Test Your Understanding Solutions: Week 2

1. Decide whether the following are true or false. Give reasons.
(a) $\forall x(x>0)$ False, eg $x=-1$.
(b) $\exists x(x \geq 0)$ True, eg $x=0$.
(c) $\forall x\left(x^{2} \geq 0\right)$ True, if $x>0$, then $x^{2}>0$ also. And if $x=0$, then $x^{2}=0$, and if $x<0$, then $x^{2}>0$. Hence in all cases, $x^{2} \geq 0$.
2. (a) Suppose that m and n are even integers. Then $m=2 j$ and $n=2 k$, for some integers j and k. Now $m^{\star} n=(2 j)^{\star}(2 k)=2 \star(2 j k)$, and $2 j k$ is an integer. Hence $m^{\star} n$ is also even.
(b) Suppose that m and n are odd. Then $m=2 j+1$ and $n=2 k+1$, for some integers j and k. Then $m^{*} n=(2 j+1)(2 k+1)=4 j k+2 j+2 k+1=2(2 j k+j+k)+1$, and of course $2 j k+j+k$ is an integer. Hence $m^{*} n$ is odd.
3. Assume that for all integers $n, 5 n+2$ is divisible by 5 . Then for any given value of $n, 5 n+2=5 \mathrm{k}$, for some integer k. Then
$5 n=5 k-2$

$$
\begin{aligned}
n & =\frac{5 k-2}{5} \\
& =k-\frac{2}{5}
\end{aligned}
$$

And k is an integer. Hence n itself cannot be an integer, which is a contradiction. Hence $5 n+2$ cannot be divisible by 5 for any n value.
4. (a) If the plane has one line running through it, then there are two regions, one on each side of the line. Now $\frac{1^{2}+1+2}{2}=\frac{4}{2}=2$, which is the correct number of regions.
Assume: that n lines in the plane, no two parallel and no three meeting in a point, for some $n \geq 1$, will divide the plane into $\frac{n^{2}+n+2}{2}$ regions.
Try to prove: that $n+1$ lines in the plane, no two parallel and no three meeting in a point, will divide the plane into $\frac{(n+1)^{2}+(n+1)+2}{2}=\frac{n^{2}+3 n+4}{2}$ regions.
(b) Now $(1+x)^{1}=1+x=1+1^{*} x$.

Assume that $(1+x)^{n} \geq 1+n x$, for some $n \geq 1$. Try to prove that $(1+x)^{n+1} \geq 1+(n+1) x$.
(c) $12 \mathrm{c}=3 * 4 \mathrm{c}, 13 \mathrm{c}=2 * 4 \mathrm{c}+1 * 5 \mathrm{c}, 14 \mathrm{c}=1 * 4 \mathrm{c}+2 * 5 \mathrm{c}, 15 \mathrm{c}=3 * 5 \mathrm{c}$. Hence postage of 12 , 13,14 or 15 c can be made up using only 4 c and 5 c stamps. (Note that the
number of values in my basis step must be equal to the value of my smallest stamp, in this case a 4c stamp.)
Assume that postage of $12,13,14,15, \ldots, n c$ can be made up using only $4 c$ and 5c stamps, for some $n \geq 15$.
Try to prove that postage of $n+1 \mathrm{c}$ can be made up using only 4 c and 5 c stamps.

