Theorem 5.2.14

Theorem

Consider the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$. We know that the characteristic equation of this is $t^{2}-c_{1} t-c_{2}$. If r is a repeated root to this characteristic equation, then apart from the solution r^{n}, we also have the solution $a_{n}=n r^{n}$.

Proof
Trying the solution $a_{n}=n r^{n}$, we also find that $a_{n-1}=(n-1) r^{n-1}, a_{n-2}=(n-2) r^{n-2}$. So the right hand side of the recurrence relation becomes

$$
\begin{aligned}
& c_{1} a_{n-1}+c_{2} a_{n-2}=c_{1}(n-1) r^{n-1}+c_{2}(n-2) r^{n-2} \\
& =c_{1} n r^{n-1}-c_{1} r^{n-1}+c_{2} n r^{n-2}-2 c_{2} r^{n-2} \\
& =n\left(c_{1} r^{n-1}+c_{2} r^{n-2}\right)-\left(c_{1} r^{n-1}+2 c_{2} r^{n-2}\right) \\
& =n r^{n}-\left(c_{1} r^{n-1}+2 c_{2} r^{n-2}\right) \\
& \text { (as } r^{n} \text { is a solution to the recurrence relation) }
\end{aligned}
$$

Now we have run into a bit of a snag, and need to find some more information about c_{1} and c_{2}. We remember that the characteristic equation was $t^{2}-c_{1} t-c_{2}=0$.
On the other hand, we also know that r was a repeated root of that equation.
So we can confidently say that the equation must also be
$(t-r)^{2}=0$ or
$t^{2}-2 r t+r^{2}=0$.
Hence, by comparing the t term and the constant term in our two equations,
$2 r=c_{1}$ and $-c_{2}=r^{2}$
So $c_{1} r+2 c_{2}=2 r^{2}-2 r^{2}=0$. Hence
$n r^{n}-\left(c_{1} r^{n-1}+2 c_{2} r^{n-2}\right)=n r^{n}-0=n r^{n}$.
But this is exactly what we were trying to prove, as it is what the right hand side is. So we accept that $a_{n}=n r^{n}$ is a valid solution to the original recurrence relation.

