Introductory Logarithm Notes

In this exercise we will only deal with logarithms with a base of 2 . We could use any base, but it is common in computer science to use the base 2, since it occurs so often.

If $x=2^{y}$ then we say $\log _{2} x=\lg x=y$. That is to say, if y is the power we must raise x to in order to achieve a value of y, then $\lg (x)=y$. The table below illustrates this. Copy and complete the table.

$2^{6}=64$	$\lg (64)=6$
$2^{5}=32$	$\lg (32)=5$
$2^{4}=16$	$\lg (16)=$
$2^{3}=8$	$\lg (8)=$
$2^{2}=4$	$\lg (4)=$
$2^{1}=2$	$\lg (2)=$
$2^{0}=1$	$\lg (1)=$
$2^{-1}=0.5$	$\lg (0.5)=$
$2^{-2}=0.25$	$\lg (0.25)=$
$2^{-3}=0.125$	$\lg (0.125)=$
$2^{k}=n$	$\lg (n)=$
$2^{j}=m$	$\lg (m)=$

It is worth noting that as n increases towards infinity, $\lg (n)$ also increases towards infinity, but incredibly slowly. The graph below compares $\lg (n)$ to n.

By using your calculator to raise 2 to the powers in the top row, find the logs of the numbers in the bottom row. Join the dots, connecting a logarithm with its x value.
$\log (x)=4.087 \quad \log (x)=2.807 \quad \log (x)=1.585 \quad \log (x)=3.170 \quad \log (x)=3.459$
-
$x=3$
$x=9$
$x=17$
$\log (x)=3.170 \quad \log (x)=3.459$
$x=11$
$x=7$

Use your calculator to estimate $\lg (10)$ to 2 decimal places. (Estimate the log, say a and check by finding 2^{a}. If it is too large, make your estimate smaller and if it is too small, then make your estimate larger.)

a	2^{a}	Too small	Too large
3	8	X	
4	16		X
3.3	9.849	X	

Now carry on and find the log correct to 2 decimal places!

