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Intended Learning Outcomes
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At the end of this section, students will be able
to:-

Describe the position of an atom in a unit cell using point
coordinates.

Determine the direction in a unit cell from the three
direction integers.

Describe a plane within a unit cell using Miller indices.

The intended learning outcomes from this lecture summary are that
students will be able to:

Describe the position of an atom in a unit cell using point coordinates.
Determine the direction in a unit cell from the three direction integers.
Describe a plane within a unit cell using Miller indices.
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Crystal Systems
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Unit cell: Smallest repetitive volume which contains the
complete lattice pattern of a crystal.

a, b, c,a, pandy- are the lattice parameters

crystal system represents the possible
combination of lattice parameters.
It is the geometry of unit cell.

7 crystal systems

Fig. 3.04, Callister & Rethwisch 8e

Crystal systems. In the last lecture summary, we learnt that the unit
cell is the smallest repetitive volume which contains the complete
lattice pattern of a crystal. And we learnt that the lattice parameters
are a, b and c for the edge lengths, and alpha, beta and gamma for the
interaxial angles.

The crystal system therefore represents the possible combination of
these lattice parameters, and defines the geometry of the unit cell.
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e Point Coordinates

The position of any point located within
a unit cell may be specified in terms of
its coordinates as fractional multiples of
the unit cell edge lengths (2, b, and c).

q, I, and s are some fractional . /

lengths of a, b and ¢ respectively.
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Fig. 3.05, Callister & Rethwisch 8e.

Crystallographic points and point coordinates. The position of any point located
within a unit cell may be specified in terms of its coordinates as fractional multiples of the unit cell edge
lengths, a, b, and c.

For example, where g, r and s are some fractional lengths of a, b and ¢
respectively.

g,r , and s are fractional lengths of the unit cell edge lengths a, b and c
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e Point Coordinates

Example: Locating a point P having coordinates 1/4, 1 and1/2.

z
| X y z
Ya 1 V2

0.12nm 046nm 0.20nm

Adapted from Fig. 3, p56, Callister & Rethwisch 8e

So lets do an example. Lets determine the position of point P, having
coordinates ¥, 1 and % . How do we do this? We start at the centre of
the coordinated system. We know that the fractional length in the x
direction is a quarter of a, or 0.12nm. So we move from point M to
point N in the x direction.

Then we know that the fractional length in the y direction is 1, or
0.46nm. So from point N we move 0.46nm in the y direction to point O.

Finally, we know that the fractional length in the z direction is 0.5, or
0.2nm, so we finally move from point O up in the z direction, 0.2nm to
point P.
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Point coordinates for atoms

it in BCC unit cell

: Fractional Lengths :
Point 8 Point

Number X axis ¥ avis z axis Coordinates

Fig. 3 and table, p57,
Callister & Rethwisch 8e.

Understanding the point coordinate system for the unit is an important
concept for the rest of this lecture summary. So lets do some more
examples to make sure we understand it

We’'ll determine the coordinates for each atom in a body centred cubic
system. For atom 1, we have coordinates of 000

If we now look at atom 2, we have coordinates of 1 in the x direction, O
in the y direction and 0 in the z direction.

Atom 3, we have 1 in the x direction, 1 in the y direction and 0 in the z
direction.

For atom four we have 1 in the x direction, 0 in the y direction and O in
the z direction

Now lets look at atom 5. Atom five we go a ¥z in the x direction, a %2 in
the y direction and a ¥z in the z direction.

I'll let you go through points 6, 7,8 and 9, but it is important that you
understand this before you move on. Please contact your tutor or place
message in the content forum if you'd like some help.
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Crystallographic Directions
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A crystallographic direction is defined as a line between two
points, or a vector.

Algorithm:

1. Vector repositioned (if necessary) to z
pass through origin.

2. Read off projections in terms of unit
cell dimensions a, b, and c. q

3. Adjust to smallest integer values.

4. Enclose the three indexes in square
brackets, no commas. [uvw]

Crystallographic directions. A crystallographic direction is defined as a line between two
points, or a vector.

The algorithm for determining crystallographic directions is as follows:

First of all, reposition the vector such that it starts at the origin.

Secondly, read off the projections in terms of the unit cell dimensions a, b and c.
Thirdly, Adjust to the smallest integer values.

Finally, enclose the three indexes in square brackets, without commas.
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Crystallographic Directions
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The u, v, and w are integers corresponding to the reduced
projections along the x, y, and z axes, respectively.

% = 20,1 => [201] P — _

1inz

411 => [111] /.

1% i
Y2inz ILI < 71in =

, y
1/2I| / /1iny
v
X #1inx

The overbar represents a negative index.

Lets go through some simple examples of crystallographic directions

U, v and w are integers corresponding to the reduced projections along the x, y, and z axes,
respectively

Consider the vector shown here in blue. The projections are 1 in the x
direction, O in the y direction and %z in the z direction. Converting to
integers we get 2, 0 and 1. And then finally, we enclose these numbers
in brackets.

Now we’ll look at this vector, shown in red. Here the projections are -1
in the x direction, 1 inthe y direction and 1 in the z direction. These
numbers are already integers, so we can just enclose these in
brackets, with an overbar representing a negative value.

Note that, because of the symmetry of cubic crystals, it is possible to
change the place and sign of the integers and have equivalent
directions. Angle brackets are used to denote a family of directions
which are equivalent due to symmetry operations.

10
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Linear Density
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Linear Density of Atoms =LD = Number of atoms
Unit length of direction vector

Linear density of Al in [110] direction
a [110] a=10.405nm

4R

7

a

# atoms o

K ID=_2 =|35nm-1
a

length — J2a

Adapted from Fig. 3.1(a),Callister & Rethwisch 8e.

Now that we know about crystallographic directions, we can determine
the linear density across a given direction in a crystal.

= number of atoms / unit length of vector. The linear density is given
as the number of atoms along the direction of the vector, divided by the
length of the vector.

In this example, we need to determine the linear density of aluminum in
the [110] direction. We are given the unit cell edge length, a, as
0.405nm.

So to determine the linear density, we need to know the number of
atoms in the direction of the vector. The number of atoms along the
length of the direction in this case is 2.

We then divide by the length of the vector, which we can determine by
Pythagoras theorem, as this direction forms a right angled triangle with
two of the unit cell edge lengths. The length of the vector is root 2 a.
When we work this out, we get 3.5 atoms per nm.

11
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Crystallographic Planes
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Algorithm:

1.If the plane passes through the selected origin, either another parallel plane
must be constructed within the unit cell by an appropriate translation, or a new
origin must be established at the corner of another unit cell.

2. Read off intercepts of plane with axes in terms of a, b, c.

3. Take reciprocals of the intercepts. A plane that parallels an axis may be
considered to have an infinite intercept, and, therefore, a zero index.

4. Reduce to smallestinteger values by multiplication or division by a
common factor.

5. Enclose in parentheses, nocommasi.e., (hkl)

Now we can look at crystallographic planes.
The algorithm for constructing crystallographic planes is as follows:

If the plane passes through the selected origin, either another parallel
plane must be constructed within the unit cell by an appropriate
translation, or a new origin must be established at the corner of another
unit cell.

Read off intercepts of plane with axes in terms of a, b, c.

Take reciprocals of the intercepts. A plane that parallels an axis may be
considered to have an infinite intercept, and, therefore, a zero index.

Reduce to smallest integer values by multiplication or division by a
common factor.

Finally, enclose in parentheses without no commas

12
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Crystallographic Planes
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Miller Indices: (hkl)

Reciprocals of the (three)

axial intercepts for a plane, [ ’p’ ’
cleared of fractions & yo . ‘ /

common multiples.

All parallel planes have

same Miller indices. Fig. 310, Callister &

Rethwisch 8e

Crystallographic planes are described in in terms of their Miller Indices,
given here as h k and |

Note that all parallel planes have the same Miller Indices

So, for example, all the blue planes here on the right are parallel, and
therefore have the same Miller Indices, (110)

Parallel planes are equivolent

13
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Crystallographic Planes
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canpe L+ b o

1  Intercepts 1 1 0

1b

1a Z

% inz

1 Intercepts Ya 0 o0

Lets do some simple examples of Miller Indices. First we’ll look at the
plane shown here in blue. Fist of all, we have to check that the plane
does not pass through the origin, which it doesn'’t.

Secondly, we read off the intercepts in terms of a, b and c. The
intercept in the x direction is 1. You can see the intercept in the y
direction is also 1, and the plane runs parallel to the z axis, that is,
there is no intercept in this direction, and that’s denoted as infinite.

We then take the reciprocals of these values, giving us a reduction of
110, and the miller indices are therefore 110, in brackets.

Moving on to the second example, here in red. As before, it doesn’t
pass through the origin, so no translation is required. The X intercept is
% . The plane runs parallel to the y axis, giving us infinity for that
direction, and also parallel to z, giving us infinity there too.

Taking reciprocals, we get 2, 0 and 0 and as these are all integers, a
reduction of 2 00. The miller plane is 200 in brackets.

14
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Crystallographic Planes
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lron foil can be used as a catalyst.

The atomic packing of the exposed planes is important.

We want to examine the atomic packing of
crystallographic planes - the planar density (PD)

number of atoms centred on a plane

PD = area of plane

Draw (100) crystallographic planes for Fe.

Calculate the planar density for this plane

So lets go through an example of why crystallographic planes are of
interest. Iron foil can be used as a catalyst and therefore the
atomic packing of the exposed

planes is important. In this example, we want to examine the atomic
packing for crystallographic planes, or the planar density. The
planar density is given by the number of atoms centred on a
plane, divided by the area of that plane.

To do this, we’ll draw the (100) crystallographic plane for Fe, and then
calculate the planar density for this plane.

15
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Planar Density of (100) Iron
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Solution: At T <912°C iron has the BCC structure.

J,"J“,-"J“) a0 QOO G 4r
D A
b J% 000 °
JJJJJ)) QOOOO 2D repeat unit
JJJJJ))) Q0000
a4 g J R=0.1241 nm
Fig. 3.02 Callister & Rethwisch 8e
atoms
2D repeat unit ~ 1
Planar Density = = ! - =121 atoms__ 1.2x 10" m
area e a2 (4y£)~ nm?2 m?2

2D repeat unit

The crystal structure of iron, when it’'s processed below 912C, is BCC.

The (100) plane is shown here in red. If we zoom in on this area, we
get the structure shown here. From the body centred cubic structure,
we have a — the length of the unit cell edge — as 4 x R divided by root 3
and we are given the radius of iron.

So to determine the planar density, we need the number of atoms in
the 2D repeat unit. If you look at the illustration again, you will see that
there are four quarter atoms within the red square, so the number of
atoms centered of the plane is one. We then we divide this by the
area of the repeat unit, which is given by a squared.

If we do this we get 12.1 atoms per nm squared, or 1.2 x 10 to the 19
atoms per metres squared.

16
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Packing Sequences
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How are closed-packed crystal structures formed?
What is the stacking sequence of crystallographic planes?

FCC Structure: ABCABC... Stacking Sequence

2D Projection

A sites

B sites

C sites

Packing sequences. How are closed-packed crystal structures formed?
And what is the stacking sequence of crystallographic planes?

Remember that face centred cubic and hexagonal close packed
structures have the highest atomic packing factors of 0.74.

For face centred cubic’s crystal structure, the packing structure is
ABC,ABC etc.

The second layer then sits with the atoms directly above these voids,
as shown with plane B.

The important point for the face centred cubic structure is where the
next layer, C, is located. This layer sits in voids which are not directly
above plane A.

17
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Packing Sequences
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FCC Unit Cell

3D Projection

Fig. 3.16, Callister & Rethwisch 8e.

Here we can see some 3D projections of the face centred cubic crystal
structure. Note in the central diagram that planes A and C are offset
from each other.

18
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Packing Sequences
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HCP Unit Cell

ABAB... Stacking Sequence

Bottom layer (A)
2D Projection Middle layer (B)

Top layer

In the hexagonally close packed unit cell, we again have a close
packed layer A, with a second layer B, sitting on top of the voids.

The difference here is that the top layer then sits directly above layer A,
and therefore the stacking sequence is AB, AB etc.

Top and Bottom plane are the same

19
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Packing Sequences
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3D Projection

A sites

B sites

A sites

Fig. 3.15, Callister & Rethwisch 8e

Here we can see a 3D projection of the hexagonally close packed
structure, consisting of a top and bottom structure, which are the same,
given as plane A, with three atoms between, given as plane B.

20
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« A point within a unit cell is specified using

coordinates.

«  Directions within a unit cell are described as a

vector — a line between two points.

» Crystallographic planes are specified by Miller
indices.

In summary,
A point within a unit cell is specified using coordinates.

Directions within a unit cell are described as a vector — a line between
two points, and crystallographic planes are specified by Miller indices.

Points within unit cells are specified using coordinates
Directions within units are specified using vectors
Planes within unit cells are specified using Miller Indices

21
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Thank you

22



