Test Your Understanding: Week 3

1. Describe the union, intersection, difference and complement of two sets A and B in words, ie define $A \cup B, A \cap B, A-B, \bar{A}$.
2. If the sets $U=\{a, b, c, d, e, f, g, h\}, A=\{a, c, d\}, B=\{a, d, f, g\}$ then find
(a) $A-B$
(b) $A \cup B$
(c) $A \cap B$
3. In the proof of Theorem 2.1.6, that if A has n members $(|A|=n)$, then the power set of A has 2^{n} members, we encoded each subset of A by a bit string. If $A=\{a, b, c, d, e\}$, use the scheme we used there to
(a) decode the following bitstrings into subsets
(i) 10010
(ii) 00110
(iii) 11100
(b) encode the following subsets into bitstrings
(i) $\{a, c, e\}$
(ii) $\{d, e\}$
(iii) $\{b, d\}$
4. Find a partition of the set $\{1,2,3,4,5\}$ into 3 subsets.
5. Find the Cartesian product $X \times Y$ of the sets $X=\{1,2\}, Y=\{u, v\}$.
6. Complete the following table.

x	$\lfloor x\rfloor$	$\lceil x\rceil$
4.8		
17.999		
$k+0.2$		
$x-0.2$		
$z+0.5$		

Here k, x and z are integers.
7. Show that
(a) $\left\lfloor\frac{n}{2}\right\rfloor=\frac{n-1}{2}$ if n is odd.
(b) $\left\lceil\frac{n+1}{2}\right\rceil=\frac{n}{2}+1$ if n is even.
(c) $\left\lceil\frac{n-1}{2}\right\rceil=\frac{n-1}{2}$, if n is odd.

Tessellation by Andrew Crompton.

