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Lecture 5b – Beam Bending 

(w1,w2,p1,p2,p3,p4,p5,p6,p7,p8,p9, 

v1,v2,v3,v4,v5,v6,v7)

ENR 202 Mechanics of Materials

 

 

Welcome to this lecture summary on beam bending, a new topic.   
 
Note that throughout all the lecture summaries for Mechanics of Materials, you will 
see live links, denoted by the letters W, P and V.   These links point to web pages, 
presentations and videos which will enhance your understanding of the content.  You 
can pause the presentation at any time to access these links, and then go back to 
the presentation when you have finished looking at them.   
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axis after 

deformation

axis before 

deformation

Axis of 

symmetry

Before the load is applied, the longitudinal axis of the 

beam is a straight line.  After loading, the axis is bend 

into a curve, that is known as the deflection curve of the  

beam.

Bending Deformation of a Beam
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Beam bending refers to the application of vertical forces on a beam.  Before force is 
applied, the beam is in a straight line.  After applying the loads, the straight axis 
deforms into a curve.   This deformation is known as bending. 
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Real World Example
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For example, in this image you can see a beam which has deformed into a curve 
after an application of load.   
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The beams considered here are assumed to be
symmetric about xy plane. In addition, all loads are
assumed to act in the xy plane. As a
consequence, the bending deflections occur in the
same plane, which is known as the plane of
bending.

Axis of symmetry

Bending Deformation of a Beam

Figure 1
Figure 2
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In this course, we are only studying the phenomenon of plane bending.  We are 
considering beams with symmetrical cross-sections.  For example, there is a 
symmetrical plane about y axis on the cross section as shown in the figure 1, and all 
loadings are applying to this symmetric plane, so the deformed beam axis will be 
limited within the symmetric plane.   We called this type of bending plane bending.   
Here, all vertical loads must be applied within the symmetric plane, otherwise the 
beam might bend in two directions, or torsion may happen. You can see axis of 
symmetry for various shapes in figure 2.  
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A line normal to the 

tangent to the deflection 

curve was drawn at 

each of the points m1

and m2. .  These 

normals intersect at 

point O’ (centre of 

curvature). The length of 

a normal is called the 

radius of curvature .  

Radius of Curvature

ENR202  5b -- Slide No. 6

 

 

After deformation, the beam deforms into a curved line.  An important parameter 
here is the curvature.   We can draw two perpendicular lines to the tangent lines of 
two points m1 and m2 of the deformed shape, and at the intersection of those 
perpendicular lines is O dash, which will be the centre of curvature, as shown in the 
figure.   The length of this line is denoted by rho. (that is, the length from the centre 
of curvature O dash to the deformed point m1 or m2, which is called the radius of 
curvature. 
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The curvature  is equal to:

Also, from the geometry of the figure:

If the deflections are small, assume ds=dx:




1


dsd 

dx

d

ds

d 


 

1Will be used to 

obtain the 

strains in a bent 

beam

Curvature
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The relationship between curvature, which we denote as kappa and rho, is as 
follows: kappa is equal to 1 divided by rho, as shown in the equation 1.   From the 
geometry of the figure, we can see that the radius ‘rho’ and the centre of the curve is 
O dash.   The distance between m1 and m2 is ‘ds’ which is equal to rho times ‘d 
theta’, as shown in the equation 2.   
 
Therefore, if kappa is 1 divided by rho as per equation 1, then kappa equals dtheta 
divided by ds, as per equation 2 and as shown in equation 3.  As ds is approximated 
equal to horizontal distance dx, kappa equals ‘d theta’ divided by dx.  This is the 
geometric relationship for curvature.  
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The beam is 

under pure  

bending

The cross-section may 

be of any shape, but 

symmetric to y axis

Neutral Surface
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As shown in the figure, before the deformation we have a straight beam.   The cross 
sections  m-n and p-q located at distance ‘dx’ are also straight lines, as shown in 
figure a. Here, we consider the symmetry cross section about the y-y axis, as shown 
in figure b. We applied pure bending with negative bending moment ‘Mo’. 
 
 

 

  



ENR202 Mechanics of Materials Lecture 5B Slides and Notes 

Slide 9 

 

The fibres in the 

upper part are in 

tension, in the lower 

part are in 

compression

There must be a surface in 

which longitudinal fibres 

will not undergo a change 

in length   

This surface is called 

the neutral surface.

Its axis is 

bent into a 

circular curve

Neutral Surface
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Once you apply bending moment, the beam deforms into a curve, as shown in the 
figure. We assumed the plane cross sections remain plane before bending and after 
bending.  That means that the cross sections m-n and p-q lines are straight before 
bending and after bending.  Here we consider the symmetry cross section, with the 
axis y-y bent into a circular curve, as shown in the figure, and we can say that this 
bending causes the top part of the beam to be in tension and the bottom part of the 
beam to be in compression, because we applied negative bending moment. Real 
bending moment should be negative M0. Because the top fibre of the beam is in 
tension and the bottom fibre of the beam is in compression, somewhere in between 
the top fibre and the bottom fibre will not change. Assume that there is no 
compression and no tension at the s-s surface.  That means that there is no normal 
strain in this surface.  We have tension in the top surface and compression in the 
bottom surface and there is no change at the s-s.  S-s is called a neutral surface.  
 
In other words, if tension is considered as positive and compressive as negative, that 
means that there must be somewhere with zero normal strain. That zero surface is 
called the neutral surface.  
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The intersection of the neutral surface with any

cross-sectional plane is called the neutral axis

of the cross section; for instance, the z axis in

the figure.

Neutral Axis
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The intersection of the neutral surface with any cross section plane is called the 
neutral axis.  For example, we have an s-s neutral surface, and we have this cross 
section in the beam.   The z-line is a neutral axis as shown in the figure.  In a neutral 
axis, we don’t have any longitudinal deformation, we don’t have any normal or 
normal stress.  
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dx is unchanged at 

the neutral surface 

after bending

all other longitudinal fibres

either lengthen or shorten, 

creating longitudinal strains x . 

For fibre “ef”, the original length is “dx” and 

new length L1 is: dx
y

dxdyL


  )(1

y
y

dx

dxL
x 


 


 1

located within the beam 

at a distance y from the 

neutral surface

Normal Strains in Beams
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If we have normal strain in a beam after deformation, the beam changes into a 
curve.   The O dash is the centre of the circle, as shown in the figure. Rho is the 
radius of the circular curve.  We can say that for e-f, the original length is dx (that is, 
the original length before bending), and the deformed length (that is, the length after 
bending) is equal to rho minus y.  That is the distance between the neutral axis and 
the e-f line multiplied by ‘d theta’.  
 
So, the original length of e-f line is ‘dx’ and the deformed length is ‘L1’ which is 
equal to  rho minus ‘y’ times ‘d theta’. If we substitute ‘d theta’ equal to ‘dx’ over 
rho, we will get equation 4.    Now think back to the definition of strain, which was 
explained in lecture 1b slide 10.   Strain is the change in length divided by the 
original length.  The change in length of the e-f line is L1 minus ‘dx’ and the original 
length is ‘dx’.   Substitute the equation 4 into equation 5, based on the strain 
definition, and we will get that the strain is equal to minus y divided by rho. 
Considering the curvature is equal to one divided by rho, the strain is equal to minus 
curvature ‘kappa’ times ‘y’, as shown in equation 5. That means the distribution of 
strain along the height of the beam is a linear function.  
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This equation shown that the longitudinal strains in

the beam are proportional to the curvature and that

they vary linearly with the distance y from the

neutral surface. When a fibre is below the neutral

surface, the distance y is positive; if the curvature

also is positive, then x will be a negative strain,

representing a shortening.

y
y

x 


 

Normal Strains in Beams
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Equation 6 shows that the longitudinal strains in the beam are proportional to the 
curvature and that they vary linearly with the distance y from the neutral surface.  
When a fibre is below the neutral surface, the distance y is positive; if the curvature 
also is positive, then strain will be a negative strain, representing a shortening. 
Normal strain in linear function means normal stress is also a linear function, based 
on Hookes law. 
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If the material is elastic with a linear stress-
strain diagram, we can use Hooke’s law and
obtain:

The normal stresses acting on the cross
section vary linearly with distance y from the
neutral surface.

yEE xx  

 

Normal Stresses in Beams
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Now think back to Hooke’s law, which was covered in lecture summary 2a, slide 
number 15.  Normal stress is equal to E times normal strain, as shown in equation 7.  
Substitute equation 6 into equation 7, and you will get that the normal stress equals 
negative E times kappa times y.  The distribution of normal stress is a straight line, 
the top part of the beam in tension, and the bottom part of the beam is in 
compression, as shown in figure a.  This is very important.   Make sure that you 
understand that the normal stress distribution along the height is linear. Maximum 
tensile stress occurs at the topmost fibre and maximum compressive stress occurs 
at the bottom-most fibre. In between, we have zero stress at neutral axis and this is 
the normal stress distribution in the beams due to bending. 
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The resultant force produced by the stress
distribution over the cross-sectional area with
respect to the neutral axis must be equal to
zero.

Because  and E are constants at the cross
section, we conclude that:

  0ydAEdAx 

  0ydA

The Position of the Neutral Axis??
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We can determine the position of neutral axis through analysing the normal force on 
the beam section. 
 
Resultant force or normal force acting on the cross section of the beam will be zero, 
because there is no normal force on a pure bending beam.  Normal force being zero 
means that the resultant of normal stress all together equals zero.   The integration 
of normal stress along the cross sectional area of the beam is zero, because normal 
stress is equal to negative E times kappa times y, as shown in the equation 8.  Here, 
E and kappa are constants, so we have integration of y times dA equal to zero, as 
shown in the equation 9. That means the z-axis is neutral just past the centroid of the 
cross section (as per the definition of centroid given in lecture summary 5a, slide 
number 3. )  
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The equation shows that the first moment of the

area of the cross section with respect to the z axis

is zero; the z axis must pass through the centroid

of the cross section. Since the z axis is also the

neutral axis, we conclude that the neutral axis

passes through the centroid of the cross section.

The Position of the Neutral Axis??
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Equation 9 shows that the first moment of the area of the cross section with respect 
to the z axis is zero; the z axis must pass through the centroid of the cross section 
(that is, point O) as shown in figure b.  Since the z axis is also the neutral axis, we 
conclude that the neutral axis passes through the centroid of the cross section, as 
shown in figure b. 
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This property can be used to determine the 

position of the neutral axis for a beam of any 

cross-sectional shape if y axis is an axis of 

symmetry.  

y axis also must pass through the centroid; hence, 

the origin of coordinates O is located at the 

centroid of the cross section. 

The Neutral Axis
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This property can be used to determine the position of the neutral axis for a beam of 
any cross-sectional shape if the y axis is an axis of symmetry, as shown in figure b.  
The y axis also must pass through the centroid point. Therefore, the origin of 
coordinates O is located at the centroid of the cross section. 
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Now consider the moment resultant of the
stresses x acting over the cross section. Its
moment about the z axis is:

yEE xx   Can’t be used as 

don’t know .

ydAM

ydAdM

x

x









0

0

Noting that M=-Mo

  dAyEydAM x

2
 

A more practical formula?

ENR202  5b -- Slide No. 17

(10)

(11)

(13)

(12)

zEIM  (14)

 

 

The formula for normal stress is negative E times kappa times y, as shown in 
equation 10.  We can have y if the neutral axis is determined and E if the material is 
known. However, we don’t know kappa, so we have to calculate kappa first.  The 
normal stress distribution is a result of all normal stresses.  That means that the 
resultant moment about the neutral line is equal to total moment.  Take the moment 
of any normal stress about the z-axis, dMo equals negative ‘sigma x’ times y times 
dA, as shown in equation 11.  Mo equals the integration of negative ‘sigma x’ times y 
times dA, as shown in equation 12.  Substituting equation 10 into equation 12, we 
can have that M equals negative kappa times E times integration y square dA, as 
shown in equation 13.  This relationship depends only on the integration formula (the 
shape of the cross section).  We know that the integration y square dA is equal to the 
second moment of inertia about the centroid axis z (if you are not sure about this, 
look back at lecture summary 5a, slide number 10).   Finally, we will get the bending 
moment M in terms of kappa, E, and Iz, as shown in equation 14.  
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This equation can be expressed in the simpler
form:

 dAyI z

2
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I
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y
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M
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The normal stresses in the beam are related to 

the bending moment by substituting the expression 

for curvature into the expression for x:

A more practical formula?
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We already know the moment acting on the cross section.  M equals negative kappa 
times E times Iz, as shown in equation 14.  The Iz value is very important.   Iz is 
equal to the integration y squared dA, as shown in equation 15.  Kappa is equal to 1 
divided by rho, which is equal to M divided by EIz, as shown in equation 16.    We 
already know that ‘sigma x’ is equal to minus E times kappa times y, as shown in 
equation 17.   Substituting equation 16 into equation 17, we will get equation 18 (that 
is, sigma x is equal to M times y divided by Iz).  The maximum bending stress 
happens at maximum y, because M and Iz are constants about the cross section.  
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Coming back to the neutral axis, if we have a cross section as shown in the figure.   
The z-axis is the neutral axis, because for the points on the z-axis line as shown in 
arrow 1, we have zero normal stress as shown in arrow 2 or zero normal strain, so 
this z-axis line is called the neutral axis.   The y-axis is the symmetry line of this 
cross section as shown in the arrow 3. The  intersection of the y-axis and z-axis is 
the centroid of this cross section as shown in arrow 4.  If we have bending moment 
acting on the cross section, top part of the beam in tension and bottom part of the 
beam in compression, the distribution of stress will be a linear variation along the 
cross section as shown in the normal stress distribution diagram. we have maximum 
tension at the topmost surface of the cross section, maximum compression at 
bottommost surface of the cross section.   This is the distribution of normal stress on 
the cross section.  
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This equation shows that the stresses are

proportional to the bending moment M and

inversely proportional to the moment of inertia I

of the cross section. Also the stresses vary

linearly with the distance y from the neutral

axis. This equation is usually called the flexure

formula.

I

My
x 

Flexure Formula
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Equation 19 is the flexure formula. This equation shows that the stresses are 
proportional to the bending moment M and inversely proportional to the moment of 
inertia I of the cross section.  Also, the stresses vary linearly with the distance y from 
the neutral axis.  
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Let us denote by c1 and c2

the distances from the 
neutral axis to the extreme 
fibres in the positive and 
negative y directions. Then 
the maximum normal 
stresses are as follows:
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The quantities S1 and S2 are known 

as the section moduli of the cross-sectional area.

Flexure Formula
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Suppose that C1 is the distance between the bottom fibre to the neutral axis, and C2 
is the distance between the top fibre to the neutral axis (as shown in figures a and b).  
If we have positive moment as shown in the figure a, the top is in compression and 
the bottom is in tension.  For maximum tension at the bottom, sigma1 is equal to M 
times C1 divided by I, as shown in equation 20.  If S1 equals I divided by C1, as 
shown in equation 21, then sigma1 is equal to M divided by S1.   For maximum 
compression at the top, sigma2 is equal to M times C2 divided by I, as shown in 
equation 20.  If we consider S2 as equal to I divided by C2, as shown in equation 21, 
then sigma2 is equal to M divided by S2.   S1 and S2 are known as section moduli of 
the cross section.   
 
If negative bending moment is acting on the beam, the top part of the beam is in 
tension and the bottom part of the beam is in compression, as shown in figure b.  
 
 

 

  



ENR202 Mechanics of Materials Lecture 5B Slides and Notes 

Slide 22 

 

If the cross section is symmetric with respect
to the z axis, then c1=c2=c, and the maximum
tensile and compressive stresses are equal
numerically:

S

M

I

Mc
 21 

Flexure Formula
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If we have a double symmetric cross section with  C1 equal to C2, we can consider 
that S1 equals S2.  Finally, we have sigma1 equals sigma2, as shown in equation 
22.  
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Flexure Formula

Figure a Figure b

Figure c

 

 

For maximum compression on the top and maximum tension on the bottom, you 
have to remember some of the formulas.   
 
Firstly, sigma is equal to M times y divided by Iz. Don’t use the formula that sigma is 
equal to M divided by S, because in some cross sections, C1 is not equal to C2.  You 
have to calculate them separately, and there is a greater chance of making a 
mistake.  In figure b, we have zero normal stress at the z-axis, maximum 
compression stress on the top, and maximum tension on the bottom.  In this formula, 
you have to know that Iz is equal to the integration of y square times dA.   
 
Now we will study how to calculate this integration.  This depends only on the cross 
section.  It doesn’t have any relationship with moment and the length of the beam. 
There are several steps for the calculation of Iz.   First, the Integration of y times dA 
equals 0.   That means that the co-ordinating axis of z and y-axis pass through the 
centroid of the cross section, as shown in the figure c.  We need firstly calculate the 
centroid of the cross section and then Iz.   Based on Iz, we can then calculate normal 
stress by using flexure formula.  
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Example 1: The simply supported beam in the figure (a) has the cross-

sectional area shown in the figure (b). Determine the absolute

maximum bending stress in the beam and draw the stress distribution

over the cross section at this location.

 

22.5

M (kNm)

x (m)

Exercise 1
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In this example, we have a simply supported beam subjected to a uniformly 
distributed load of 5 kilo Newtons per meter over the total length of the beam, which 
is 6 meters, as shown in figure a. This beam has an I shaped cross section, as 
shown in figure b. You need to determine the absolute maximum bending stress in 
the beam, and draw the stress distribution over the cross section where the 
maximum bending moment occurs.   Pause the presentation and try to do this now.  
The answer is on the next five slides.   
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Exercise 1 Solution (1)
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First step, you need to draw the shear force diagram and bending moment diagram.   
(Go back to lecture summary 4a, slide 17 if you need revision in this). The maximum 
bending moment occurs where the shear force is zero, which is at the center of the 
beam. Therefore, the bending moment will be maximum at the middle of the beam, 
and is equal to the area of shear force from the support to the middle of the beam, 
which is equal to ‘w’ times L squared divided by 8, as shown in the bending moment 
diagram.  
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Example 1 Solution (2)

x x

ENR202  5b -- Slide No. 26

 

 

The maximum bending moment  is equal to a uniform distributed load of 5 kilo 
Newton per meter times 6 meters times 6 meters divided by 8, which is equal to 22.5 
kilo Newton Meters.  
 
Now, you need to calculate the moment of inertia about the x-x axis for the I cross 
section.   The I-shaped cross section is a double symmetric cross section, as shown 
in the figure. The flanges are 250 millimetres wide and 20 millimeters thick.  The web 
is 300 millimeters high and 20 millimeters thick.   Because of double symmetry, the 
centroid will be at the center of height of the beam. You can use the negative area 
method to calculate the moment of inertia about the x-x axis.  
 
The moment of inertia about the x-x axis of the big rectangle (250 millimeters wide 
and 340 millimeters deep) is 250 millimeters times 340 millimeters cubed divided by 
12.   The two small rectangles (shaded in the figure) are 115 millimeters wide and 
300 millimeters deep.   The moment of inertia about the x-x axis of the is 230 
millimeters times 300 millimeters cubed divided by 12.  The moment of inertia of the I 
cross section is equal to the moment of inertia about the x-x axis of the big rectangle 
minus the moment of inertia about the x-x axis of the two small rectangles, which is 
equal to 301.3 times 10 to the power of 6 millimeters to the power of 4.   
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Exercise 1 Solution (3)
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Use the flexure formula to calculate normal stress, which is equal to a bending 
moment of M times y divided by I.   
 
That means you will get maximum normal stress where the maximum bending 
moment occurs. The maximum bending moment occurs at the middle of the beam 
and is equal to 22.5 times 10 to the power of 6 Newton millimeters.   The moment of 
inertia about the x-x axis is equal to 301.3 times 10 to the power of 6 millimeters to 
the power of 4.   y means that the distance between the neutral axis or the centroid 
axis to the point where you need to calculate stress (that is, to the topmost or 
bottommost part of the beam) is equal to 340 millimeters divided by 2 which is 170 
millimeters.  Substitute M, y and I values into the flexure formula to calculate the 
maximum normal stress. You should get that the maximum normal stress is equal to 
12.7 Mega Pascals or Newton per square millimeters.  
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Exercise 1 Solution (4)

150

150

11.2
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The normal stress distribution on the I shape cross section at the middle of the beam 
is shown in the figure. The compressive normal stress occurs at the top part of the 
beam and the tensile normal stress occurs at the bottom part of the beam. The 
maximum compressive and tensile normal stresses equal 12. 7 Mega Pascals, as 
we calculated in the previous slide.    Calculate the stress at the junction of the web 
and the flange. This stress distribution is the linearly variation. Therefore, the normal 
stress at a distance of 170 millimeters from the centroid axis is equal to 12. 7 Mega 
Pascals and the normal stress at a distance of 100 millimeters from the centroid axis 
is equal to 100 millimeters times 12.7 Mega Pascal divided by 170 millimeters, which 
is equal to 11.2 Mega Pascals.  
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Exercise 1 Solution (5)
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You can see the stress distribution for the I shape cross section in three dimensional 
view here, in figure d. The compressive normal stress cube at point B (the junction of 
the web and the flange) is equal to 11.2 Mega Pascals, as shown in figure e.  The 
tensile normal stress cube at point D (the bottom most point) is equal to 12.7 Mega 
Pascals, as shown in figure e.  
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Determine the maximum allowable span 

length L for a simple beam of rectangular 

cross section (140mm x 240mm) subjected 

to a uniformly distributed load q=6.5kN/m if 

the allowable bending stress is 8.2MPa.(The 

weight of the beam is included in the load q).

Exercise 2
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Now try this exercise.  A simply supported beam with a rectangular cross section of 
140 millimeters width and 240 millimeters depth is subjected to a uniformly 
distributed load ‘q’ of 6.5 kilo Newtons per meter. You need to calculate the 
maximum allowable span length ‘L’ if the allowable bending stress is 8.2 Mega 
Pascals.  Assume that the weight of the beam is included in the uniform distributed 
load ‘q’.   The solution is on the next two slides.   
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Exercise 2 Solution (1)

q
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In exercise 1, you calculated normal stress based on the length of the beam. 
However, in this exercise, you need to calculate the maximum allowable span length 
‘L’, based on allowable normal stress (that is, 8.2 Mega Pascals). This problem is a 
design problem, based on a simply supported beam subjected to a UDL of 6.5 kilo 
Newtons per meter.  The beam has a rectangular cross-section 140 millimeters wide 
and 240 millimeters deep. You know that the maximum bending moment occurs at 
the middle of the simply supported beam.  If the UDL acting on the total length of the 
beam is q times L squared divided by 8, that is 6.5 times L squared divided by 8 Kilo 
Newton Meters. (We are assuming the length of the beam is in meters.) 
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Exercise 2 Solution (2)
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In positive bending moment, we have the top part of the beam in compression and 
the bottom part of the beam in tension, as shown in the normal stress distribution 
diagram. We have maximum compressive and tensile normal stress 8.2 Mega 
Pascals, as shown in the figure.  
First, we calculate the compressive normal force ‘F’ at the top  part of the beam. The 
top part of the beam has triangular stress distribution.   The area of the triangle times 
the width of the beam gives the compressive normal force.  
F is equal to 8.2 Mega Pascal or Newtons per millimeters squared times 120 
millimeters times 140 millimeters (the width of the beam) which is equal to 68 880 
Newtons.   We have the same triangular distribution in the bottom part of the beam 
as we do in the top of the beam. Therefore, the tensile normal force equals 68 880 
Newtons.   
 
The compressive normal force at the top part of the beam and the force of the same 
magnitude but in the opposite direction at the bottom part of the beam is a couple.  
These force couples act at a distance of 160 millimeters.  How did we get 160 
millimeters?   The depth of the beam is 240 millimeters , which means we have 120 
millimeters from the centroid axis. We have triangle stress distribution, the centroid 
of triangle from the centroid of the beam is two thirds times 120, which is 80 
millimeters.   Finally, 80 millimeters plus 80 millimeters is 160 millimeters – this is the 
distance between the force couples.  
 
Force couples produce moment.  The moment equals 68 880 newtons times the 
distance between the couples, which is 160 millimeters, which equals 11.0208 times 
10 to the power of 6 Newton mille meters, which is 11.0208 kilo Newton meters. This 
value is equal to 6.5 times L squared divided by 8. Finally, you will calculate the 
allowable span length of the beam, which is equal to 3.683 meters. You can round 
this value to next digit; that is, 3.7 meters.  
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Example 3:  The beam ABC shown in the figure has 
simple supports at A and B and an overhang from B to C.  
A uniform load of intensity q=3.0kN/m acts throughout 
the length of the beam.  The beam is constructed of 
12mm thick steel plates welded to form a channel 
section, the dimensions of which are shown in the figure.  
Calculate the maximum tensile and compressive 
stresses in the beam. 

Exercise 3
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Now try exercise 3.   The beam ABC shown in the figure has simple supports at A 
and B and an overhang from B to C.  A uniform load of intensity q=3.0kN/m acts 
throughout the length of the beam.  The beam is constructed of 12mm thick steel 
plates welded to form a channel section, the dimensions of which are shown in the 
figure.  Calculate the maximum tensile and compressive stresses in the beam.   The 
length of the beam from A to B is 3 meters and from B to C is 1.5 meters.    Pause 
this presentation and calculate the maximum tensile stress and maximum 
compressive stresses in the beam.   The solution is on the next 16 slides.    
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Example 3 Solution (1)
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This overhang beam has a channel cross section of 300 millimeters by 12 
millimeters, 68 millimeters by 12 millimeters, and another 68 millimeters by 12 
millimeters, as shown in the figure.  
 
The overhang beam ABC has a simply supported beam between point A and point B, 
and an overhang portion from B to C.  A uniform distributed load of 3 kilo Newtons 
per meter is acting on the total length of the beam – this is ‘q’. This overhang beam 
has 12 millimeter thick steel plates welded to form a channel cross section of the 
beam. The length of the beam from A to B is 3 meters and from B to C is 1.5 meters, 
as shown in the figure. You need to calculate the maximum tensile stress and 
maximum compressive stresses in the beam.  
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Exercise 3 Solution (2)
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First, you need to calculate the support reactions. 
  
Next, you need to draw the Shear force diagram and bending moment diagram, to 
find the maximum positive bending moment and maximum negative bending 
moment of the overhang beam.   As you know, in positive bending moment, you will 
get maximum compressive normal stress at the top part of the beam and maximum 
tensile normal stress at the bottom part of the beam.  In negative bending moment, 
you will get maximum compressive normal stress at the bottom part of the beam and 
maximum tensile normal stress at the top part of the beam.  
The next step is to calculate the centroid and moment of inertia about the x-x axis 
(that is, the horizontal axis of the channel cross section).  We covered this in lecture 
5a.  This channel section has symmetry about the vertical axis, but not about the 
horizontal axis. Therefore, you need to calculate the centroid using the centroid 
formula.  
 
Next, you need to calculate the maximum normal stresses, using the flexure formula.  
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Exercise 3 Solution (3)
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We have covered how to calculate reaction forces for an overhang beam (look back 
at lecture 4b, slide 27 if you need to).  You have to use the equilibrium equation to 
calculate reaction forces.   The first equilibrium equation is that all forces in a vertical 
direction are equal to zero.  A second equilibrium equation is that all forces moment 
about point A equal zero.    The answer is that the reaction force at support point A is 
3.375 kilo Newtons and at support point B is 10.125 kilo Newton.  
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Exercise 3 Solution (4)
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You now need to calculate shear force values at important points (check lecture 4b, 
slide 31 if you need to).    We have three important points.  The first is at the 
beginning of the UDL.  The second is a supporting point, B.  The third is another 
supporting point, C, which is at the end of the uniform distributed load.  
 
Consider just to the left of Point A.  At Aleft we have zero shear force, because shear 
force starts at zero.  Then we come to Aright.  Between Aleft  and Aright, we have a 
concentrated reaction force, RA, which is equal to 3.375 Kilo Newtons in an upward 
direction. We know that upward is positive.  Finally, we work out that Aright  equals 
3.375 Kilo Newtons.  
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Exercise 3 Solution (5)
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When we come to Bleft, we have a vertical uniformly distributed load of 3 kilo 
Newtons per meter between Aright  and Bleft. So Bleft equals 3.375 minus 3 kilo 
newtons per meter times the distance between A and B, which equals minus 5.625 
kilo Newtons.    Now move on to Bright.  We have a concentrated reaction force of 
10.125 kilo Newtons at B.  Bright equals minus 5.625 kilo Newtons minus 10.125 kilo 
Newtons, which is positive 4.5 Kilo Newtons.   Now move on to last important point, 
C.   We have a vertical uniformly distributed load of 3 kilo Newtons per meter 
between Bright and Cleft.  So, the shear force at C equals 4.5 minus 3 kilo newtons 
per meter, times the distance between B and C, which is 1.5 meters.  This – the 
shear force – is equal to zero, so we can see that the values are correct.  
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Exercise 3 Solution (6)
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Connect all the values at important points, and we get shear force diagram as shown 
in the figure.   We recommend you that draw shear force diagram on your own and 
check it against this figure.  
 
Now, you need find a point between point A and B where the shear force is zero.   
The shear force at A is 3.375 kilo Newtons.   Suppose you assume ‘x’ is the distance 
between points A and D.  We have a uniformly distributed load of 3 kilo Newtons per 
meter.  This means that the UDL times the distance between A and D, which we will 
call ‘x’, must equal 3.375 kilo Newtons.  You should work out that ‘x’ is 1.125 
meters.   As you know, where the shear force zero, there you will get maximum 
bending moment.   However, you need to draw bending moment diagram. 
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Exercise 3 Solution (7)
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1.875m

 

 

You can also calculate the distance ‘x’; that is, the distance between points A and D 
where the shear force is zero, based on a similar triangle as shown in the 
calculations.   Once we know the shear force diagram, we can draw the bending 
moment diagram  based on shear force diagram.   Start with the left end and then go 
back to the right end.  We have 3 important points, A,B and C.   
 
We already know that there is no bending moment at the hinged support. Therefore, 
the bending moment at A  is equal to zero. The bending moment at D is equal to the 
bending moment at A plus the area under the shear force diagram between points A 
and D, because the Shear Force Diagram is positive.  The shear force area between 
A and D is 3.375 kilo Newtons times 1.125 meters divided by 2, which is 1.9 kilo 
Newton meters.  This shear force diagram is the positive sign between A and B.   
Finally, we can calculate the bending moment at D as 1.9 kilo Newton meters.  
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Exercise 3 Solution (8)
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Then we move on to point B.   The bending moment at B is equal to the bending 
moment at D minus the area under the shear force diagram between points D and B, 
because the Shear Force Diagram is negative.  The shear force area between D and 
B is 5.625 kilo Newtons times (3 minus 1.125 meters or 1.875 meters) divided by 2, 
which equals 5.273 kilo Newton meters. This shear force diagram is a negative sign 
between D and B.   We can calculate the bending moment at B to be equal to 1.9 
kilo Newton meters at point D minus 5.273 kilo Newton meters (the area of the Shear 
Force Diagram), which equals minus 3.375kilo Newton meters.  
 
Then we move on the point C.   The bending moment at C is equal to the bending 
moment at B plus the area under the shear force diagram between points B and C, 
because the Shear Force Diagram is positive.   The shear force area between B and 
C is 4.5 kilo Newtons times 1.5 meters divided by 2, which is 3.375 kilo Newton 
meters. This shear force diagram is a positive sign between B and C.   We calculate 
the bending moment at C as being equal to minus 3.375 kilo Newton meters at point 
B plus 3.375 kilo Newton meters (which is the area of SFD between B and C).  This 
is all equal to zero. Therefore, the bending moment at C is equal to zero.   The 
bending moment ends with zero and the bending moment at C (the final point) is 
also zero. That means our calculations are correct.  
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Exercise 3 Solution (9)
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Connect all the bending moment values at important points, and we get the bending 
moment diagrams shown in the figure.   You should try to draw the bending moment 
diagram on your own and check it against this figure.  
 
Now, you need to find the maximum positive bending moment and the maximum 
negative bending moment, using the bending moment diagram. The maximum 
positive bending moment is 1.9 kilo Newton meters at point D where the shear force 
is zero.   The maximum negative bending moment is 3.375 kilo Newtons per meter at 
point B.  
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Exercise 3 Solution (10)

 

 

The cross section of the over hang beam is a channel section. You need to calculate 
the centroid and the moment of inertia for this channel section. The dimensions of 
the channel section are shown in figure a.   You then need to find the centroid axis. 
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Exercise 3 Solution (11)

ENR202  5b -- Slide No. 44

 

 

First, calculate the centroid of the channel section (if you are not sure about this, look 
back at lecture 5a, slides 7 and 8).    We have an unsymmetrical channel section, 
and you need to locate the centroid of this channel shape.  First, you need to 
separate the channel section into regular shapes (as we have done with the green 
lines in the figure).   Here we have three rectangular shapes.   The first rectangle is 
12 millimeters by 68 millimeters, the second is 300 millimeters by 12 millimeters, and 
the third is 68 millimeters by 12 millimeters.    
 
You need to locate the centroid of the given composite area.  The centroid of the first 
rectangle from the x axis is 34 millimeters (68 millimeters divided by 2).   The 
centroid of the third rectangle from the x axis is also 34 millimeters (68 millimeters 
divided by 2).   The centroid of the second rectangle from the x axis is 68 millimeters 
plus 12 millimeters divided by 2, which is equal to 74 millimeters.   The area of the 
first and third rectangles is 68 millimeters by 12 millimeters.  The area of the third 
rectangle is 68 millimeters by 12 millimeters.   Finally, we can calculate the centroid 
from the x axis y bar as 61.5 millimeters, based on the centroid formula. 
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Exercise 3 Solution (12)
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You can also calculate the centroid of the channel section based on the negative 
area method.   The area of the large rectangle (with the area shaded in the blue 
lines) is 300 millimeters by 80 millimeters.   The area of the small rectangle (with the 
blue and black lines) is 276 millimeters by 68 millimeters.   The centroid of the large 
rectangle from the x-axis is 80 millimeters divided by 2, which is 40 millimeters.  The 
centroid of the small rectangle from the x-axis is 68 millimeters divided by 2, or 34 
millimeters.    Finally, you can work out the centroid of the channel section from the 
x-axis based on the negative area principle and the centroid formula.  The answer 
will be the same as we calculated in the previous slide -  61.5 millimeters.  
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Exercise 3 Solution (13)
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Now try to calculate the moment of inertia about the x-x axis of the channel cross 
section, and then compare your answer to our below.  
 
The channel section is separated into three simple rectangles.  The contribution of 
first, second and third rectangle moment of inertia is calculated by the parallel axes 
theorem (if you are unsure about this, go back to lecture 5a, slide 21).   We are 
calculating the moment of inertia of the first and third rectangle about the centroid of 
the composite area ‘xc’ axis.    The first and third rectangles are 12 millimeters wide 
and 68 millimeters high.   The area of these rectangles is 12 millimeters times 68 
millimeters.   The self centroid moment of inertia of these rectangles is 12 times 68 to 
the power of 3 divided by 12.   ‘dy1’ is the distance between the centroid of these 
rectangle to the centroid of the composite area from the x axis equal to 61.5 
millimeters minus 34 millimeters, which is 27.5 millimeters.   In the same way, the 
second rectangle is 300 millimeters wide and 12 millimeters high.   The area of this 
rectangle is 300 millimeters times 12 millimeters.   The self centroid moment of 
inertia of this rectangle is 300 times 12 to the power of 3 divided by 12.  ‘dy2’ is the 
distance between the centroid of this rectangle to the centroid of the composite area 
from the x axis equal to 61.5 millimeters minus 74 millimeters.   Finally, we can 
calculate the centroid moment of inertia for the channel section is 2.47 times 10 to 
the power of 6 millimeters to the power of 4.  
 
 

 

  



ENR202 Mechanics of Materials Lecture 5B Slides and Notes 

Slide 47 

 

Exercise 3 Solution (14)
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Try to calculate the moment of inertia about the x-x axis of the channel cross section 
by using the negative area principle, and then compare your answer to ours below.  
 
To calculate the centroid moment of inertia for the composite area (the channel 
section about the centroid x axis), use the negative area principle.  We have two 
rectangles (see the diagram in slide 43).   Calculate the contribution of the large 
rectangle moment of inertia by using the parallel axes theorem.   We are calculating 
the moment of inertia of the large rectangle about the centroid of the composite area 
‘xc’ axis.   The large rectangle is 300 millimeters wide and 80 millimeters high, so 
the area of the large rectangle is 300 times 80 millimeters.   The self centroid 
moment of inertia of this rectangle is 300 times 80 to the power of 3 divided by 12.  
‘dy1’ is the distance between the centroid of this rectangle and the centroid of the 
composite area from the x axis equal to 40 millimeters minus 61.5 millimeters, which 
is 21.5 millimeters.   In the same way, the small rectangle is 276 millimeters wide and 
68 millimeters high.   The area of this rectangle is 276 millimeters times 68 
millimeters.   The self centroid moment of inertia of this rectangle is 276 times 68 to 
the power of 3 divided by 12.  ‘dy2’ is the distance between the centroid of this 
rectangle and the centroid of the composite area from the x axis equal to 34 
millimeters minus 61.5 millimeters.   You need to deduct the small rectangle moment 
of inertia from the large rectangle moment of inertia.   Finally, we calculate the 
centroid moment of inertia for the channel section as 2.47 times 10 to the power of 6 
millimeters to the power of 4.  
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Exercise 3 Solution (15)
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Now, you can calculate the bending normal stress due to the maximum positive 
bending moment of 1.9 kilo Newton Meters at point D where the shear force is zero. 
You know that positive bending moment causes compressive bending normal stress 
at the top and tensile bending normal stress at the bottom, as shown in the figure. 
You can calculate the compressive bending normal stress at the top by using the 
flexure formula: that is, M times y divided by I.  You know the positive bending 
moment is 1.9 kilo Newton meters, the moment of inertia about the x-x axis is 2.47 
times 10 to the power of 6 millimeters to the power of 4, and ‘y’ is the distance 
between the neutral axis and the topmost surface, which is 18.5 millimeters.   You 
should calculate the compressive bending normal stress at the top surface as 14.23 
Mega Pascals.  Be careful with the units.     
 
Now, calculate the tensile bending normal stress at the bottom by using the flexure 
formula (that is, M times y divided by I). You know the positive bending moment is 
1.9 kilo Newton meters, the moment of inertia about the x-x axis is 2.47 times 10 to 
the power of 6 millimeters to the power of 4, and ‘y’ is the distance between the 
neutral axis and bottommost surface is 61.5 millimeters.  Finally, you should get the 
value for the tensile bending normal stress at the bottommost surface as being equal 
to 47.3 Mega Pascals.   
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Exercise 3 Solution (16)
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Now, you need to calculate the bending normal stress due to the maximum negative 
bending moment of 3.375 kilo Newton Meters at point B. You know that negative 
bending moment causes compressive bending normal stress at the bottom and 
tensile bending normal stress at the top, as shown in the figure. You can calculate 
the compressive bending normal stress at the bottom by using the flexure formula (M 
times y divided by I).  You know the negative bending moment is 3.375 kilo Newton 
meters, the moment of inertia about x-x axis is 2.47 times 10 to the power of 6 
millimeters to the power of 4, and ‘y’ is the distance between the neutral axis and the 
bottommost surface, which is 61.5 millimeters.  Finally, you should get the value for 
compressive bending normal stress at the bottom surface as 84.03 Mega Pascals or 
Newton per square millimeters.  Be careful with the units.  
 
Now, calculate the tensile bending normal stress at the top by using the flexure 
formula (M times y divided by I). You know the negative bending moment is 3.375 
kilo Newton meters, the moment of inertia about the x-x axis is 2.47 times 10 to the 
power of 6 millimeters to the power of 4, and ‘y’ is the distance between the neutral 
axis and the topmost surface, which is 18.5 millimeters.  Finally, you will get the 
value for tensile bending normal stress at the topmost surface as 25.28 Mega 
Pascals.   
 
 

 

  



ENR202 Mechanics of Materials Lecture 5B Slides and Notes 

Slide 50 

 

THANK YOU
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Thank you for your attention. 
 

 

 


