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Theorem 5.2.14 
 
Theorem 
Consider the recurrence relation 1 1 2n na c a c a 2n− −= +

2
1 2t c

. We know that the 
characteristic equation of this is t c− − . If r is a repeated root to this 
characteristic equation, then apart from the solution rn, we also have the 
solution . n

na nr=
 
Proof 
Trying the solution , we also find that n

na nr= 1 2
1 2( 1) , ( 2)n n

n na n r a n r− −
− −= − = − . 

So the right hand side of the recurrence relation becomes 
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(as  is a solution to the recurrence relation)

Now we have run into a bit of
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 a snag, and need to find some more information about
and . We remember that the characteristic equation was

0.
On the other hand, we also know that  was a repeated root of that equation.
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o we can confidently say that the equation must also be
( ) 0 or

2 0.
 Hence, by comparing the  term and the constant term in our two equations,
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 So 2 2 2 0. Hence 
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But this is exactly what we were trying to prove, as it is what the
right hand side is. So we accept that  is a valid solution to the
original recurrence relation.
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