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Welcome to Module 2 and Pipe flow. 
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2.4 Flow under varying head

DO NOT REMOVE THIS NOTICE. Reproduced and communicated on behalf of the University of South Australia pursuant to Part VB of the copyright Act 1968 (the Act) or with permission of the 

copyright owner on (29/3/08) Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act. DO NOT REMOVE THIS NOTICE.  

Today we’re looking at flow under varying head. 
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Intended Learning Outcomes

At the end of this section, students will be able to 

understand:-

- Flow characteristics under variable head 

- Time required to empty a tank

- Flow between two tanks

 

The intended learning outcomes from this presentation 
are for you to understand how flow changes under 
variable head, what this means for calculating the time 
to empty a tank, and how flow moves between two 
tanks. 
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• Table 5.1 (p. 152)

• Note non-linear relationship

• Q ∝ H1/2, H3/2 , H5/2 etc.

• e.g.

Recap: discharge-head effects

gHACQ DA 2

 23

1

23

22
3

2
HHgbCQ DA 

(small orifice)

(large orifice)

 

In chapter five, we looked at relationships between 
head and flow for different situations. Hopefully you 
remember that there was generally a non-linear 
relationship between flow and head. 
 
For flow through an orifice the discharge was 
proportional to the square root of head, for flow over a 
rectangular weir it was H ^ 3/2 and 5/2 for a triangular 
weir.  
 
Just looking at a couple of those equations – one for 
small orifice 
 
And one for a large orifice – we can see that the flow 
isn’t directly proportional to the head, it’s proportional to 
some power of the head. This means if our head is 
changing – for instance if a tank is draining out of a 
hole – the change in discharge isn’t going to be exactly 
proportional to the change in head. 
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• Q = Volume / Time

• So T = V / Q ?

– No, because head in reservoir reduces as it empties 

 Q also reduces

• If Q ∝ H, we might be able to assume an average Q (at 

0.5V),

BUT

• If non-linear relationship between H & Q, then we can’t 

assume an average discharge.

Time required to empty a reservoir

 

Okay, let’s say we’re interested in working out how long 
it’d take for a reservoir to empty. Well discharge is 
volume over time 
 
and you could say that rearranging this gives time 
equal to volume over the discharge rate. 
 
But that’s not right because the head goes down as the 
tank empties out, so the flow goes down. 
 
Now, if we had a proportional relationship between flow 
and head, maybe we could assume an average flow 
rate and go from there,  
 
But we know we generally don’t have a proportional 
head-discharge relationship so that’s not much use to 
us. 
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• T = Time to empty = ??

Uniform Cross Section

L

B

QA

h1

AWS = LB

h2

 

Alright, let’s take this tank as a basic illustration 
 
It’s got a length and width here 
 
And that gives us the water surface area 
 
So we’re talking about starting out at a particular head 
of water 
 
Which gives us a high flow rate, which gradually 
decreases as the driving head gets smaller and 
smaller. What we’re going to need to do is use a bit of 
Calculus to estimate the emptying time. 
 
 

Slide 8 

• Consider small time increment, δt

• Volume of water drained during time δt  QA δt

– This volume also equals  -AWS δh

where δh is the reduction in h during time δt

– (minus sign compensates for δh being negative)

Q varies as h decreases
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Right, so let’s build up the description of emptying time 
using calculus. 
 
We start out by considering a miniscule increment of 
time, delta T. 
 
Now, during that little time increment, the tank drained 
out at a particular flow rate, and if we multiply that flow 
rate by the time increment we get the volume 
discharged during delta T. 
 
The other way to work out the volume drained during 
the little time interval is to look at the physical change in 
volume in the tank, so that means taking the water 
surface area and multiplying it by the change in height, 
delta H. Area times height equals volume. 
 
The negative sign’s important because delta H is 
negative, so we need to put a minus sign in to give the 
volume as a positive. 
 
So we put these two expressions of volume together 
and we’ve got Aws by delta H equal to Q by delta T. 
 
Now we’re going to divide both sides by QA, and then 
integrate. This means taking the H from H1 to H2, 
which is going from the upper level H1 down to the 
lower level H2, and on the other side we’re just 
integrating delta T from the start, which is time equals 
zero, to the end, which is T. So that just becomes T. 
 
So for the special case where there’s a constant water 
surface, which just means a reservoir with vertical 
sides, the Aws term comes out and we’ve got the 
emptying time T equal to Aws by the integral from h1 to 
h2 of 1 on QA delta H. 
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• Use discharge formula for the corresponding mechanism 

e.g. small orifice, weir, etc (Table 5.1)

• Sharp orifice:

Substituting QA
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So then you take that basic integration 
 
And sub in whatever discharge equation you need – for 
example if you’ve got a small orifice, you chuck in the 
orifice discharge equation in stead of QA. 
 
Say that’d look like this 
 
And the equation for emptying time’d come out like this. 
I know it looks a bit exciting but actually most of that 
stuff inside the integration sign’s just constant 
 
So we can pull it outside like this – constant water 
surface area, constant discharge coefficient, constant 
orifice area, so in this case all we’re having to integrate 
is a simple “1 on root H”. Actually, it’s really not that big 
a deal if any of those parameters happened to not be 
constant – for instance if the water surface area 
changes with water depth because the tank’s got 
sloping sides – it just slightly changes what’s inside the 
integration sign but at the end of the day we’re not 
talking about really tough integration. 
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Example 7.1
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Let’s run through a simple example where we’ve got a 
small orifice and constant water surface area. 
 
In this case the water level’s dropping from 1.5 metres, 
measured above the centreline of the orifice, all the 
way down to zero. So that gives you the values for H1 
and H2 in the integration and everything else is given. 
See if you can work it out and head to the textbook if 
you need any help. 
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Example 7.3: Variable x-section

Diameter = 0.1m

CD = 0.60
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Okay, now let’s cut our teeth on a more involved 
example. In this case we’re still considering a small 
orifice but we’re going to move away from the constant 
water surface area. Now it’s a pyramid shaped tank 
with all four sides sloping out. 
 
So this time we’ve got to take a step back and make 
sure we keep the AWS term inside the integration 
because it’s not a constant. 
 
AWS is going to be a function of the height, 
 
getting larger as you go further up the tank. 
 
Luckily we’ve been given a bunch of dimensions we 
can use to work out the function AWS – this might 
mean going back to basic geometry for you though. 
 
The equation for QA gets plugged in the bottom, same 
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as before, and anything that stays constant can get 
taken out of the integration. 
 
Give it a shot. If you need help – especially when it 
comes to remembering how to work out a geometric 
relationship like this – the textbook goes through it, but 
just remember there are different ways you can go to 
get the same answer and the way they do it might not 
be the way you intuitively get there. See how you go, 
anyway. 
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• Simplified method using slices

(Box 7.2, p. 216)

Reservoirs with varying slope

 

Alright, it’s all well and good if you’ve got a nice 
constructed tank where you can either assume the 
sides are vertical or you can derive a neat equation for 
water surface area as a function of depth, but what are 
you supposed to do if you’ve got a dam or reservoir in a 
more natural landscape where there’s no easy 
relationship between the surface area and the depth of 
water? 
 
The answer is that you need to simplify it down to slices 
that behave in a mathematically predictable way, and 
just put up with a pretty inaccurate answer as a result. 
What we do in the simplified method is divide the 
reservoir into slices that are preferably of equal 
thickness, and we assume each one is a big flat thing 
with vertical sides.  
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• Simplified method using slices

(Box 7.2, p. 216)

Reservoirs with varying slope

Ti = Vi / Qi

Ttotal = ΣTi

H1

H2

H3

Q ∝ (H1)
1/2Q ∝ (H2)
1/2Q ∝ (H3)
1/2

V1

V2

V3

 

Providing we’ve got some sort of contour map we can 
work out the area of each slice in plan view, and 
convert that to a volume by multiplying it by the slice 
thickness. Then we can make a rough assumption that 
the time taken for each slice to empty is going to be the 
volume divided by an average flow rate, which we work 
out using whatever discharge equation is appropriate – 
in this case let’s assume the reservoir’s emptying 
through an orifice so the discharge is proportional to H 
^ (1/2). 
 
So the first slice empties with a discharge proportional 
to some sort of average head. Or we might work out 
the discharge based on the head at the top and bottom 
and take the average. 
 
For the next slice, we jump to a different discharge 
because we’re at a lower elevation 
 
And likewise for the next slice. For each slice, the flow 
rate’s assumed to be constant but it changes from one 
slice to the next. 
 
Since we’ve got a reasonable idea of the volume of 
each slice, we can work out the approximate emptying 
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time by dividing the volume by the average discharge 
rate 
 
And finally  by summing together all the emptying times 
of all slices, we get an approximate value of total 
emptying time for the reservoir. 
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Example 7.4

60,600 m2

22,400 m2

3,200 m2
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Neglect friction

Entrance loss K = 0.5

g

V
Z B

2

2

 + entrance loss

Z = 40  VB = ?

Z = 30 etc.

Diameter = 0.8m

Ti = Voli/Qi

T= ∑Ti

 

So here’s an example of the slice method. We’ve been 
given a contour map of the reservoir and someone’s 
figured out the area of each contour. 
 
The first one’s about 6 hectares, or 60,000 square 
metres 
 
The next one’s about 2 hectares 
 
And the last one’s about 3,000 square metres. We’ve 
also got a cross-section view down the bottom showing 
the elevation of each contour line. 
 
To work out the volume of each of these slices we take 
the average area from the upper and lower contours 
 
and multiply by the height difference. 
 
To work out the average flow rate for each slice, this 
time we don’t have a simply discharge equation – we 
actually need to solve for velocity using the energy 
equation and then multiply by the pipe’s cross-sectional 
area to get flow rate. So take the elevation at the top 
and bottom of each slice and solve for VB. 
 
Repeat this for each elevation to get a value of velocity 
at each depth and convert each one into a flow rate 
using the continuity equation – we’ve been told it’s a 
0.8 metre diameter pipe. Each slice then gets an 
average flow rate based on the upper and lower values. 
 
Once you’ve worked out the average flow rate for the 
slice you can get the approximate emptying time for 
that slice 
 
And sum them together to get the total approximate 
emptying time. As always check in the textbook if you 
need help with the worked example. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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• Provides an approximation only

• Assumes constant (average) Q over the time interval to 

empty each slice

• Becomes a question of cost/benefit

i.e. time taken versus necessity of accuracy

Caution: slice method is rough!

 

Just as a point of caution, 
 
The slice method only provides an approximation, 
 
as it assumes constant discharge over the time interval 
to empty each slice. Depending on the thickness of the 
slice, this might be relatively accurate or very 
inaccurate. 
 
It really becomes a question of cost/benefit, meaning 
the time taken to get a precise and accurate answer 
versus the benefit that comes from having a high level 
of accuracy. If all you need is a rough idea, like, 
whether the emptying time for a dam is going to be 
closer to three hours versus three days, then the slice 
method is good because it gives you a quick answer. 
But if you need a very accurate prediction, you’ll need 
to move to a more sophisticated model. 
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• Example 7.5

Testing accuracy of slice method

0.8m

0.2m

20m
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
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By way of an example, let’s take a situation where we 
know we can get the true answer using integration and 
then use the rough slice method to see how close we 
get. 
 
Here we’ve got water discharging out of a tank via a V-
notch weir. 
 
It’s a pretty big tank, 20 metres long and 6 metres wide 
 
Theta / 2 for the weir’s 30 degrees 
 
And we’re interested in the time taken to get from an 
initial height of 0.8 metres 
 
Down to a height of 0.2 metres above the bottom of the 
triangular weir. 
 
So since we’ve got vertical sides, we can assume the 
water surface area’s a constant and our basic 
integration looks like this 
 
And we’re going from H1 = 0.8 metres to H2 = 0.2 
metres in the integration. 
 
The final thing to do is chuck in the appropriate 
discharge equation, which for a V-notch weir looks like 
this. I know it’s a little scary when you first look at it, but 
don’t forget you can take anything out that’s a constant, 
 
which basically means all of this – so you’re only left 
with a simple H ^ (5/2) term that you have to integrate. 
 
After you’ve integrated that and found the true value of 
the emptying time, work out the approximate emptying 
time using the slice method. Go with three slices, each 
one 0.2 metres thick – so you’ll have four elevations to 
consider – 0.8, 0.6, 0.4 and 0.2 metres. You can build 
up your areas, volumes, flow rates and discharge times 
for each slice just the same as last time and work out 
whether there’s any significant difference between the 
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true method by integration versus the approximate 
method. Check the textbook if you need help. 
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• Example 7.7

Flow between two tanks

4.5m

4m

4m

 

So far so good I hope! Now let’s step it up and look at 
how you work out the flow between two tanks. If we 
start with a tank like this, discharging to the 
atmosphere, it’s just like the other examples we’ve 
looked at. 
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• The head difference 

driving the flow is hD, 

which changes 

constantly

Flow between two tanks

0.5m

2m

2m

hD

 

But what happens if instead of discharging to the 
atmosphere, it’s actually draining into another tank? In 
this example it’s draining into a narrower tank, with a 
smaller water surface area – this means that for a given 
water level drop in the big tank, it’ll rise a lot more in the 
smaller tank. 
 
The driving head causing the flow is the difference in 
water level between the two tanks – as the water level 
drops in the big tank and rises in the small tank, the 
overall head difference reduces 
 
and eventually as the water levels equalise, the driving 
head becomes zero and there’s no longer any flow 
between the tanks. 
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Consider small time interval  δt

δV = QA.δt

=A1.δx

=A2. δy

δy = δx.(A1/A2)

δhD = δx+δy

= δx.(1+(A1/A2))

A little integration  

A1

A2

QA

 

Right, so in case you hadn’t picked it, the way to work 
this out comes back to integration. The thing that 
makes this one a bit trickier to work out than the first lot 
of integration we did is that in this case, we don’t 
actually know what the final water level’s going to be. 
What we do know, though, is that the end point is when 
the driving head HD drops to zero. So we need to set 
up the integration with that end point in mind. 
 
Let’s kick things off by considering a tiny increment of 
time, delta T. 
 
Now, just like the first lot of integration, we’ve got a 
change in volume equal to the flow rate times delta T. 
And obviously we’ve got the same problem as always, 
which is that the flow rate changes because of the 
change in driving head. 
 
So just like before, we can also express the change in 
volume as the water surface area times the change in 
height. In this case we’ll call the change in height of the 
large tank “delta X” 
 
And because the volume leaving tank 1 is entering tank 
2, we can also express the same volume as the area of 
water surface in tank 2 times the rise in water level, 
delta Y. 
 
Rearranging these gives us delta Y in terms of delta X 
and the two water surface areas. 
 
Now the overall change in the driving head, delta HD, is 
equal to the sum of the change in water level in both 
tanks. 
 
We can use the relationship with the surface areas to 
get this all in terms of delta X. 
 
Image source- Les Hamill 2011, Understanding 
hydraulics. 
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Integration
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Substitute in appropriate equation for 

submerged orifice flow  

Alright, so going back to the first part where we equate 
the two different expressions for the change in volume 
 
And using our expression for delta HD 
 
Rearranging to give delta X instead 
 
We can substitute this into the equation 
 
That gives us an expression like this, 
 
and now it’s just a matter of rearranging 
 
into something we can integrate. So we integrate the 
time side which gives us the time taken to equilibrate 
the two tank levels, and on the right hand side we end 
up with a whole lot of constant areas and an integral of 
1 on Q by delta HD. 
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The important thing here’s the interval over which we’re 
integrating – remember we’ve reorganised this to be in 
terms of the head difference, HD, which is what’s 
driving the flow. So the integration goes from the initial 
head difference, which we could call H, to the final 
head difference, which for equilibration’s just going to 
be zero. 
 
As with the other examples, you substitute the 
appropriate equation for the type of discharge you’ve 
got – bearing in mind in this case it’s going to be an 
equation for submerged flow, so it needs to be 
expressed as a function of the head difference HD. 
Check out pages 137 to 138 back in chapter 4 of the 
textbook for a recap on submerged orifices. Meanwhile 
go through example 7.7 carefully in the textbook to get 
your head around the method we’ve just been through. 
 
 

Slide 21 
Summary 

• Flow characteristics under variable head 

• Time required to empty a tank

• Flow between two tanks

 

So, in summary, we’ve looked at flow characteristics 
under variable head, in particular focusing on how this 
affects our calculation of the time required to empty a 
tank or for water levels to equalise between two tanks.  
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Thank you

 

If you’ve got any questions or need further clarification, 
please post a question or comment on the Discussion 
Forum. 
 
 

 


