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Welcome to ENR116 Engineering Materials Module 1
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Crystallography



The intended learning outcomes from this lecture summary are that 

students will be able to:

Describe the position of an atom in a unit cell using point coordinates.

Determine the direction in a unit cell from the three direction integers.

Describe a plane within a unit cell using Miller indices.
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Crystal systems.  In the last lecture summary, we learnt that the unit 

cell is the smallest repetitive volume which contains the complete 

lattice pattern of a crystal.  And we learnt that the lattice parameters 

are a, b and c for the edge lengths, and alpha, beta and gamma for the 

interaxial angles. 

The crystal system therefore represents the possible combination of 

these lattice parameters, and defines the geometry of the unit cell.  



Crystallographic points and point coordinates. The position of any point located 

within a unit cell may be specified in terms of its coordinates as fractional multiples of the unit cell edge 

lengths, a, b, and c.

For example, where q, r and s are some fractional lengths of a, b and c 

respectively. 

q,r , and s are fractional lengths of the unit cell edge lengths a, b and c
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So lets do an example.  Lets determine the position of point P, having 

coordinates ¼, 1 and ½ . How do we do this?  We start at the centre of 

the coordinated system. We know that the fractional length in the x 

direction is a quarter of a, or 0.12nm.  So we move from point M to 

point N in the x direction. 

Then we know that the fractional length in the y direction is 1, or 

0.46nm.  So from point N we move 0.46nm in the y direction to point O.

Finally, we know that the fractional length in the z direction is 0.5, or 

0.2nm, so we finally move from point O up in the z direction, 0.2nm to 

point P.
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Understanding the point coordinate system for the unit is an important 

concept for the rest of this lecture summary.  So lets do some more 

examples to make sure we understand it

We’ll determine the coordinates for each atom in a body centred cubic 

system. For atom 1, we have coordinates of 000

If we now look at atom 2, we have coordinates of 1 in the x direction, 0 

in the y direction and 0 in the z direction.

Atom 3, we have 1 in the x direction, 1 in the y direction and 0 in the z 

direction.

For atom four we have 1 in the x direction, 0 in the y direction and 0 in 

the z direction

Now lets look at atom 5.  Atom five we go a ½ in the x direction, a ½ in 

the y direction and a ½ in the z direction.  

I’ll let you go through points 6, 7,8 and 9, but it is important that you 

understand this before you move on. Please contact your tutor or place  

message in the content forum if you’d like some help.
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Crystallographic directions. A crystallographic direction is defined as a line between two 

points, or a vector.

The algorithm for determining crystallographic directions is as follows:

First of all, reposition the vector such that it starts at the origin.  

Secondly, read off the projections in terms of the unit cell dimensions a, b and c.  

Thirdly, Adjust to the smallest integer values.

Finally, enclose the three indexes in square brackets, without commas.
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Lets go through some simple examples of crystallographic directions

U, v and w are integers corresponding to the reduced projections along the x, y, and z axes, 

respectively

Consider the vector shown here in blue. The projections are 1 in the x 

direction, 0 in the y direction and ½ in the z direction.  Converting to 

integers we get 2, 0 and 1. And then finally, we enclose these numbers 

in brackets.

Now we’ll look at this vector, shown in red. Here the projections are -1 

in the x direction,   1 in the y direction and 1 in the z direction.  These 

numbers are already integers, so we can just enclose these in 

brackets, with an overbar representing a negative value.

Note that, because of the symmetry of cubic crystals, it is possible to 

change the place and sign of the integers and have equivalent 

directions.  Angle brackets are used to denote a family of directions 

which are equivalent due to symmetry operations.
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Now that we know about crystallographic directions, we can determine 

the linear density across a given direction in a crystal.

= number of atoms / unit length of vector.  The linear density is given 

as the number of atoms along the direction of the vector, divided by the 

length of the vector. 

In this example, we need to determine the linear density of aluminum in 

the [110] direction.  We are given the unit cell edge length, a, as 

0.405nm.

So to determine the linear density, we need to know the number of 

atoms in the direction of the vector. The number of atoms along the 

length of the direction in this case is 2.  

We then divide by the length of the vector, which we can determine by 

Pythagoras theorem, as this direction forms a right angled triangle with 

two of the unit cell edge lengths.  The length of the vector is root 2 a. 

When we work this out, we get 3.5 atoms per nm.
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Now we can look at crystallographic planes. 

The algorithm for constructing crystallographic planes is as follows:

If the plane passes through the selected origin, either another parallel 

plane must be constructed within the unit cell by an appropriate 

translation, or a new origin must be established at the corner of another 

unit cell.

Read off intercepts of plane with axes in terms of a, b, c.

Take reciprocals of the intercepts. A plane that parallels an axis may be 

considered to have an infinite intercept, and, therefore, a zero index.

Reduce to smallest integer values by multiplication or division by a 

common factor.

Finally, enclose in parentheses without no commas
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Crystallographic planes are described in in terms of their Miller Indices, 

given here as h k and l

Note that all parallel planes have the same Miller Indices

So, for example, all the blue planes here on the right are parallel, and 

therefore have the same Miller Indices, (110)

Parallel planes are equivolent
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Lets do some simple examples of Miller Indices.  First we’ll look at the 

plane shown here in blue. Fist of all, we have to check that the plane 

does not pass through the origin, which it doesn’t.

Secondly, we read off the intercepts in terms of a, b and c.  The 

intercept in the x direction is 1. You can see the intercept in the y 

direction is also 1, and the plane runs parallel to the z axis, that is, 

there is no intercept in this direction, and  that’s denoted as infinite. 

We then take the reciprocals of these values, giving us a reduction of 

110, and the miller indices are therefore 110, in brackets.

Moving on to the second example, here in red.  As before, it doesn’t 

pass through the origin, so no translation is required.  The x intercept is 

½ .  The plane runs parallel to the y axis, giving us infinity for that 

direction, and also parallel to z, giving us infinity there too.

Taking reciprocals, we get 2, 0 and 0 and as these are all integers, a 

reduction of 2 00.  The miller plane is 200 in brackets.



15

So lets go through an example of why crystallographic planes are of 

interest. Iron foil can be used as a catalyst and therefore the 

atomic packing of the exposed

planes is important. In this example, we want to examine the atomic 

packing for crystallographic planes, or the planar density.  The 

planar density is given by the number of atoms centred on a 

plane, divided by the area of that plane.

To do this, we’ll draw the (100) crystallographic plane for Fe, and then 

calculate the planar density for this plane.
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The crystal structure of iron, when it’s processed below 912C, is BCC. 

The (100) plane is shown here in red. If we zoom in on this area, we 

get the structure shown here. From the body centred cubic structure, 

we have a – the length of the unit cell edge – as 4 x R divided by root 3 

and we are given the radius of iron.

So to determine the planar density, we need the number of atoms in 

the 2D repeat unit.   If you look at the illustration again, you will see that 

there are four quarter atoms within the red square, so the number of 

atoms centered of the plane is one.   We then we divide this by the 

area of the repeat unit, which is given by a squared.

If we do this we get 12.1 atoms per nm squared, or 1.2 x 10 to the 19 

atoms per metres squared.



Packing sequences. How are closed-packed crystal structures formed? 

And what is the stacking sequence of crystallographic planes?

Remember that face centred cubic and hexagonal close packed 

structures have the highest atomic packing factors of 0.74.

For face centred cubic’s crystal structure, the packing structure is 

ABC,ABC etc.  

The second layer then sits with the atoms directly above these voids, 

as shown with plane B.

The important point for the face centred cubic structure is where the 

next layer, C, is located.  This layer sits in voids which are not directly 

above plane A. 
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Here we can see some 3D projections of the face centred cubic crystal 

structure. Note in the central diagram that planes A and C are offset 

from each other. 
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In the hexagonally close packed unit cell, we again have a close 

packed layer A, with a second layer B, sitting on top of the voids. 

The difference here is that the top layer then sits directly above layer A, 

and therefore the stacking sequence is AB, AB etc.

Top and Bottom plane are the same
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Here we can see a 3D projection of the hexagonally close packed 

structure, consisting of a top and bottom structure, which are the same, 

given as plane A, with three atoms between, given as plane B. 



In summary,

A point within a unit cell is specified using coordinates.

Directions within a unit cell are described as a vector – a line between 

two points, and crystallographic planes are specified by Miller indices.

Points within unit cells are specified using coordinates

Directions within units are specified using vectors

Planes within unit cells are specified using Miller Indices 
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