Test Your Understanding: Week 6

1. The relation R_{1}, from $X=\{\alpha, \beta, \delta\}$ to $Y=\{a, b, c\}$, and relation R_{2} from Y to $Z=\{x, y, z\}$ have the matrices below.
$A_{1}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right), A_{2}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$ (with the above ordering of the sets X, Y and Z).
(a) Multiply the two matrices A_{1} and A_{2} together.
(b) Use this answer to find the matrix of the composite relation $R_{2} o R_{1}$.
(c) Use this matrix to find $R_{2} o R_{1}$ as a set of ordered pairs.
2. Order the following functions with the fastest growing ones first and the slowest growing ones last. They are currently in random order.

$$
n^{2} \lg (n),(\lg (n))^{10}, n^{2}, 2^{n}, n!, n * 2^{n}, n^{2}(\lg (n))^{2}
$$

3. The function f and g are known to be $\Theta\left(n^{2}\right), \Theta(n \lg (n))$ respectively.
(a) Write down what these statements mean in terms of the constants c_{1}, c_{2}, $c_{3}, c_{4}, n_{1}, n_{2}, n_{3}$ and n_{4}.
(b) Write down inequalities for $f(n)+g(n)$, and hence show that $f(n)+g(n)=\mathrm{O}\left(n^{2}\right), f(n)+g(n)=\Omega\left(n^{2}\right)$.
(c) Draw the appropriate conclusion about the long term behaviour of $f(n)+g(n)$
4. A sequence of length n is to be split into two, at $\lceil n / 2\rceil$. Draw up a table of n, $\lceil n / 2\rceil$ and the members of the upper portion of the sequence. Count them and try to discover a formula for the number of sequence members from $\lceil n / 2\rceil$ to n.

