Complexity of Algorithms

Example 1

Find a theta notation for the function $f(n)=14 n^{3}+6 n^{2} \lg (n)+\lg (n)+60$.
(Note that n^{3} is the fastest growing term.)
Now

$$
\begin{aligned}
f(n) & \leq 14 n^{3}+6 n^{3}+n^{3}+60 n^{3} \\
& =81 n^{3},
\end{aligned}
$$

ie $f(n)=\mathrm{O}\left(n^{3}\right)$, with constant 81 .
Also
$f(n) \geq 14 n^{3}$, ie $f(n)=\Omega\left(n^{3}\right)$, with constant 14 .
Since $f(n)=O\left(n^{3}\right), f(n)=\Omega\left(n^{3}\right)$, then $f(n)=\Theta\left(n^{3}\right)$.

Example 2

Find a theta notation for the function $g(n)=14(\lg (n))^{60}+5 n+2 \lg (n)+17$.
Note that the fastest term here is n, believe it or not. We said in class that $\lg (n)$ grows more slowly than n^{α}, for any positive α. So $\lg (n)$ grows more slowly than $n^{\frac{1}{60}}$. Hence $(\lg (n))^{60}$ grows more slowly than $\left(n^{\frac{1}{60}}\right)^{60}=n^{\frac{1}{60} * 60}=n^{1}=n$.
Hence

$$
\begin{aligned}
g(n) & \leq 14 n+5 n+2 n+17 n \\
& \leq 38 n,
\end{aligned}
$$

ie $g(n)=\mathrm{O}(n)$, with constant 38 .
Also
$g(n) \geq 5 n$, ie $g(n)=\Omega(n)$, with constant 5.
Since $g(n)=O(n), g(n)=\Omega(n)$, then $g(n)=\Theta(n)$.

Example 3

If $f(n)=\Theta\left(n^{2}\right)$ and $g(n)=\Theta\left(n^{3}\right)$, show that $f(n)+g(n)=\Theta\left(n^{3}\right)$.
Now from the facts given (ie the theta notations) we have the following.
$f(n)=\mathrm{O}\left(n^{2}\right)$, ie $f(n) \leq c_{1} n^{2}, n \geq n_{1}$ $f(n)=\Omega\left(n^{2}\right)$, ie $f(n) \geq c_{2} n^{2}, n \geq n_{2}$
$g(n)=\mathrm{O}\left(n^{3}\right)$, ie $g(n) \leq c_{3} n^{3}, n \geq n_{3}$

Note that the definitions of O, Θ notation I use here do not involve the modulus function, eg I have defined
$f(n)=\mathrm{O}(g(n))$ if $f(n) \leq c_{1} g(n)$, etc. $g(n)=\Omega\left(n^{3}\right)$, ie $g(n) \geq c_{4} n^{3}, n \geq n_{3}$
for some suitable (positive) constants $c_{1}, c_{2}, c_{3}, c_{4}, n_{1}, n_{2}, n_{3}$ and n_{4}.
Now we have
$f(n)+g(n) \leq c_{1} n^{2}+c_{3} n^{3} \leq c_{1} n^{3}+c_{3} n^{3}=\left(c_{1}+c_{3}\right) n^{3}$, provided $n \geq n_{1}, n_{3}$.
So $f(n)+g(n)=\mathrm{O}\left(n^{3}\right)$, with constant $c_{1}+c_{3}$. Also

$$
f(n)+g(n) \geq c_{2} n^{2}+c_{4} n^{3} \geq c_{4} n^{3}=\left(c_{4}\right) n^{3} .
$$

So $f(n)+g(n)=\Omega\left(n^{3}\right)$, with constant c4.
Hence $f(n)+g(n)=\Theta\left(n^{3}\right)$.

Its Your Turn...

Now try these questions, using what you have learnt from the first examples..

1. Pick the fastest growing term in each of the following. State the theta notation.
(a) $f(n)=4 n^{3}+2 n^{2}+50 * \lg (n)+10$
(b) $f(n)=12 n^{2}+12000 * \lg (n)+3.2^{n}$
(c) $f(n)=200 n^{10}+12 \lg (n)+4 n$!
2. Use the definitions of big 'Oh' and big 'Omega' to state suitable inequalities in each of the following. Declare any constants you are using.
(a) $f(n)=\mathrm{O}\left(n^{2}\right)$
(b) $g(n)=\Omega(n \lg (n))$
(c) $h(n)=\mathrm{O}\left(2^{n}\right)$
3. Order these functions from fastest growing to slowest growing. Which would be the most desirable to have as theta notation for an algorithm? Which would be least desirable?
$n^{2}, \lg (n), 2^{n}, n^{1.5}, n!, 3^{n}$
4. Complete the following lines of argument finding the appropriate theta notation, and the relevant constants.
(a)

$$
\begin{aligned}
& f(n)=14 n \lg (n)+2 n^{2}+4 n+3 \\
& f(n) \leq \quad=23 n^{2}
\end{aligned}
$$

ie $f(n)=\mathrm{O}\left(n^{2}\right)$ with $c_{1}=25$
(b)

$$
\begin{aligned}
& g(n)=4 n^{3}+3 \cdot 2^{n}+10 \lg (n) \\
& g(n) \geq \quad=\quad .2^{n}
\end{aligned}
$$

ie $g(n)=\Omega\left(2^{n}\right)$ with $c_{2}=$
(c)
$h(n)=3 n^{2} \lg (n)+40 n^{20}+10 n \lg (n)+400$
$h(n) \leq$
ie $h(n)=\mathrm{O}(\quad)$, with $c_{1}=$
5. By using the formula $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$, find the fastest growing term for the left hand side. Once you have found the fastest growing term, state the theta notation without a full proof.

Now try and find the theta notation for the following (answers below).

1. $h(n)=4 n!+3^{*} 2^{n}+50 n^{100}$
2. $i(n)=12 n \lg (n)+6 n^{6}+17 n^{2}+11$
3. $j(n)=6 n \lg (n)+90 n+200 \lg (n)+3$
4. $h(n)=\Theta(n!), c_{1}=57, c_{2}=4$
5. $i(n)=\Theta\left(n^{6}\right), c_{1}=46, c_{2}=6$
6. $j(n)=\Theta(n \lg (n)), c_{1}=299, c_{2}=6$
