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Complexity Analysis: Theta Notation 
 
Complexity Analysis is one of the more complicated topics in the subject 
Mathematics For Computing. It involves an unusual concept and some tricky 
algebra. In these notes we try to demystify the idea a little. 
 
Theta notation relates to analysing an algorithm and finding the number of 
operations it performs. At this stage we won’t specify what operation we are 
counting. It could be additions, multiplications, matrix multiplications, recursive 
calls, etc. All we know is that there is some operation that we count, and the 
number of operations performed will depend on the size of the problem, n. 
The measure of the size of the problem, n, may itself be complicated. For 
example n might be the number of items to be sorted, or the size of a matrix. 
For now, let us just assume that n measures the size of the problem, and that 
f(n) is the number of operations needed to solve the problem when the input 
size is n. The faster f(n) grows, the slower the algorithm will be, because the 
number of operations, ie the amount of work, performed by the algorithm is 
growing rapidly. 
 
We try to gain an understanding of how fast f(n) grows with n. In fact what we 
are seeking, technically speaking is upper and lower bounds, so that we can 
say “f(n) grows no faster than x” and “f(n) grows faster than y”. If possible we 
try to get x and y to differ by no more than a constant multiple , for then we 
have considerable knowledge about how fast f(n) grows. 
 
The formal definition of theta notation is a two part definition. We seek first of 
all an upper bound, some function g(n), say. We then say that f(n) is of order 
at most g(n), or ( ) ( ( ))f n g n= Ο . Technically, if we can find constants c1 and n1 
with 1| ( ) | | ( ) |f n c g n≤  for all n≥n1, then we say ( ) ( ( ))f n g n= Ο . The situation 
this describes is illustrated below in Figure 1. 
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Note that f(n) is allowed to jump around and be larger than g(n) early on, but 
must eventually reach a point where it remains lower than the curve c1g(n). In 
this case 2( )g n n= , and after a certain point, about n=35, we can say that 
f(n)≤1.1g(n), so we say 2( ) ( )f n n= Ο 1. Students always wonder where the 
constant, in this case 1.1, went to. The fact is that the value of c1 is 
unimportant. We only need to know that such a c1 exists, its actual value is 
unimportant. However, I find it helpful to students to rephrase the statement 
as follows: 2( ) ( )f n n= Ο  with c1=1.1. Students tend to be baffled at the way 
they have to work so hard to find c1 and then don’t actually use it. So I like to 
use it in the statement, even though technically it is sadly irrelevant. 
 
Now we seek a lower bound for f(n). Precisely, we seek to find constants c2 
and n2 so that 2 2| ( ) | | ( )|,f n c g n n n≥ ≥ . If we can do this, we say that f(n) is of 
order at least g(n), and we write ( ) ( ( ))f n g n= Ω . If we can find the constants 
c1 and c2, so that ( ) ( ( ))f n g n= Ο  and ( ) ( ( ))f n g n= Ω , then we say f(n) is of 

order g(n), and we write ( )( ) ( )f n g n= Θ . This means we know quite a lot 
about the growth of f(n), and is the ideal situation. 
 
In this case it turns out that the same function, n2, this time multiplied by 0.9, 
will pass under the function f(n), apart from a few glitches early on. The 
diagram below shows that f(n) falls below 0.9n2 a few times, but after that 
                                                 
1 Notice that because f and g are always positive, the modulus signs are irrelevant. 
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stays above the curve 2. Hence we can say ( )2( )f n n= Ω , and so 
2( ) ( )f n n= Θ . 

 

 
 
Now try the following multiple choice questions, each related to a single 
diagram. In each case choose the statement that best fits the diagram. 
 
1. 

                                                 
2 Technically speaking, of course, a diagram like this can’t prove that f(n) will always remain 
above or below c1g(n) or c2g(n). That requires some algebra. However I have implicitly 
assumed that the function will always remain between the two dashed curves. 
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(A) 3( ) ( )f n n= Ω   (B) 3( ) ( )f n n= Ο  with constant 1.05 

(C) ( )3 ( )n f n= Ο   (D) 3( ) ( )f n n= Θ  
 
2. 
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(A) ( )( ) ( )g n f n= Θ   (B) ( )( ) ( )g n f n= Ω  

(C) ( )( ) ( )f n g n= Ο   (D) ( )( ) ( )f n g n= Ω  
 
3. 
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(A) ( )( ) log( )f n n= Ω   (B) ( )log( ) ( )n f n= Ω  

(C) ( )log( ) ( )n f n= Θ   (D) ( )( ) log( )f n n= Ο  
 
4. 
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(A) ( )1.8 ( )n f n= Θ     (B) ( )1.8( )f n n= Ω  

(C) ( )1.8
1( )  (with constant 2)f n n c= Ο =  (D) 

( )1.8
1( )  (with constant 2)n f n c= Ο =  

 
 
 
 
 
Answers 
1. B  2. D  3. A  4. C 
 
Selecting the Fastest Growing Term 
 
When we know how many operations an algorithm will take, we can easily 
find the theta notation for that algorithm. This is because the number of 
operations will be dominated by the fastest growing term. (Remember, of 
course, that the faster the number of operations grows, the slower will be that 
algorithm.) Consider the following examples, where f(n) is the hypothesised 
number of operations for some unknown algorithm. 
 
Example 1 
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Suppose 2( ) 1.3 *lg( ) 4 5f n n n n n= + + + 3. The table below shows the value of 
f(n) and also the function 2( )g n n=  and the percentage difference between 
them, for certain values of n4. 
 
n f(n) g(n) % difference 

1 10.00 1 -90.000% 
10 188.19 100 -46.861% 

100 11268.70 10000 -11.259% 
1000 1016960.52 1000000 -1.668% 

10000 100212745.26 100000000 -0.212% 
100000 10002559258.26 10000000000 -0.026% 

1000000 1000029911044.14 1E+12 -0.003% 
10000000 100000342295462.00 1E+14 0.000% 

100000000 10000003854805200.00 1E+16 0.000% 
1000000000 1000000042866560000.00 1E+18 0.000% 
 
It certainly appears that as n increases, the difference between f(n) and g(n) 
decreases into insignificance. 
♦♦♦ 
 
Could this be a fluke? Let’s try a couple more. 
 
Example 2 

1.1 1.1( ) 3 2lg( ), ( )f n n n n g n n= + + =  
 
n f(n) g(n) % difference 

1.E+00 4.000E+00 1.000E+00 -75.000% 
1.E+01 4.923E+01 1.259E+01 -74.429% 
1.E+02 4.718E+02 1.585E+02 -66.406% 
1.E+03 5.015E+03 1.995E+03 -60.216% 
1.E+04 5.515E+04 2.512E+04 -54.450% 
1.E+05 6.163E+05 3.162E+05 -48.686% 
1.E+06 6.981E+06 3.981E+06 -42.974% 
1.E+07 8.012E+07 5.012E+07 -37.444% 
1.E+08 9.310E+08 6.310E+08 -32.225% 
1.E+09 1.094E+10 7.943E+09 -27.414% 
1.E+10 1.300E+11 1.000E+11 -23.077% 
1.E+11 1.559E+12 1.259E+12 -19.244% 
1.E+12 1.885E+13 1.585E+13 -15.916% 
1.E+13 2.295E+14 1.995E+14 -13.070% 
1.E+14 2.812E+15 2.512E+15 -10.669% 

                                                 
3 Remember that lg(n) is the log base 2 of n, ie log2(n). 
4 Note that this is the percentage change from f(n) to g(n), which is lower, hence the 
percentage change must be negative. 
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1.E+15 3.462E+16 3.162E+16 -8.665% 
1.E+16 4.281E+17 3.981E+17 -7.008% 
1.E+17 5.312E+18 5.012E+18 -5.648% 
1.E+18 6.610E+19 6.310E+19 -4.539% 
1.E+19 8.243E+20 7.943E+20 -3.639% 

 
Once again, the difference appears to be heading towards 0, at least in 
percentage terms. Note that, as the highest power of n is only 1.1 here 
compared with 2, it takes longer for the faster term to completely dominate the 
slower terms. 
♦♦♦ 
 
Example 3 
 

2( ) 2 , ( ) 2n nf n n g n= + =  
 
n f(n) g(n) % difference 

1 3 2 -33.333333% 
2 8 4 -50.000000% 
4 32 16 -50.000000% 
8 320 256 -20.000000% 

16 65792 65536 -0.389105% 
32 4294968320 4294967296 -0.000024% 
64 1.84467E+19 1.84467E+19 0.000000% 

128 3.40282E+38 3.40282E+38 0.000000% 
256 1.15792E+77 1.15792E+77 0.000000% 
512 1.3408E+154 1.3408E+154 0.000000% 

 
Note that the faster the dominant term grows, the quicker it overwhelms the 
others. 
♦♦♦ 
 
This leads us to the principle that to find the theta notation of a function, we 
should look for the fastest growing term. This will give us the theta notation, 
which admittedly then must be proved. But how do we know which terms grow 
faster than others? Well, this is fairly well known already from function theory. 
No new maths is required. Follow the basic principles below. 
 

1. Powers of n are faster than lg(n). 
2. The higher the power of n, the faster the term. So n3 is faster than n2, 

etc. 
3. Exponentials are faster than powers, so 2n is faster than n20, for 

example. 
4. Factorials are faster than exponentials, so n! is faster than 2n or 3n. 

 
Try choosing the faster term from the following. Cover up the answers below 
first! 

Note the jump in % 
difference when n=2. 
This is because n2 jumps 
from 1 to 4. However the 
% difference soon drops 
off. Note the fastest term 
here is 2n, which is a very 
fast growing function. 
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1. 2.4 5.8,n n  

2. 2,n n  
3. 2 , lg( )n n  
4. 120, !n n  
5. *lg( ),n n n  

6. lg( ),n n  
 
Answers 
1. 5.8n  
2. 2 0.5( )n n n=  

3. 2n  
4. !n  
5. *lg( )n n  

6. n  
 
 
 
Under construction! More notes to follow soon! In the meantime, I hope this 
has helped. Cheers, Garry. 
 


