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Introduction to Water Engineering

Module 3  Pumps and Dimensional Analysis

1. Dimensional Analysis and Hydraulic models

Dr James Ward

Lecturer

School of Natural and Built Environments

 

Welcome to Module 3, pumps and 
dimensional analysis. Today we’re 
introducing dimensional analysis and 
hydraulic models. 
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Dimensional analysis

DO NOT REMOVE THIS NOTICE. Reproduced and communicated on behalf of the University of South Australia pursuant to Part VB of the copyright Act 1968 (the Act) or with permission of the 

copyright owner on (29/3/08) Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act. DO NOT REMOVE THIS NOTICE.  

Alright, Let’s start by looking at 
dimensional analysis.  
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Intended Learning Outcomes

At the end of this section, students will be able 

to:-

- Units and dimensions

- Rayleigh method

- Hydraulic models

 

The learning outcomes are presented 
here – we’re going to start by looking at 
units and dimensions, then go through 
the Rayleigh method of dimensional 
analysis, and look at how different 
hydraulic models can be designed based 
on dimensionless groups.  
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• What is a metre?

– It is one of many units of length

– Length [L] is a fundamental dimension

• Fundamental dimensions cannot be broken down

– e.g. area is not a fundamental dimension as it can be 

broken down into L x L

Units & dimensions

 

Okay so first things first – let’s look at 
units and dimensions. 
 
If ask you what a metre is, you’ll be able 
to say it’s a measure of length  
 
And hopefully you know it’s just one of 
many different length units – think about 
centimetres, kilometres, and so on. Even 
light-years are a unit of length. 
 
The thing that ties all of these units 
together is the fact that they’re all 
expressing the same dimension, which is 
length. We call this a fundamental 
dimension. 
 
Essentially what makes it a fundamental 
dimension is that you can’t break it down 
into anything, 
 
Whereas other units, like area, aren’t 
fundamental because they can be broken 
down into constituent parts. In the case of 
area, you get there by multiplying two 
lengths together so you’d express area in 
fundamental dimensions as a “length 
squared”. 
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• There are only a few fundamental dimensions. We will 

consider:

– Mass [M]

– Length [L]

– Time [T]

• Most physical quantities (the ones associated with water) 

can be expressed in terms of these fundamental 

dimensions.

Fundamental dimensions

For the physicists among you: some 

argue that there may in fact be ZERO 

fundamental dimensions
http://arxiv.org/PS_cache/physics/pdf/0110/0110060v3.pdf

 

We’re going to consider three 
fundamental dimensions: 
 
mass, 
 
Length 
 
and time. 
 
These cover most physical quantities and 
certainly they’re sufficient to look at the 
sorts of things we encounter in 
hydraulics. For more extended work you’d 
need to include a fourth dimension which 
is temperature, and if you got into really 
complex physics you might need to 
include things like electric charge 
 
Actually there’s an intriguing debate 
between physicists about how many truly 
fundamental dimensions there are, 
because depending on what assumptions 
you make you can use theoretical physics 
to argue for more or fewer dimensions. 
Some physicists even argue for zero 
dimensions! But that aside, for practical 
purposes we’ll stick to the big three. 
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Quantity Definition SI Units Dimensions

Length m L

Area Length x Length m2 L2

Volume Area x Length m3 L3

Time s T

Discharge Volume / Time m3/s L3T-1

Velocity Length / Time m/s LT-1

Acceleration Velocity / Time m/s2 LT-2

Mass kg M

Force Mass x Acceleration N MLT-2

Work / energy Force x Distance Nm or J ML2T-2

Power Work / Time J/s or W ML2T-3

Pressure Force / Area N/m2 ML-1T-2

Mass density Mass / Volume kg/m3 ML-3

Weight density Force / Volume N/m3 ML-2T-2

Table 10.1 – quantities, units & dimensions

 

So here are some basic physical 
quantities you’re all familiar with. Let’s 
start with the length-based properties. 
After basic length, you’ve got area that 
you get by multiplying two lengths 
together, which as we said before ends 
up with fundamental dimensions of L 
squared, and if you multiply it by another 
length you get a volume, which has the 
dimensions L cubed. It’s important to 
keep your wits about you with these sorts 
of things, because as you know, a 
common unit  for volume is the litre, 
which has the symbol of capital L and 
obviously that could get really confusing!! 
So make sure you know whether you’re 
dealing with units or dimensions. 
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Quantity Definition SI Units Dimensions

Length m L

Area Length x Length m2 L2

Volume Area x Length m3 L3

Time s T

Discharge Volume / Time m3/s L3T-1

Velocity Length / Time m/s LT-1

Acceleration Velocity / Time m/s2 LT-2

Mass kg M

Force Mass x Acceleration N MLT-2

Work / energy Force x Distance Nm or J ML2T-2

Power Work / Time J/s or W ML2T-3

Pressure Force / Area N/m2 ML-1T-2

Mass density Mass / Volume kg/m3 ML-3

Weight density Force / Volume N/m3 ML-2T-2

Table 10.1 – quantities, units & dimensions

 

Bringing in the time dimension now, let’s 
look at some quantities based on length 
and time. The obvious one’s velocity, 
which is distance over time, so 
expressing that in fundamental 
dimensions is L by T-1. Acceleration is 
velocity over time so the dimensions have 
T-2 instead of T-1. But we’ve also looked 
at discharge as a volumetric flow rate, so 
that’s a volume over time, or L cubed by 
T-1. 
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Quantity Definition SI Units Dimensions

Length m L

Area Length x Length m2 L2

Volume Area x Length m3 L3

Time s T

Discharge Volume / Time m3/s L3T-1

Velocity Length / Time m/s LT-1

Acceleration Velocity / Time m/s2 LT-2

Mass kg M

Force Mass x Acceleration N MLT-2

Work / energy Force x Distance Nm or J ML2T-2

Power Work / Time J/s or W ML2T-3

Pressure Force / Area N/m2 ML-1T-2

Mass density Mass / Volume kg/m3 ML-3

Weight density Force / Volume N/m3 ML-2T-2

Table 10.1 – quantities, units & dimensions

 

Last of all we bring in mass and this really 
opens things up. The first one we can do 
is force, which is mass times 
acceleration. It’s the physical relationship 
(mass by acceleration) that we use to 
build up the fundamental dimensions for 
force – M by L by T-2. Using what we 
know about energy, being work done or 
force times distance, again we can figure 
out what the fundamental dimensions are 
going to be – in this case we take the 
dimensions for force and multiply them by 
another length which is why there’s an L2 
term in there. And you can see how the 
other quantities are built up. You’re 
probably thinking this seems like a lot of 
unnecessary complication – for instance 
why bother expressing energy as M by L2 
by T-2 when it’s so much simpler just to 
call it a joule?! So let’s move on and see 
why we need to be able to boil everything 
down to fundamental dimensions. 
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• Suppose I have three quantities A, V and Q.

• If A is area [L2], and V is velocity [LT-1], and 

we know Q = AV, then what are the dimensions of Q?

According to dimensional homogeneity, both sides 

of the equation must have the same fundamental 

dimensions

 It follows that we can only add or subtract quantities of 

the same dimensions.

Dimensional homogeneity

 

We’re going to explore a concept called 
“dimensional homogeneity”. We’ll start 
with an example. 
 
We’ve been given some information 
about a pipe – 
 
area, velocity and flow. We know the 
dimensions of area and velocity and we 
know the equation that brings them 
together, Q = AV, but we can’t remember 
what the dimensions of the flow are. 
 
This is where the principle of dimensional 
homogeneity comes in handy. It basically 
says that dimensional quantities on either 
side of an equals sign have to be the 
same – that means that all of the 
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fundamental dimensions have to have the 
same power on both sides of the 
equation. 
 
Because equations can be rearranged, 
an outcome of dimensional homogeneity 
is that you can’t add or subtract quantities 
of unequal dimensions. Obviously you 
know you can’t take a distance and add it 
to a time – for instance the distance to the 
nearest doorway might be, say, 3 metres, 
and you can’t add that to the number of 
hours you slept last night – it just wouldn’t 
make sense. 
 
So going back to the Q = AV question, we 
know that the dimensions of Q have to 
equal the dimensions of AV for that 
relationship to hold true, so we can figure 
out the dimensions of Q by multiplying the 
dimensions together. Taking the area, 
which is L2, and multiplying it by the 
dimensions of velocity, L by T-1, we end 
up with L3 by T-1. And that means it’s 
volume over time, so we know Q must be 
referring to a discharge. 
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• Check for dimensional homogeneity!

• E = energy

= force x distance

= mass x acceleration x distance

= M x (LT-2) x L = ML2T-2

• What about mc2?

• c = velocity = LT-1, so c2 = (LT-1)2 = L2T-2

• Therefore mc2 = ML2T-2

E = mc2

 

Here’s another example you might be 
familiar with – the famous E = mc2 
equation. 
 
Let’s check that the fundamental 
dimensions match on both sides of the 
equation. Obviously we don’t seriously 
expect them not to, but we’ll do the 
exercise anyway. 
 
So remember we said energy can be 
written as force times distance, because it 
refers to work. Force was mass times 
acceleration so the whole thing becomes 
mass times acceleration times distance, 
which is M by L2 by T-2. 
 
Now we’ll do the other bit, mc2. 
 
Hopefully you know the “c” here stands 
for the speed of light, which is a velocity 
so it’s got dimensions of L by T-1. But it’s 
squared in the equation so we have to 
square the dimensions. That becomes L2 
by T-2. 
 
Multiplying by the mass term we get mc2 
expressed in terms of its fundamental 
dimensions, M by L2 by T-2 
 
And as expected, this matches the 
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dimensions of energy perfectly. 
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The Energy Equation
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Now we’ll bring it into something we’re all 
really familiar with, the energy equation. 
Remember how we said a consequence 
of the dimensional homogeneity principle 
is that you can’t add or subtract quantities 
unless they’ve got the same fundamental 
dimensions? Well, for the energy 
equation that means the three terms, 
elevation head, velocity head and 
pressure head, and actually the total 
head too, all have to have the same 
dimensions. Let’s check to make sure 
they do. 
 
Here’s what you get if you replace each 
symbol with its fundamental dimensions, 
so Z just becomes L, V becomes L by T-1 
all squared, and so on. I know it looks a 
bit ugly but you get the idea. Also you 
should be able to see that a lot of stuff’s 
going to cancel. In fact, looking at the L 
term right at the start, you can see that for 
this equation to be dimensionally 
balanced, the other two terms are actually 
going to have to reduce to plain L terms. 
So that means all the mass and time 
terms need to cancel out along with most 
of the length terms. 
 
Cancelling out terms isn’t that difficult 
really, and eventually it emerges that yes, 
the velocity head and pressure head 
terms are actually reducible to basic 
lengths. 
 
So head has dimensions of length, which 
is no surprise since it’s usually expressed 
in units of metres. 
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Make sure you remember these

 

For dimensional homogeneity, we’re 
always interested in the overall power or 
exponent attached to each individual 
dimension. Since most equations involve 
a number of terms being multiplied 
together, along with all of their 
dimensions, we need to make sure we’re 
familiar with the laws of indices, which are 
shown here 
 
These are very important in dimensional 
analysis and you’ll need to keep these 
committed to memory. 
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• A technique for determining functional relationships

between quantities

• Rayleigh method

– Balancing the powers of each fundamental dimension 

so as to ensure dimensional homogeneity

What is dimensional analysis?

 

So far, we’ve always been working with 
known relationships between physical 
quantities – in other words you’re always 
given an equation that relates quantities 
together – like Q = VA, P = ρgH and so 
on. But what happens if you’ve got some 
physical quantities that seem to be 
related to one another – perhaps you’ve 
been doing some experiments and you’ve 
got some data – but you don’t know the 
equation relating them? Well, we can use 
dimensional analysis to determine the 
functional relationships between 
quantities. 
 
There are two basic methods for 
dimensional analysis: Rayleigh and 
Buckingham Π. We’re only going to look 
at the Rayleigh method, which involves 
balancing the power of each fundamental 
dimension to satisfy dimensional 
homogeneity. The Buckingham Π method 
does the same thing, but it’s a more 
convoluted process and we’re only going 
to look at the Rayleigh method in this 
lecture. 
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• Edgar is a student in his 2nd year water engineering 

exam.

• He knows that velocity (V), area (A) and flow-rate (Q) are 

all related but cannot remember the formula.

• Can you help him?

• Start by writing down a formula with unknown powers:

Very simple example

ba AQV 

 

Let’s go through a simple example of the 
Rayleigh method. 
 
Edgar’s student in his 2nd year of water 
engineering and he’s found himself stuck 
during the exam. 
 
He forgot to write the continuity equation 
on his formula sheet. He knows it relates 
velocity, area and flow rate but he can’t 
remember what order they go in the 
equation. 
 
Fortunately we can help him out by using 
dimensional analysis. 
 
We start out writing a formula as V=Qa 
times Ab. 
 
In this case the order of the symbols 
doesn’t matter; you could have put Q = 
Va times Ab or whatever. Next we’re 
going to solve the exponents in order to 
balance the dimensions. 
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• Replace each quantity with its corresponding 

fundamental dimensions:

– V m/s LT-1

– Q m3/s L3T-1

– A m2 L2

Rayleigh method

 

The next step is to replace the quantities 
(V, Q and A) with appropriate dimensions. 
Obviously Edgar’s doing pretty well if he 
can remember all this, and you do tend to 
wonder why he had so much trouble 
remembering the formula. 
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Very simple example

   ba
LTLLT 2131  

ba AQV 

 

Okay 
 
so we’ve got our arbitrary formula 
 
And we replace each parameter with the 
corresponding dimensions. You can see 
this is where those laws of indices are 
going to be important, right? Now we’re 
going to figure out what value of the 
exponents, a and b, you need in order for 
the dimensions on the left of the equals 
sign to equal the dimensions on the right. 
You can see just by looking at it that if the 
exponents were both 1, then you’d have 
the right power of TIME on both sides, but 
there’d be way too much LENGTH on the 
right hand side because you’d wind up 
with L5. And obviously you know the 
answer anyway, but let’s go through the 
motions. 
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• Powers of L:

1 = 3a + 2b

• Powers of T:

-1 = -a

Very simple example

   ba
LTLLT 2131  

a = 1

b = -1

 

So 
 
here’s our dimensional equation 
 
The first thing to do is look at the powers 
of L 
 
And we’ve got just L on the left hand side, 
so that’s L to the power of 1 
 
Now on the right hand side once we 
multiply and add the exponents according 
to the laws of indices, the total result is 
going to be L to the power of 3a 
 
Plus 2b.  
 
The powers of T are really easy, just 
“minus 1” on the left and “minus a” on the 
right. 
 
So we’ve got a=1 and substituting that 
into the first equation we can find b, which 
is “minus 1”. 
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• a = 1

• b = -1

Very simple example

ba AQV 

A

Q
V  or AVQ 

11  AQV

 

Putting these values of a and b back into 
the original formula 
 
We get this 
 
Which is the same as this 
 
Or in its more familiar form, our friend the 
continuity equation. Great! Now Edgar 
can continue on with his exam, if he’s still 
got time. 
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• Suppose we want to estimate discharge (Q) from a 

pump.

• Start by guessing the influential parameters:

– Impeller diameter (D)

– Rotational speed (N)

– Pressure added by the pump (P)

– Density of the liquid (ρ)

• Assume Q is a function of all these parameters raised to 

various powers:

Slightly bigger example (p.355)

dcba PDKNQ 

 

Well that example was pretty simple since 
you already knew the answer. Let’s try 
one where you probably don’t already 
know the result.  
 
Say we’ve got a pump and we want to 
develop a physical relationship between 
the pump’s discharge and the other 
significant parameters in the system. 
 
First off we need to guess at what those 
parameters are going to be. Okay, it 
needs to be a fairly well-informed guess 
and possibly this comes from having 
done some experiments where we 
changed a few things around, and found 
that different parameters seemed to 
influence the discharge. Anyway, at this 
point we need to at least know enough 
about the physical system to guess what 
parameters to include. 
 
So we’ve got the impeller diameter – 
don’t worry if you’re not 100% sure what 
an impeller is; we learn more about 
pumps in the next lecture. 
 
Next up’s the rotational speed, as in it 
stands to reason that if you run the pump 
faster, it probably affects the discharge 
 
Then we expect pressure’s going to have 
something to do with it 
 
As well as the density of the fluid we’re 
pumping 
 
And so we set out by assuming the 
discharge is an arbitrary function 
 
made up of all four of these parameters 
raised to various powers. We chuck a K 
out the front as a dimensionless constant 
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to allow the function to scale up and down 
if it needs to. 
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Rayleigh method

dcba PDKNQ 

Dimensionless

constant

Unknown powers

 

So 
 
we’ve got our equation here 
 
And all these are the unknown powers 
that we’re going to have to solve to make 
sure the dimensions are properly 
balanced. 
 
Like I said, the K is just a scaling factor 
that we include – for instance, that might 
be used as a fitting parameter to calibrate 
the function against experimental data.

 

 
 

Slide 22 

• Replace each quantity with its corresponding 

fundamental dimensions:

Rayleigh method

Quantity Units Dimensions

Q m3/s L3T-1

N rev/s T-1

D m L

P N/m2 ML-1T-2

ρ kg/m3 ML-3

 

Just like we did with the simple example 
before, the first step is writing down the 
dimensions of Q, N, D, P and ρ like this. It 
helps to write down the units first, and 
then you might have to refer back to the 
table of dimensions for different 
quantities. If you don’t have a table of 
dimensions for different quantities, you 
can always build up the dimensions from 
first principles – so for example Newtons 
refer to a force, and force is mass times 
acceleration, acceleration is length over 
time squared and so on. Maybe the 
trickiest one here is the pump rotational 
speed, N. That’d be measured in units of 
revolutions per second (or per time 
generally – like revs per minute and so 
on). Now because a “revolution” doesn’t 
actually have a dimension, it’s only the 
“per second” bit that contributes to the 
dimensions – so that’s just T-1. 
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• Next step: add up the powers of M, L and T

Rayleigh method

     dcba
MLTMLLTKTL 321113  

dcba PDKNQ 

 

Same as before, we replace each 
quantity in our function with its 
corresponding dimensions. Next comes 
the bit where we figure out the values of 
the exponents, a, b, c and d to make sure 
the powers of each dimension balance on 
both sides of the equals sign. 
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• Equation for powers of M is:

0 = c + d

Powers of M

     dcba
MLTMLLTKTL 321113  

Left-hand 

side:

0

Right-hand side:

c + d

 

It doesn’t matter what order we do it in; 
let’s start with the powers of M. There’s 
no M on the left-hand side so it’s got a 
power of zero. 
 
Here’s one on the right hand side, which 
is a single M being raised to the power c. 
 
Next up we’ve got another single M 
raised to the power d. 
 
So the total mass dimension on the right 
hand side is “M to the c + d”. 
 
And now our equation is 0 = c + d. 
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• Equation for powers of L is:

3 = b - c - 3d

Powers of L

     dcba
MLTMLLTKTL 321113  

Left-hand 

side:

3

Right-hand side:

b - c - 3d

 

Next up let’s do it for the powers of L. 
 
This time on the left hand side there’s an 
L cubed so the left-hand side is 3. 
 
Going through the right-hand side you’ve 
got a b 
 
Then a “minus 1” to the c, so that’s a 
minus c when we apply the laws of 
indices 
 
And then there’s a “minus 3” to the d, 
which is minus 3d. 
 
So pulling that all together we’ve got b – c 
– 3d on the right there. 
 
And that all looks like this now, 3 = b – c – 
3d. 
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• Equation for powers of T is:

-1 = -a – 2c

Powers of T

     dcba
MLTMLLTKTL 321113  

Left-hand 

side:

-1

Right-hand side:

-a - 2c

 

Last of all we do the powers of T, 
 
Where on the left-hand side there’s a -1 
 
and on the right hand side there’s a 
“minus a” 
 
And a “minus 2c” 
 
So that’s "a minus 2c", obviously  
 
And our overall equation’s -1 = -a – 2c. 
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• 0 = c + d

• 3 = b – c – 3d

• -1 = -a – 2c

• 3 equations, 4 unknowns

• Easiest to solve a, b and d in terms of c:

d = -c

b = 3 – 2c

a = 1 – 2c

Simultaneous equations

 

Cool, so now we’ve got 3 equations that 
need to be solved to make the 
dimensions balance. 
 
Now we’ve got a problem because there 
are 4 unknowns – so we’re not going to 
get an answer for all of them. Oh well, the 
best we can do is figure out a way to 
express three of our unknowns in terms 
of the fourth, so we should be able to get 
from the original four unknowns down to 
1. 
 
It doesn’t really matter which variable we 
pick to leave unsolved but if you’ve got 
one appearing in all of the equations, 
that’s a logical one to use. In this case “c” 
appears in all 3 equations so we’ll try to 
express a, b and d in terms of c. 
 
The first one’s the simplest, just 
rearrange and it becomes d = -c 
 
Subbing –c in for d in the second 
equation and rearranging, we get b = 3 – 
2c 
 
And lastly we rearrange the third equation 
to get a = 1 – 2c 
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• d = -c

• b = 3 – 2c

• a = 1 – 2c

• Substitute into original equation for Q:

Slightly bigger example (p.355)

dcba PDKNQ 

cccc PDKNQ  2321

 

The next step is chucking these values 
 
back into the original equation 
 
So that looks like this 
 
The a, b and d terms have all been 
replaced now by something that just has 
c as the unknown. 
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• Separate out the powers of c:

Rearrange the equation

cccc PDKNQ  2321

cccc PDDKNNQ  232

 

We’re nearly there – just need to use 
those laws of indices again to separate 
out the constant powers from the 
unknown powers 
 
Starting with the equation with all the 
messy powers in it 
 
We expand this 
 
so each term’s now the product of the 
parameter raised to the constant part of 
the exponent  
 
Multiplied by the variable, or unknown, 
part of the exponent 
 
And we do that for the 3 – 2c bit as well. 
We don’t have to worry about the last two 
terms because they’ve got nothing to 
separate out. 
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Rearrange the equation

cccc PDDKNNQ  232

   cPDNKNDQ 1223  




















 22223 DN

P
f

DN

P
K

ND

Q
c

cKxxf )(where

 

So now we’re going to tidy up the 
equation – just rearranging it, 
 
by gathering up the constant power parts 
and separating them from the variable 
power parts. We can conveniently then 
take out a common exponential factor, 
which is “c”, so we’ve got now a cluster of 
parameters in brackets, all being raised to 
the power of c. 
 
There’s nothing wrong with leaving it 
there but for neatness it tends to be 
rearranged a little bit more so you put all 
the non-variable exponent terms together, 
in this case Q on ND3 on the left hand 
side and P on N2D2ρ all to the power of c 
on the right. 
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If we want to, we can then just say it’s 
equal to some function “f” of that stuff 
inside the brackets, where we specify that 
the function’s an arbitrary power 
relationship. That’s as far as we can get 
with this one – there’s no way to solve for 
all four exponents so you’re always going 
to end up with some unknown power. But 
it’s not a bad outcome – at least you 
know the form of the relationship now, it’s 
some sort of basic power relationship 
between those two groups.
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• We’ll skip a couple of steps here…

but if we substitute P = ρgH, the equation becomes:

• This is the head-discharge relationship for a pump, and 

we derived it entirely using dimensional analysis! How 

cool is that?!

Read pp.355-357 !











223 DN

gH
f

ND

Q

 

Again, we’ll dive into pump stuff in the 
next lecture, but basically if you sub in the 
expression for pressure, 
 
it turns into a nifty function relating 
discharge to head, along with the 
rotational speed and diameter of the 
rotor. 
 
This is actually a fundamental physical 
property of pumps, known as the head-
discharge relationship, and here we 
derived it entirely using dimensional 
analysis. You still might be concerned 
that we don’t know exactly what the 
equation is, because we’ve got this sort of 
undefined function “f” there. But what we 
know from the previous slide is that it’s a 
particular type of function – it’s a power 
function – so we’re not completely in the 
dark. 
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Using the result

3ND

Q

e.g. Power trendline

22DN

gH

 

Actually, you can do a lot with the 
relationship we just derived. For instance, 
 
if you’ve got some experimental data from 
testing a particular type of pump, perhaps 
where you tried it at different speeds and 
with different sized rotors, and measured 
the discharge and head, then you can 
plot it all up on a single set of axes like 
this 
 
it’s quite useful to be able to do that, 
because otherwise you’d have 1, 2, 3, 4 
different parameters, Q, N, D and H, that 
you’d have to graph somehow against 
each other. And once you’ve graphed 
these, you at least have confidence that 
it’s going to look like a power-type curve. 
If it doesn’t look like a power type 
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function, you know something’s gone 
wrong and perhaps that’d mean your 
dimensional analysis was incomplete or 
there was something wrong in your 
experiment. 
 
So assuming it plots up okay, you could 
work out the actual relationship that 
corresponds to the particular pump 
you’ve tested, by applying a line of best fit 
to your data. In a spreadsheet program 
like Excel this’d be as simple as clicking 
“Power” in the trendline box and it’d do 
the rest for you. But without the 
dimensional analysis to begin with, you 
wouldn’t have a clue what to do with your 
data, nor would you know what to expect 
even if you could plot it up. 
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• It is useful to obtain expressions involving dimensionless 

groups, because it means the relationship is scalable:

• It is easier to compare systems when they are related via 

a dimensionless parameter

– More on this later

Dimensionless groups











223 DN

gH
f

ND

Q

 

The groovy thing with all this dimensional 
analysis 
 
is that to some extent, it lends itself to 
generating what we call “dimensionless 
groups” –  
 
in this case the Q on ND3 is 
dimensionless, and so is the gH on 
N2D2. That means if you double Q but 
also ND3, you haven’t actually changed 
anything, so the other side’s going to stay 
the same. It’s a bit hard to get your head 
around, but it’s this relationship that 
allows you to lump together a bunch of 
different parameters into a smaller 
number of key functional groups. That’s 
why you could do all sorts of experiments 
varying the discharge, head, speed and 
size of the pump and still expect the 
results to plot up on a single graph like 
we looked at on the previous page. 
 
Dimensionless groups also make it easier 
to compare systems across different 
scales – if you have one pump setup with 
a particular value of Q on ND3, and you 
want to know how fast to run a smaller 
pump to achieve the same discharge, you 
could use the Q on ND3 relationship to 
achieve it; that is, figure out what value of 
N you need with a smaller D value to 
keep Q the same. 
 
Some of this should become a little 
clearer in the next lecture. 
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• Turbine power, Pow, can be assumed to be a function of 

rotational speed N, diameter D, water pressure P, and 

water density ρ.

• Pow J/s ML2T-3

• N rev/s T-1

• D m L

• P N/m2 ML-1T-2

• ρ kg/m3 ML-3

• Assume:

Example 10.2 (very similar)

dcba PDKNPow 

 

Here’s a similar example about turbine 
power. We can assume that the power 
produced by a hydroelectric turbine’s 
going to be a function of the speed, 
diameter, pressure and fluid density – so 
it’s basically the same set of key 
parameters as the pump discharge, which 
isn’t that surprising since a turbine’s 
effectively just a pump working in reverse. 
The units and dimensions are all given 
here 
 
So you can kick things off in basically the 
same way as with the pump example. 
The only difference is the dimensions for 
power, which are different to the 
dimensions for pump discharge. So once 
you’ve subbed in all the dimensions your 
simultaneous equations are going look 
different to the ones we got for the pump. 
Apart from that it’s exactly the same 
method. See how you go. 
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• A dimensionless group can be as simple as a ratio –

you’ve already used some of these:

– k/D (surface roughness)

– SF = hF/L  (friction gradient)

• ... Or can be more complex, e.g. the Reynolds number:

Dimensionless groups



VD
Re

 

Just getting back to dimensionless groups 
 
We’ve already used dimensionless 
groups in this course, like,  
 
surface roughness which is a length over 
a length, so that’s dimensionless 
 
and although it didn’t feature heavily, 
there was a friction gradient in pipe flow 
which is dimensionless too since friction 
head loss is expressed as a length. 
 
And of course our friend the Reynolds 
number (Re) is a dimensionless number – 
if you work out the dimensions of the top 
and bottom terms you find they cancel 
out. 
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• How many different variables can you plot on a single 

graph?

Using dimensionless groups

ρ V D μ k

1000 1.1 0.025 0.001 1

1000 1.2 0.025 0.001 2

1000 3 0.032 0.0011 2

1000 0.8 0.032 0.0012 2.5

1000 4.2 0.04 0.001 1.5

1000 0.1 0.04 0.0011 0.1

1025 0.6 0.025 0.001 0.2

1025 0.5 0.032 0.0012 1.5

1025 1.2 0.032 0.0012 2

1025 1.8 0.032 0.0013 2

1025 0.7 0.04 0.0012 3

 

Imagine an experiment where you’re 
varying all sorts of different parameters 
and studying the results 
 
Maybe you’ve got the ability to run water 
of different densities and viscosities 
through a bunch of pipes of different 
diameter, and with different absolute 
roughness – so you end up recording 
everything and you’ve got this huge 
amount of data to process. How can you 
bring all of that together in an 
understandable way? Do you plot random 
graphs of density versus absolute 
roughness, viscosity versus velocity, and 
wait until something leaps out? Obviously 
the answer is to use dimensionless 
groups. And you’ve actually already seen 
the result. 
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• Recall the Moody 

diagram!

• This is a graph 

involving only 3 

variables

• But in reality, there 

are 6 quantities 

expressed here:
ρ, V, D, μ, k and λ

Are dimensionless groups useful?

 

It’s the Moody diagram! 
 
In general a 2-D graph is limited to 
plotting 3 quantities – 
 
the quantity on the x-axis, which in this 
case is the Reynolds number 
 
Then you’ve got the y-axis, which is the 
friction factor lambda 
 
And then to get a third quantity on a 2-D 
graph you have to plot multiple lines on 
the graph, and in this case our different 
lines are for the relative roughness. 
 
But because we’ve used the 
dimensionless groups, in actual fact 
we’ve managed to squeeze 6 different 
physical parameters onto this single 
graph, which is even one more than what 
we had on the table on the last slide. So 
any combination of those 6 individual 
parameters can be represented on this 
graph via the dimensionless groups. 
 
Image source- Les Hamill 2011, 
Understanding hydraulics. 
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Slide 38 

• http://www.youtube.com/watch?v=QITIv8ZRE-Q

• http://www.youtube.com/watch?v=taeNENB3xLA&NR=1

• http://www.youtube.com/watch?v=bWEWVw7TGk4

• http://www.youtube.com/watch?v=uL7F1QkEVdA

Hydraulic models

 

We’re about to move on to see how we 
can use dimensionless groups for 
designing hydraulic models. Before we do 
that, have a quick look at some of the 
sorts of models people create. We’re 
talking about real, physical models now, 
rather than computer simulations. 
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Hydraulic Models

DO NOT REMOVE THIS NOTICE. Reproduced and communicated on behalf of the University of South Australia pursuant to Part VB of the copyright Act 1968 (the Act) or with permission of the 

copyright owner on (29/3/08) Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act. DO NOT REMOVE THIS NOTICE.  

Okay, now to look at Hydraulic models 
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• Scale model (replica) of real-world system

• Dimensional analysis can be used to reproduce and 

understand the behaviour of systems on different scales

• If we want to model a system (e.g. flooding under a 

bridge) in miniature, it’s important that the system 

behaves (to scale) as it would in reality, and that we 

understand any distortions we introduce by “shrinking” it.

Physical hydraulic models

 

It’s common nowadays to employ pretty 
sophisticated computer simulations of lots 
of different situations. But no matter how 
sophisticated your computer program is, 
eventually it needs to be compared to the 
real world. 
 
Sometimes you can compare computer 
models with full-scale real world settings, 
and other times you might need to build a 
scaled-down replica, especially if you’re 
trying to test out a structure that hasn’t 
been built yet or you want to simulate a 
natural disaster like a flood. Or, you might 
simply be working on a problem that’s just 
too darn complex to set up on a computer 
and your only option is to head into the 
lab and build it in miniature. 
 
One really useful application of 
dimensional analysis, and in particular the 
dimensionless groups produced by the 
process, is that we can use it to scale 
down a real-world system in a physically 
realistic way. 
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Most importantly, we need to understand 
how individual parameters in the model 
scale down, and whether by shrinking the 
physical geometry of the system we 
introduce any distortions that need to be 
corrected.  
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Distortions in models

 

A simple way to imagine distortions in 
models is to consider a matchbox car. 
Imagine it’s made of metal and is a 
perfect replica of a real-world car in terms 
of the exterior geometry, and it’s 1/50th of 
the actual size. Now let’s say a grown 
adult can tread on the car without 
breaking it. And let’s say the adult 
weighed 70 kilos. So is that a realistic, 
scale representation of the actual 
crushing resistance? In other words, if 
you multiply the 70 kilos by 50 and get 
3.5 tonnes, does that mean that the real 
world car could cope with 3 and a half 
tonnes bearing down on it? Probably not. 
And that’s because some physical 
distortions have been introduced by 
scaling down the geometry and they 
haven’t been accounted for in the design 
of the crushing experiment. It might be 
the case, for example, that by scaling 
down the car’s size, for some reason 
you’ve greatly increased its shell strength 
so to simulate a realistic load relative to 
the strength, you have to distort the load 
by the same amount. 
 
Image source - 
http://farm2.staticflickr.com/1332/7108072
97_9efa641a55_z.jpg?zz=1 
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• Two systems (e.g. a scale model and a real-world 

prototype) are considered “hydraulically similar” if they 

are:

1. Geometrically similar: similarity of shape (all 

lengths are reproduced to scale)

2. Kinematically similar: similarity of motion (velocities 

are reproduced to scale)

3. Dynamically similar: similarity of forces (forces are 

reproduced to scale)

Hydraulic similarity

 

Getting back to hydraulic models, when 
we’re designing a model, in order to make 
sure the model behaves like a proper 
scaled down replica of the real world 
system, we have to look at what’s called 
hydraulic similarity. 
 
The first type of similarity refers to 
geometry and this is the most obvious – 
we need the physical form of the replica 
to actually represent the physical form of 
the real world system. But like the 
matchbox car example, simply 
reproducing the geometry isn’t likely to be 
sufficient. 
 
So the next type of similarity looks at 
motion, and it’s called kinematic similarity. 
This means you’ve got to figure out how 
to make the velocities in the model 
actually work at an appropriate scale to 
be physically consistent with the 
velocities in the full-sized system. We’ll 
look at this in a minute because it’s 
generally not a matter of scaling down the 
velocity by the same factor as the length 
dimensions. 
 
Lastly we look at similarity of forces, or 
dynamic similarity. This is like the 
matchbox car example where we need to 
make sure that for a given geometric 
scaling, we get the forces scaled 
appropriately so we’re not over- or under-
predicting the performance of the system. 
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• The thing that ensures that length, velocity and force are 

all being reproduced “to scale” is the dominant 

dimensionless group

Hydraulic similarity

 

The thing that ensures that length, 
velocity and force are all being 
reproduced “to scale” is the dominant 
dimensionless group, and this depends 
on the type of model you’re looking at. 
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• Start with the dominant group

• Gravity models (models with a free water surface, e.g. 

open channel flow):

Froude Number dominates design

Fmodel = Fprototype

• Viscosity models (flow near solid boundaries where 

friction is important, e.g. pipe flow):

Reynolds Number dominates design

Remodel = Reprototype

Hydraulic model design

+ others (table 10.2)

 

So in fact, 
 
When you’re designing a model it’s 
important to figure out the dominant 
dimensionless group first, and work from 
there. 
 
So-called “gravity models” are models of 
open channel flow, or other situations 
with a free surface. 
 
For these models it’s the Froude number 
that governs the model design – you 
haven’t been introduced to the Froude 
number yet, but it’s an important property 
of open channel flow that dictates the 
characteristics of the flow. 
 
Which basically means you have to tweak 
the values in your scaled model to ensure 
that you’ve got the same Froude number 
as you’d have in the real world. 
 
On the other hand if you’re trying to 
simulate a pipeline or some other 
situation where the important process it 
the laminar and turbulent flow interaction 
between the fluid and a solid surface,  
 
Then you’re going to need to use the 
Reynolds number 
 
And like in gravity models, you need to 
work things out so that your model gives 
the same Reynolds number as the real 
world setting. 
 
There are other model types listed in the 
textbook if you’re interested. 
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• Take a gravity (Froudian) model. We start with:

• So:

Expected model behaviour

PM FF 

P

M

P

M

L

L

V

V

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So take a gravity model as an example. 
As we said, the Froude number of the 
model needs to be exactly the same as 
the Froude number in the real world. Oh, 
by the way, the way the textbook 
describes the real world scenario is with 
the subscript “P” here, meaning 
“prototype” – so they’re assuming the 
model is a scale replica of a full scale 
prototype. Hopefully that doesn’t confuse 
you too much. Okay so the Froude 
number is V over root G L and like I said, 
you haven’t been introduced to this yet. 
But anyway this has got to be equal in the 
model and the full-scale prototype if we’re 
going to get the model producing the 
expected behaviour. 
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By rearranging the equation, starting with 
equal Froude numbers, we can work out 
the ratio of the modelled velocities to the 
real-world velocity as a function of the 
geometric ratio.  
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• Take a gravity (Froudian) model. We start with:

• So:

Expected model behaviour

PM FF 

P

M

P

M

L

L

V

V


This is just the model scale –

e.g. if the model is built to 1/10th

of real size, then LM/LP = 0.1

And then the fluid velocity in the 

model can be expected to be lower 

than the real-world velocity by a 

factor of 1.0

 

You can see that properties like velocity 
generally won’t scale exactly the same as 
the geometric scale. 
 
if our scale model was, say, built to 1/10th 
the physical size of the real-world 
prototype, 
 
then we’d need to set up the modelled 
velocity of the fluid so that the velocity 
ratio is the square root of 1 over 10. 
 
 

Slide 47 

• Don’t build a 1/10th scale gravity model and then expect 

the velocity to be exactly 1/10th of the real-world velocity

• or exactly the same as the real-world velocity

• Conversely, you have to be careful to push just the right 

flow-rate through the model to ensure the velocity (in the 

model) is reproducing the correct Froude number.

– Otherwise the two systems wouldn’t be “similar”

In other words

 

The take home message here is 
 
don’t build a 1/10th scale gravity model 
and running a velocity exactly 1/10th of 
the real-world velocity. 
 
And definitely don’t use the real-world 
velocity! 
 
The idea is that a key part of hydraulic 
model design involves figuring out the 
appropriate flow rate that preserves the 
Froude number 
 
And this gives us the hydraulic similarity 
we need to get useful model results. 
 
 



Introduction to Water Engineering 
 

24 
 

Slide 48 

• Suppose we wanted to build a scale model of the 

Mannum-Adelaide pipeline

Viscous (Reynolds) models

 

By way of another example, imagine 
we’re interested in building a scale model 
of the Mannum-Adelaide pipeline in South 
Australia 
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• Start with the Reynolds number:

Viscous (Reynolds) models

PM ReRe 

PM

VLVL


























M

P

P

M

L

L

V

V


(Assuming we use 

water in the model, 

and this has the 

same density and 

viscosity as in the 

real-world.)
 

This times it’s a pipe flow model, so we 
need to kick things off with the Reynolds 
number. Again, the Reynolds number in 
the model has to equal the Reynolds 
number in the full-scale prototype, or in 
this case it’s actually the real system. 
 
So we plug in the values that make up the 
Reynolds number of the model and 
prototypes. 
 
Let’s say in the first instance, we’re 
planning to pump water through our 
model – this is going to effectively fix both 
the density and the viscosity, making 
them equal in both the model and the 
real-world case 
 
So then, rearranging the equations, the 
velocity ratio is actually the inverse of the 
geometric scale. 
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• So what if we were building the pipeline to 1/20th scale? 

i.e.

Viscous (Reynolds) models

M

P
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

20

1
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20
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V

V

So the expected 

velocity in the modelled 

pipeline is 20 X the 

real-world velocity!!

This may be 

impractical and it may 

therefore make sense 

to use a different fluid 

in the model

 

That could be a real practical challenge – 
I mean, what if we’re building the pipeline 
to 1/20th scale? It’s a 1-metre pipe so 
that’s a 50-millimetre pipe when it’s 
scaled down.  
 
So LM on LP is 1 on 20 
 
And VM on VP is the inverse 
 
So that means the 20’s going to end up 
on top! 
 
In other words 
 
we need to crank 20 times the real-world 
velocity through our little model pipeline. 
It’s not quite what you might expect, is it? 
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And it’s likely that this would be quite 
impractical to achieve, which means our 
plans to use water might need to be 
revised. Perhaps a different density 
and/or viscosity fluid could be found that’d 
satisfy the Reynolds number without 
inducing ridiculous model velocities. 
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Summary 

• Units and dimensions

• Rayleigh method

• Hydraulic models

 

So in summary, we’ve looked at units and 
dimensions, learnt how to develop 
functional relationships using the 
Rayleigh method, and applied 
dimensionless groups to hydraulic model 
design. 
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Thank you

 

If you’ve got any questions need further 
clarification, please post a question or 
comment on the Discussion Forum. 
 
 

 


