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Lecture 9a – Column Buckling 

(w1,w2,w3,w4,w5,w6,p1,p2,v1,v2,v3,v4

,v5,v6,v7)

ENR 202 Mechanics of Materials

 

Welcome to lecture summary 9A.   
In this lecture we will talk about 
column buckling.   Access the live 
links for further information on the 
concepts covered.   
 
 

Slide 3 Columns are long, slender structural members 

usually loaded axially in compression
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Columns are important structural 
members.  Columns are long, 
slender and usually loaded axially 
in compression.   They can be of 
steel (left figure) and concrete 
(right figure).  
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What is Buckling (1) (v1)

Consider a stocky column
subjected to an increasing
axial load, it will eventually
fail by compression when
the material’s compressive
strength is exceeded

Consider another, longer, slender
column also subjected to an 
increasing axial load, it begins to 
bend about the weaker axis and 
deflect sideways when the load 
reaches a certain value
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If compressive axial load is acting 
on the column, there are two 
possibilities for failure.   The first is 
compressive failure.  If a stocky 
column is subjected to an axial 
load, this stocky column may 
undergo compressive failure when 
the compressive stress exceeds 
the compressive strength, as 
shown in the top figure.   You can 
see the cracks all around the 
column.  
 
The second is buckling failure.  
For example, if a long, slender 
column is subjected to axial load, 
this column begins to bend about 
the weaker axis and deflect side 
ways, in lateral deflection, as 
shown in the bottom figure.  When 
the load reaches a certain point, 
the column will fail by buckling. 
This load is known as the critical 
load of the column.   The buckling 
failure is sudden failure.  You can 
see the video link above in the 
slide title with the symbol v1, and 
this will show you an example of a 
building failing through buckling. 
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What is Buckling (2)
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Look at the left photo and you will 
see that the reinforced concrete 
column has buckled in a lateral 
direction from the longitudinal axis.   
Observe the buckle shape of the 
rebar in the reinforced concrete 
column (green colour) and the 
longitudinal axis of the column (red 
colour).  In the right image, you 
can see the testing of  steel rod 
subjected to axially loaded 
compression, with a lateral 
deflected buckling shape of the 
column.   
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What is Buckling (3)

If a member is slender, then, instead of failing by direct compression, it

may bend and deflect laterally, and we say that column has buckled

The lateral deflection that occurs is called buckling.

Quite often the buckling of a column can lead to a sudden and dramatic

failure of a structure.
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So what does buckling mean?   If 
a member is slender, it may bend 
and deflect laterally about the 
weak moment of inertia of the 
cross section instead of failing by 
direct compression.  We called this 
phenomenon buckling. Buckling 
failure is very dangerous and it 
can lead to sudden failure.  
Obviously, engineers need to 
understand the buckling concept 
very clearly. 
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Concept of buckling:

Axial compression

Insufficient 
flexural stiffness

Lateral buckling

+

Key point: critical load or buckling 
coefficient.Euler’s column
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The concept of buckling means 
that if we have an axial 
compression ‘N’ acting on the 
column of length ‘L’ with 
insufficient flexural stiffness, it will 
cause lateral buckling.   In the 
figure, you can see larger and 
larger lateral deflection due to 
insufficient flexural stiffness when 
axial compressive loads are 
applied.   Initially, the column is 
just slightly imperfect with the 
shape of yo.  If you increase the 
compressive load, the column will 
buckle laterally with the y1, y2 and 
yn shapes as shown in the figure.   
Finally, at some load, the column 
will fail by buckling.  That load is 
called critical load.  You must 
calculate that critical load for given 
conditions of column.    
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Ideal Column with Pin Supports (1)

consider an ideal column, that is loaded by a vertical

force P through the centroid of the cross section and

aligned with the longitudinal axis of the column. The

column is perfectly straight and is made of a linear

elastic material.

As P is gradually increased, we reach a 
condition of neutral equilibrium in which the 
column may have a bent shape but is still 
stable. The corresponding value of the load 
is the critical load Pcr. 

Any further increase in the load P will 
cause the column to buckle and fail.
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When P has a small value, the column 
remains straight and undergoes only 

axial compression,  =P/A

 

Suppose we have a perfectly 
straight column, with pinned 
supports at both ends, and an 
axial compressive load ‘P’ passes 
through the centroid of the cross 
section of the column, as shown in 
figure a. The column may buckle 
as shown in figure b.  When the 
axial compressive load ‘P’ has a 
small value, the column remains 
straight.  The axial compressive 
stress is equal to the axial 
compressive load ‘P’ divided by 
the area of the cross section ‘A’.   
We have already covered this 
when we talked about axially 
loaded members in lecture 2b.   
Axial compressive stress sigma is 
equal to P divided by A.  
 
If the axially compressive load ‘P’ 
gradually increases, we reach a 
condition of neutral equilibrium, 
which means that the column may 
have a bent shape as shown in 
figure b, but is still stable 
condition. The corresponding 
value of the load is called the 
critical load.  You can apply an 
axial compressive load up to the 
critical load.   If you further 
increase load ‘P’ after the critical 
load, it will cause the column to fail 
by buckling.  
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Ideal Column with Pin Supports (2)
In order to determine the critical load and the buckling 

shape of the column, we will apply the differential 

equation of the deflection curve of a beam:

MvEI 

From the free-body diagram and 

summing moments, we have:

0



PvvEIor

PvMvEI
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If you apply an axial compressive 
load ‘P’ on the column with both 
ends pinned, then the column may 
also develop a buckle shape, as 
shown in figure b.  The lateral 
deflection at the centre of the 
column is ‘v’.   If you draw the 
graph for the ideal column and the 
real column, with the application of 
axial compressive load and lateral 
deflection at centre of the column 
‘v’, you can see the result.   In the 
ideal column, the column is 
straight up to the critical load ‘Pcr’, 
then it suddenly starts to buckle 
and fail.  In real column, the 
column starts buckling after some 
of the load, then finally fails at the 
critical load.   An ideal column will 
be straight until the critical load.   
However, all real columns are 
imperfect -  not straight. In reality, 
the relationship between the 
compressive load and the lateral 
deflection at the centre will be a 
curve.   We look at ideal columns 
in the unit, but they do not really 
exist – this is only theory. 
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Ideal Column with Pin Supports (3)
In order to determine the critical load and the buckling 

shape of the column, we will apply the differential 

equation of the deflection curve of a beam:

MvEI 

From the free-body diagram and 

summing moments, we have:

0



PvvEIor

PvMvEI
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Suppose you cut the buckled 
shape of the column (as shown in 
figure b) at a distance of ‘x’ from 
point A (as shown in the figure c). 
You know that we have two 
internal force effects acting at a 
cutting cross section.   One is an 
axial compressive load ‘P’ and 
bending moment ‘M’, as shown in 
figure c.   Remember the 
differential equation we looked at 
in Slide 11 of Lecture 7a – it is 
equation 1 in this slide.   Draw the 
free body diagram of the bottom 
part of the column (as shown in 
figure c).  Apply equilibrium 
equations which state that all 
forces in a vertical direction equal 
zero, and all forces moments 
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about point A equal zero.   Finally, 
we get the moment ‘M’ at the 
cutting cross section equal to the 
axial compressive load ‘P’ times 
lateral deflection ‘v’, as shown in 
equation 2.  Rearrange the terms 
and you will get equation 3.  
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Ideal Column with Pin Supports (4)

assume k2 = P/EI, we have:

To evaluate the constants, using the boundary 

conditions at the ends:

02  vkv

The general solution of this equation is:

kxCkxCv cossin 21 

x = 0, v = 0, and x = L, v = 0, and give us:

C2 = 0, C1sinkL = 0
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Finally, we have a differential 
equation in terms of Young's 
modulus ‘E’, moment of inertia ‘I’, 
axial load ‘P’, and lateral 
deflection.  K squared equals P 
divided by EI.   Thus, the 
governing differential equation 
becomes equation 4.  The general 
solution of equation 4 is that v is 
equal to one constant of 
integration sin kx plus another 
constant of integration cos kx, as 
shown in the equation 5.  
 
To evaluate the constants of 
integration, we use boundary 
conditions at the ends. We have 
two pinned ends for this ideal 
column.  Point A is at the bottom 
pinned end, and Point B is at the 
top pinned end, as shown in the 
previous slide.    The ‘x’ distance 
starts from the bottom end as 
shown in the previous slide.   If x is 
equal to zero, lateral deflection ‘v’ 
is equal to zero (that is, the bottom 
end point A of the column).   If x is 
equal to the length of the column 
‘L’ , the lateral deflection ‘v’ is 
also zero (that is, top end point B 
of the column).  If you substitute 
these conditions into equation 5, 
we get constants of equations C2 
equal to zero and C1 sin kL equal 
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to zero.  
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Ideal Column with Pin Supports (5)

If C1 = 0, the deflection v is zero and the column
remains straight. This solution of the differential
equation is represented by the vertical axis of the load-
deflection diagram.

The other possibility is: sinkL = 0

This equation is satisfied when kL =0, ,

2,… Since kL = 0 is not of interest, the

solutions we will consider are:

kL = n, n = 1, 2, 3, ….

 3,2,1,
2

22

n
L

EIn
P



as

k2 = P/EI
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If both constants of integrations C1 
and C2 are equal to zero that 
means the lateral deflection ‘v’ is 
also zero, which means the 
column is straight. However we 
are not looking for the solution of a 
straight column because the 
lateral deflection is throughout the 
column.   We are looking  for a 
lateral buckled shape of the 
column.  Therefore for one 
condition C2 equals zero, but for 
the other condition C1 sin kL 
equals zero. For second condition 
we are not looking for C1 also 
being equal to zero, we are 
looking for sin kL being equal to 
zero.   Let’s see what happens if 
sin kL equals zero.  
 
The equation sin kL being equal to 
zero is satisfied when kL is equal 
to zero, pi, 2 times pi and so on.   
We are not interested in kL being 
equal to zero. Therefore the 
solution of equation 6 becomes kL 
is equal to n times pi, where n 
equal to 1,2,3,4,5, and so on.  
 
We assume that k squared equals 
P divided by EI.  Substitute this 
into equation 7 and calculate the P 
equal to n squared pi squared EI 
divided by L squared, as shown in 
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equation 8, where n equal to 
1,2,3,4,5,6 and so on.  
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This load is sometimes referred to as the Euler load.  

The corresponding buckling shape is defined by the 

equation:

Critical Load

The smallest value of P is obtained when n=1, so the

critical load for the column is therefore:

2

2

L

EI
Pcr




L

x
CkxCv


sinsin 11 

Here C1 represents the maximum deflection vmax

(at the midpoint of the column).
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The smallest value of P is 
calculated if you substitute n equal 
to 1 into equation 8 in the previous 
slide.  You will get equation 9.  
This load is the critical buckling 
load for the column.    Equation 9 
is very important to remember 
when you are calculating the 
buckling load of the column  with 
pinned end conditions. 
  
This critical load is sometimes 
referred to as the Euler load. The 
corresponding buckling shape is 
defined by equation 10.  Substitute 
the value of x into the equation, 
and you will get the lateral 
deflection at the point where you 
are interested along the length of 
the column. For example, if you 
substitute x equal to zero, you will 
get v equal to zero.  If you 
substitute x equal to L, then the 
other end v will be equal to zero.   
If you substitute x equal to L 
divided by 2, this will be at the 
centre of the column.   You will get 
maximum lateral deflection 
‘vmax’.   
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Buckled Shape

'n' in the above equation represents the number of the

waves in the deflected shape of the column.
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Up to now, we discussed the 
equation if n equals 1. ‘n’ in the 
above equation represents the 
number of the waves in the 
deflected shape of the column, if 
you apply axial compressive load 
‘P’ on the column as shown in 
figure a. The critical load is equal 
to pi squared times E times I 
divided by L squared, required to 
fail the column by buckling with 
single wave in the deflected shape 
of the column as shown in figure b.   
The maximum deflection occurs at 
the centre of the column as we 
expected as shown in figure b. 
What happens if n equals 2? If you 
keep maximum deflection at the 
centre of the column equal to zero 
as shown in figure c, then we have 
two waves in the deflected shape 
of the column.  We need four times 
the critical load with a single wave 
deflected shape.   That means n is 
equal to 2.  We have maximum 
deflection for the two wave 
deflected shape at one quarter 
and three quarter lengths in the 
column as shown in the figure.  
 
 

Slide 15 
Analysis of Buckling Equation (1)

Pcr is independent of the strength of the
material; rather it depends only on the
column’s dimensions (I and L) and the
material’s stiffness (E). The load-carrying
capacity of a column will increase as the
moment of inertia of the cross section
increases.

2

2

L

EI
Pcr



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The critical buckling load as shown 
in the equation is independent of 
the strength of the material.  It 
depends only on the column 
dimensions, which are the moment 
of inertia, the length of the column 
and Young’s modulus of the 
material.   (If you need to, go back 
and have a look at Slide 15 in 
lecture 2a.) 
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Analysis of Buckling Equation (2)

A column will buckle about
the principal axis of the cross
section having the least
moment of inertia. For
example, a column having a
rectangular cross section, will
buckle about the a-a axis, not
the b-b axis. Therefore,
those shapes having Ix  Iy
are often selected for
columns.
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Look at the figure once more.   
What do you observe?  At what 
moment of inertia does the column 
buckle.  Here, the moment of 
inertia about a-a is less than the 
moment of inertia about b-b.  
Therefore the weaker axis is a-a, 
as shown in the figure.   So, the 
column buckled at the least 
moment of inertia. Therefore we 
usually design a column in such a 
way that both moments of inertia 
are almost the same.  
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Critical load

Pcr

Pcr

The maximum
axial load that 
a column can 
support when it 
is on the verge 
of buckling is 
the critical load

P > Pcr

P > Pcr

Any increase in 
that load will 
cause the column 
to buckle
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In an ideal column, the maximum 
axial compressive load that a 
column can support when it is on 
the verge of buckling is the critical 
load. If the applied load is larger 
than critical buckling load, it will 
cause the column to buckle, and 
then collapse.  
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Euler’s Buckling Formula

The derivation of this formula is in your 

textbook and is too complicated to go into 

here, the result is:

2

2

L

EI
Pcr




From the Euler formula, it is evident that the buckling load of a

column is directly proportional to the E and I value of a material

and exponentially depended on the length of the column
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We already looked at derivation of 
Euler’s Buckling formula.  (If you 
are unsure, check the derivation of 
this formula in the text book 
Mechanics of Materials, chapter 
13, pp 696).   However, you need 
to understand the concept of this 
formula.  The buckling load of a 
column is directly proportional to 
the E and I values and 
exponentially depended on the 
length of the column.   
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Slide 19 2nd Moment of Area about different Axes

Remember from Lesson 1a that the weakest Axis in 

bending is the one with the smallest I value

2nd Moment of Area of a Rectangle

b

hx x

y

y

This means that when an axial load (P) is applied to a slender
column with no lateral restraints, it will buckle (fail) about the 
weakest Axis, here the y-axis

12

3bh
I xx  12

3hb
I yy >

For this section:
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We  are looking  at the buckling 
phenomenon about the weakest 
axis,  the one with the smallest 
moment of inertia, I value.   An 
example is a rectangular cross 
section, if the height of the 
rectangle is greater than the 
breadth of the rectangle as shown 
in the figure.   The moment of 
inertia about the x-x axis is equal 
to b times h cubed divided by 12 
and the moment of inertia about 
the y-y axis is equal to h times b 
cubed divided by 12.  Therefore, 
the moment of inertia about the x-x 
axis is greater than the moment of 
inertia about the y-y axis. This 
means that when an axial 
compressive load ‘P’ is applied to 
a slender column with no lateral 
restraints, the column will fail or 
buckle about the weakest axis, 
which here is the y-y axis.   So, the 
y-y axis is the weakest axis.  
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P

200

220

10

10

Find the critical load for this pin connected 
steel column σa =300MPa

Length = 10m, Es = 200,000MPa

L=10m

Don’t forget to check that 
the allowable stress is not 
exceeded σ=F/A !!!
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Here we have an I shaped cross 
section steel column with both 
ends pinned, which is subjected to 
an axial compressive load ‘P’ 
acting on the column.  The length 
of the column is 10 meters.  
Youngs modulus of the steel 
material is 200 thousands Mega 
Pascals. ‘The allowable stress or 
yield stress of the material is 300 
Mega Pascals.   Don’t forget to 
check that the allowable stress for 
this column (critical load divided by 
the area of the I shaped cross 
section) does not exceed the 
allowable stress of the material, 
which is 300 Mega Pascals.  
Pause the presentation here and 
try to complete the problem.   The 
solution is on the following three 
slides.   
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Exercise 1 Solution (1)

ENR202  9a -- Slide No. 21

200

220

10

10

x x

y

y

 

First, find the moment of inertia 
about the x-x axis and the moment 
of inertia about the y-y axis.  In 
Lecture 5A, we looked at how to 
calculate the moment of inertia for 
an I shape.   The I shape in the 
figure is symmetrical in the x-x and 
the y-y axis.  Therefore, there is no 
need to use parallel axis theorem 
to calculate moment of inertia.  
You can use the negative area 
method to calculate the moment of 
inertia about the x-x axis. The 
dimensions of the large rectangle 
are 200 mm width and 220 mm 
depth.  There are two small 
rectangles of 95 mm width and 
200 mm depth. The moment of 
inertia of the large rectangle is 200 
times 220 cubed divided by 12 
minus 2 times 95 times 200 cubed 
divided by 12, which is equal to 
50.8 times 10 to the power of 6 
mm to the power of 4.  
 
Now we can calculate the moment 
of inertia about the y-y axis.   The 
centre of flanges and web passes 
through the y-y axis and is 
symmetrical about the y-y axis. 
Therefore, the moment of inertia 
for the is flanges equal to 2 times 
10 times 200 cubed divided by 12 
plus the moment of inertia about 
the web, which is 200 times 10 
cubed divided by 12.   You should 
get the moment of inertia about 
the y-y axis as equal to 13.4 times 
10 to the power of 6 mm to the 
power of 4.  
 
As we discussed earlier, you need 
to find weakest axis that is the 
smallest I value.   Here the 
moment of inertia about the y-y 
axis is smaller than the moment of 
inertia about the x-x axis. 
Therefore, the critical axis moment 
of inertia is 13.4 times 10 to the 
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power of 6 mm to the power of 4.  
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Exercise 1 Solution (2)
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The second step is to find the 
critical buckling load for both the x-
x and y-y axes.  First, we calculate 
the critical buckling load about the 
x-x axis which is equal to pi 
squared E times the moment of 
inertia about the x-x axis divided 
by L squared.  Young’’s modulus 
of steel is 200 thousand Mega 
Pascals, and the moment of inertia 
about the x-x axis is 50.8 times 10 
to the power of 6 mm to the power 
of 4.  The length of the column is 
10 meters.   Thus, we get the 
critical buckling load about the x-x 
axis as equal to 1003 kilo 
Newtons.   Now we calculate the 
critical buckling load about the y-y 
axis, which is equal to pi squared 
E times the moment of inertia 
about the y-y axis divided by L 
squared.  Young’s modulus of 
steel is 200 thousands Mega 
Pascals, the moment of inertia 
about the y-y axis is 13.4 times 10 
to the power of 6 mm to the power 
of 4.  The length of the column is 
10 meters.   Thus, we get a critical 
buckling load about the y-y axis of 
265 kilo Newtons.  Therefore, the 
smallest of the two critical buckling 
loads is the critical buckling load 
for this column which is 265 kilo 
Newtons. 



ENR202 Mechanics of Materials Lecture 9A Slides and Notes 

 

 
 

Slide 23 
Exercise 1 Solution (3)
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Don’t forget to check that the 
allowable stress for this column 
(critical load divided by the area of 
the I shaped cross section) does 
not exceed the allowable stress of 
the material which is 300 Mega 
Pascals.   The critical load is 265 
kilo Newtons.  The area of the I-
shaped column is equal to three 
rectangles with 200 mm width and 
10 mm depth, which is equal to 3 
times 200 times 10 which is 6000 
square mm. The allowable stress 
for this column is 265 000 
Newtons divided by 6000 square 
mm, which is equal to 44 Mega 
Pascals or Newtons per square 
mm.  The allowable stress of the 
steel is 300 Mega Pascals. 
Therefore, allowable stress for this 
column is the critical load divided 
by the area of the I-shaped cross 
section, which must not exceed 
the allowable stress of the material 
- 300 Mega Pascals.   And it 
doesn’t.  
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Exercise 2

P= ? kN

L=5m

130

120

What is the maximum axial load P
that can be applied to the round, 
pin connected aluminium column?

464

44 r
or

d
Icircle




Don’t forget to check that 
the allowable stress is not 
exceeded σ=F/A !!!

Length = 5m                            EA

=70,000 MPa          σa=150MPa
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A circular hollow cross section 
aluminium column with both ends 
pinned is subjected to an axial 
compressive load ‘P’ acting on the 
column. The length of the column 
is 5 meters.  The Young’s modulus 
of the Aluminium material is 70 
000 Mega Pascals. The allowable 
stress or yield stress of the 
material is 150 Mega Pascals.  
(Don’t forget to check that the 
allowable stress for this column 
does not exceed the allowable 
stress of the material).  
 
The Moment of inertia of the circle 
is pi times the diameter of the 
circle to the power of 4 divided by 
64.    Pause this presentation and 
try to solve this problem.  The 
answer is on the next two slides.  
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Exercise 2 Solution (1)
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First, you need to find the moment 
of inertia about the x-x axis and 
the moment of inertia about the y-y 
axis.   You already know how to 
calculate the moment of inertia for 
a circular hollow cross section.    
The circular hollow cross section 
has symmetry in both axes.  
Therefore, there is no need to use 
the parallel axis theorem to 
calculate the moment of inertia.  
You can use the negative area 
method to calculate the moment of 
inertia about the x-x axis and the 
y-y axis.   The moment of inertia 
about the x-x axis is equal to the 
moment of inertia about the y-y 
axis. This circular hollow cross 
section has an outer diameter of 
130 mm and an inner diameter of 
120 mm.   The moment of inertia 
about the x-x axis is equal to the 
moment of inertia about the y-y 
axis which is equal to pi times 130 
to the power of 4 divided by 64 
minus pi times 120 to the power of 
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4 divided by 64, which is equal to 
3.84 times 10 to the power of 6 
mm to the power of 4.  
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For the second step, you need to 
find the critical buckling load for 
this circular hollow cross section 
column.    Now, we calculate the 
critical buckling load as equal to pi 
squared times E times the moment 
of inertia divided by L squared.   
The Young’s modulus of 
aluminium is 70 000  Mega 
Pascals.  The moment of inertia 
about the x-x axis and the y-y axis 
is  3.84 times 10 to the power of 6 
mm to the power of 4.  The length 
of the column is 5 meters.   
Therefore, we get a critical 
buckling load about the x-x axis 
and the y-axis of 106 kilo 
Newtons. 
 
Don’t forget to check that the 
allowable stress for this column 
(critical load divided by area of 
circular hollow cross section) does 
not exceed the allowable stress of 
the aluminium material, which is 
150 Mega Pascals. The critical 
load is 106 kilo Newtons.   The 
area of the circular hollow  column 
is equal to pi times 130 squared 
divided by 4 minus pi times 120 
squared divided by 4, which is 
equal to 1963 square mm.    The 
allowable stress for this column is 
106 000 Newtons divided by 1963 
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square mm, which is equal to 54 
Mega Pascals or Newtons per 
square mm. The allowable stress 
of the aluminium is 150 Mega 
Pascals. Therefore, the allowable 
stress for this column does not 
exceed allowable stress of the 
material.  
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Next lecture, we will continue with 
column buckling, and look at 
columns with other support 
conditions. Thanks for your 
attention.  
 
 

 


