flow 
but for the sake of interest the roughness you might 
encounter in a relatively straight channel with some 
natural protrusions would be on the order of hundreds 
of millimetres. 
 
Now, you have to remember that these are absolute 
values, because we’re just looking at k measured in 
millimetres. 
 
When we go on to calculate lambda, the thing we need 
to know is relative roughness, which relates these 
absolute values back to the physical size of the pipe. 
So an absolute k of 0.3 millimetres, as an example for 
uncoated cast iron, might not actually generate much 
friction if it’s in a large pipe 1 metre in diameter. 
 
A longer list of k values is available in Table 6.2 in the 
text book.  
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• First need to understand boundary layer concept

• From the “good old days”:

– http://www.youtube.com/watch?v=7SkWxEUXIoM

Smooth, transitional & turbulent

 

Before we get into calculating lambda, we need to 
briefly touch on the concept of boundary layers. Here’s 
a YouTube video showing the fundamentals. 
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Boundary layer & roughness

 

As you might guess, friction’s mostly about what’s 
happening at the interface between the moving fluid 
and the solid pipe wall.  
 
In this picture we’ve got just a simple flat plate that’s 
been pushed into an oncoming stream of fluid and 
we’re looking at what’s happening to the fluid as it flows 
over the plate. This’d be happening on both side of the 
fluid but we’re just focusing on the top side for 
simplicity. Without the plate there, the fluid would have 
been moving at a uniform velocity, U, but by introducing 
this plate we’re disturbing the flow field. Let’s look at 
what happens. 
 
Near the front, where the fluid first encounters the solid 
plate, there’s a fairly thin layer of laminar flow right near 
the plate. So what’s actually happening here is that a 
thin layer of fluid’s being forced to move really slowly, 
and right up at the plate the fluid’s virtually stopped. 
You can see the distribution of velocities as you move 
away from the plate through this boundary layer, the 
velocity increases to the background flow velocity of U. 
 
Okay, so that thin laminar boundary layer actually 
continues along the whole plate, 
 
but as we move along we find the plate’s causing more 
and more disturbance to the flow field. So this next little 
bit’s a transitional layer, which extends out a bit further 
than the original laminar boundary layer and it’s got 
slightly more turbulent flow in it. So what’s happening is 
the fluid right near the plate’s being slowed right down 
by friction, which is causing a nice little layer of slow-
moving laminar flow along the surface and as we move 
further out it’s causing more turbulence. But the 
turbulence only persists out a certain distance from the 
boundary, and this is why we’re calling it a boundary 
layer. 
 
Now, if the plate’s long enough, this effect can cause 
fully turbulent flow conditions to develop in the 
boundary layer, causing the boundary layer to be really 
quite thick compared to the laminar sublayer. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Steady flow over a plane

– V = 0 (stationary) right the at surface

– Laminar sublayer develops adjacent to surface

– Turbulent boundary layer further out

– Undisturbed liquid beyond turbulent boundary

• Inside a pipe:

– V = 0 (stationary) right the at surface

– Laminar sublayer develops adjacent to surface

– Turbulent boundary layer further out

– Undisturbed liquid beyond turbulent boundary

– No undisturbed liquid:  all flow takes place in the 
boundary layer

Steady flow: plane vs pipe

 

So to summarise what we understand about boundary 
layers, 
 
When you’ve got steady flow over a planar surface, 
 
Right at the surface the velocity’s effectively zero, 
 
Then you’ve got a skinny little laminar layer, called the 
sublayer 
 
And assuming the plane is reasonably long there’ll be a 
turbulent boundary layer outside the laminar sublayer 
 
Then moving out beyond the turbulent boundary layer 
you’re back in the original steady fluid. 
 
Alright, that’s all well and good, but what does it mean 
for pipe flow? 
 
Well, essentially the physics in a pipe are all the same 
as a plane 
 
Except because a pipe’s got a surface on the other 
side, and all around, the boundary layers join up and 
there’s no opportunity to transition back into the 
undisturbed flowfield. 
 
So flow in a pipe’s considered to be effectively all 
taking place in the turbulent boundary layer. 
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Thickness of laminar sublayer


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Right, so we know we’ve got a little laminar sublayer 
going along the pipe wall, and the rest of the flow’s 
going to be the turbulent stuff. Here’s an equation to 
estimate thickness of the laminar sublayer, “delta L”. 
It’s a function of pipe diameter, Reynolds number and 
the friction factor lambda. Because it depends on 
Reynolds number, the thickness of the laminar sublayer 
also depends indirectly on the velocity of the fluid. 
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Smooth, transitional & rough flow

 

Believe it or not, it’s not enough to just say we’ve got 
turbulent flow in the pipe – we need to be able to 
characterise it into smooth turbulent, transitional 
turbulent or rough turbulent. The way we do that is to 
look at the thickness of the laminar sublayer relative to 
the size of the protrusions in the pipe. In smooth 
turbulent flow, the bumps are smaller than the 
thickness of laminar boundary layer, so all of the 
turbulent flow happens away from the actual bumps – 
it’s a bit like the laminar sublayer’s acting as a shock 
absorber for the main flow; if the bumps are bigger than 
the thickness of laminar boundary later, the turbulent 
flow ends up bouncing around on the bumps and we’ve 
got what we call rough turbulent flow. In between these, 
when the bumps are just protruding out a little way past 
the sublayer, we call it transitional flow. 
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These concepts all come together in a relationship 
called the Colebrook-White equation, which is 
commonly simplified and plotted up in what we call the 
Moody diagram. 
 
This diagram lets you take a given Reynolds number,  
 
Combined with relative roughness, 
 
And the intersection of these lets you read off the 
friction factor, lambda. As you can see there are 
regions on the graph corresponding to smooth turbulent 
flow, transitional turbulent flow and rough turbulent 
flow, but actually all you really need to know is the 
Reynolds number and the relative roughness. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Colebrook-White equation (exact):

• Moody equation:

Exact versus approximate formulae
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If you need a really accurate value of lambda, 
 
you’ll need to use the Colebrook-White equation. As 
you can see it’s complicated to solve, 
 
because lambda’s on both sides. This means you need 
to use an iterative procedure, in other words solving by 
trial-and-error. It’s actually really easy to solve these 
sorts of equations now using standard spreadsheet 
software but historically an equation like this was a real 
pain. 
 
So to avoid the trial-and-error bit, historically people 
have tended to come up with approximate equations 
that give answers that are pretty close, and that have 
the advantage that they can be solved directly. In this 
case we’ve got the Moody equation, which is obviously 
where the Moody diagram comes from. You can get a 
reasonably accurate value of lambda from this 
equation, or even just by reading off the chart, and for 
lots of applications this’ll be as accurate as you need it 
to be. But, if you need extra precision, you can use the 
Moody value of lambda as a starting point, then use the 
Colebrook-White equation and trial and error to refine 
it. 
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• Long, relatively straight pipes

 friction losses dominate

• Short, more complicated pipes

 minor losses can be significant

• Sudden expansion / contraction

• Valves, bends, entrances, exits

Head loss at change of section

 

Back at the start of this lecture we said that head 
losses are divided into major losses and minor losses. 
All of the pipe friction calculations we’ve just been 
looking at with lambda and the Darcy equation are to 
do with major losses, 
 
which tend to dominate in long pipes without too many 
bends or interruptions. 
 
But in shorter pipes or pipes with a relatively large 
number of bends, junctions, changes of diameter and 
so on, the so-called minor losses can be significant – in 
some cases maybe even more than the friction losses. 
They should generally be considered in the analysis in 
any case. 
 
A typical change of section is the sudden expansion 
that happens when a smaller pipe feeds into a larger 
pipe, or vice versa. 
 
More generally, these minor losses include valves, 
bends, entrances and exits to tanks, and so on. Really 
anything that interrupts the normal flow of the pipe and 
results in a loss of energy. 
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Slide 30 
Sudden expansion

 

If you remember when we looked at the momentum 
equation and the control volume concept, this diagram 
should be familiar. We’re not going to go into the 
calculations here, but you can read more in the 
textbook if you like. Essentially the point here is that 
you can derive equations for the energy head losses in 
a change of section by using a combination of the 
momentum equation and the energy equation. The 
energy loss is to do with the extra turbulence caused by 
the change in flow conditions; it’s not to do with the 
friction between the fluid and the pipe walls. That 
means to find the total head loss across a change in 
section you’d need to add on the friction loss for the 
short length of pipe too. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Sudden expansion:

• Derivation p. 203

General form 

• See table 6.4 for other K values

Calculating hL at section changes
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The derivation of head loss for a sudden expansion 
from the previous slide 
 
is given on Page 203 in the text book. 
 
This is just one particular type of minor loss but the 
general form of minor losses, whether for expansions, 
contractions, bends, valves, whatever, is the headloss 
is equal to a coefficient K times the velocity head.  
 
In the case of a sudden expansion, K is found through 
the derivation, but in other situations like complex valve 
arrangements it might only be possible to find K by 
physical experimentation – actually running a series of 
flows through the device and determining the pressure 
head loss. You’ll be looking at this in your practical. 
 
The values of K for a number of common flow 
situations are also available in Table 6.4 in the text 
book. 
 
 

Slide 32 
Summary 

- Application of energy equation

- Flow through pipe lines

- Energy losses

 

So in summary, we’ve looked at applications of the 
energy equation as it applies to flow through pipe lines 
with energy head losses due to friction and other minor 
losses. 
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Thank you

 

If you’ve got any questions or need further clarification, 
please post a question or comment on the Discussion 
Forum. 
 
 

 


