CIVE2010: 2013 exam (answers only)

Question 1.

(a) $\rho=\frac{135 \times 10^{3}}{67.5(2+h)}$, where ρ is density of pontoon $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ and h is freeboard (m)
(b) 2.344 m

Question 2.

(a) $0.889 \mathrm{~m} / \mathrm{s}$
(b) 31605 Pa
(c) 1788 N towards the pipe

Question 3.

0.725 m (approx.)

Question 4.

(a) $0.128 \mathrm{~m}^{3} / \mathrm{s}$
(b) 1057 s
(c) 1062 s

Question 5.

(a)
(i) $0.823 \mathrm{~m}^{3} / \mathrm{s}$
(ii) If you assume loss at sudden contraction $=0.5 \frac{V_{1}^{2}}{2 g} \rightarrow 0.812 \mathrm{~m}^{3} / \mathrm{s}$ If you assume loss at sudden contraction $=0.5 \frac{V_{2}{ }^{2}}{2 g} \rightarrow 0.741 \mathrm{~m}^{3} / \mathrm{s}$
(b) If you assume loss at sudden contraction $=0.5 \frac{V_{1}^{2}}{2 g} \rightarrow 7.594 \mathrm{~m}$

If you assume loss at sudden contraction $=0.5 \frac{V_{2}{ }^{2}}{2 g} \rightarrow 9.108 \mathrm{~m}$

The question said to use $V_{1}{ }^{2}$ for minor loss at contraction, but this was actually wrong (should use $V_{2}{ }^{2}$). Students were not penalised either way.

Question 6.

1. $\mathrm{V}_{2}=1.507 \mathrm{~m} / \mathrm{s}$
$V_{3}=0.529 \mathrm{~m} / \mathrm{s}$
$V_{1}=0.713 \mathrm{~m} / \mathrm{s}$
2. $V_{2}=2.26 \mathrm{~m} / \mathrm{s}$
$V_{3}=0.882 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{1}=1.02 \mathrm{~m} / \mathrm{s}$

Question 6 (continued)

3. Pipe 1-2
$Z_{A}=Z_{B}+\frac{0.5 V_{1}{ }^{2}}{2 g}+\frac{0.5 V_{1}{ }^{2}}{2 g}+\frac{V_{2}{ }^{2}}{2 g}+\frac{\lambda_{1} L_{1} V_{1}{ }^{2}}{2 g D_{1}}+\frac{\lambda_{2} L_{2} V_{2}{ }^{2}}{2 g D_{2}}+\frac{K_{2} V_{2}{ }^{2}}{2 g}$
Pipe 1-3

$$
Z_{A}=Z_{C}+\frac{0.5 V_{1}^{2}}{2 g}+\frac{0.5 V_{1}{ }^{2}}{2 g}+\frac{V_{3}{ }^{2}}{2 g}+\frac{\lambda_{1} L_{1} V_{1}{ }^{2}}{2 g D_{1}}+\frac{\lambda_{3} L_{3} V_{3}{ }^{2}}{2 g D_{3}}+\frac{K_{3} V_{3}{ }^{2}}{2 g}
$$

4. $\mathrm{K}_{2}=34.5$ (valve in pipe 2); $\mathrm{K}_{3}=163.8$ (valve in pipe 3)
5. $K_{2}=11.6$ (valve in pipe 2); $K_{3}=53.7$ (valve in pipe 3)
6. Pipe 2 valve: K_{2} between $1.6-34.5$ so approx. $20-40 \%$ closed Pipe 3 valve: K_{3} between 53.7-163.8 so approx. $60-80 \%$ closed

Question 7.

True / false part:
(a) False
(b) False
(c) False
(d) False
(e) True

Question 8.

(a) 0.538 m
(b) 0.323 m
(c) 0.33 m
(d) Supercritical

Question 9.
$1.32 \times 10^{6} \mathrm{~N}$ at 23.2° below horizontal

Question 10.
(a) -294.3 Pa
(b) $9.96 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$

