Test Your Understanding: Week 3

- 1. Describe the union, intersection, difference and complement of two sets A and B in words, ie define $A \cup B$, $A \cap B$, A B, \overline{A} .
- 2. If the sets $U=\{a,b,c,d,e,f,g,h\}$, $A=\{a,c,d\}$, $B=\{a,d,f,g\}$ then find
- (a) A-B
- (b) $A \cup B$
- (c) $A \cap B$
- 3. In the proof of Theorem 2.1.6, that if A has n members (|A|=n), then the power set of A has 2^n members, we encoded each subset of A by a bit string. If $A=\{a,b,c,d,e\}$, use the scheme we used there to
- (a) decode the following bitstrings into subsets
- (i) 10010
- (ii) 00110
- (iii) 11100
- (b) encode the following subsets into bitstrings
- (i) {a,c,e}
- (ii) {*d*,*e*}
- (iii) {*b*,*d*}
- 4. Find a partition of the set {1, 2, 3, 4, 5} into 3 subsets.
- 5. Find the Cartesian product $X \times Y$ of the sets $X = \{1,2\}$, $Y = \{u,v\}$.
- 6. Complete the following table.

X	$\lfloor x \rfloor$	$\lceil x \rceil$
4.8		
17.999		
<i>k</i> +0.2		
<i>x</i> -0.2		
z+0.5		

Here k, x and z are integers.

7. Show that

(a)
$$\left| \frac{n}{2} \right| = \frac{n-1}{2}$$
 if *n* is odd.

(b)
$$\left\lceil \frac{n+1}{2} \right\rceil = \frac{n}{2} + 1$$
 if n is even.

(c)
$$\left\lceil \frac{n-1}{2} \right\rceil = \frac{n-1}{2}$$
, if n is odd.

Tessellation by Andrew Crompton.