Test Your Understanding: Week 5

1. Find the following Cartesian products if we have $X=\{1,2,3\}, Y=\{a, b\}$, $Z=\{x, y, z\}$.
(a) $X \times Y$
(b) $Y \times Z$
2. Find the power set of A if $A=\{1,2,3\}$.
3. Test the following sets of ordered pairs to see if they are functions from the set $X=\{1,2,3,4\}$ to $Y=\{a, b, c, d\}$. For those that are functions, test them to see if they are one to one and onto. For those that are not, explain why they fail to qualify as a function.
(a) $f_{1}=\{(1, d),(2, c),(3, a),(4, b),(1, a)\}$
(b) $f_{2}=\{(2, c),(3, c),(1, c),(4, c)\}$
(c) $f_{3}=\{(2, d),(3, c),(4, a)\}$
(d) $f_{4}=\{(1, c),(2, b),(3, d),(4, a)\}$
4. Show how the following data would be stored in an array of length 13 (indexed from 0 to 12) using the hash function $h(x)=x$ mod 13. Show all working.
19, 43, 56, 78, 64, 129, 47, 55
5. (a) Show that if n is an odd integer then $\lfloor n / 2\rfloor=(n-1) / 2$.
(b) Show that if n is an even integer, then $\lfloor(n+1) / 2\rfloor=n / 2$.
6. The MOD operator on integers, \% in Java, has the form n MOD $m=r$, where n, m and r are all integers. Is MOD a binary operator or an unary operator?
7. It is desired to test a relation for the properties reflexivity, symmetry, antisymmetry and transitivity. The set X is all positive integers, and R is defined by $(x, y) \in R$ if $(x+y)$ MOD $2=0$.
(a) What is meant, in plain English, by A MOD $2=0$, if A is any quantity?
(b) What would it mean for R to be reflexive? Which x values from the set of positive integers possess the property that $(x, x) \in R$?
(c) If $(x, y) \in R$, what can you say about x and y ? What does this tell us about x and y ? Will (x, y) be in R ?
(d) If (x, y) and (y, z) are both in R, what does this tell us about x, y and z ? What will be true of x and z ? Is $(x, z) \in R$?

