Tutorial 2 Solutions

Preparation Questions

1.4

- 2. $\forall x \exists y T(x, y)$ For all students x in the group, there is a student y in the group shorter than x. This is false. Let x=Erin, then there is no one in the group shorter than Erin. Hence no such y exists when x= Erin.
- 3. $\exists x \forall y T(x, y)$ There is a student y in the group, such that for all students x in the group, y is taller than x. False, as there is no student who is taller than everyone in the group. (Marty is taller than everyone <u>else</u> in the group, but he is not taller than himself.)

1.5

15. Place the 100 balls in the 9 boxes. Assume that no box has more than 11 balls in it. Then the maximum number of balls that I can have placed in the boxes is 11*9=99. But this is a contradiction, because I placed 100 balls to start with. Hence my assumption that no box has more than 11 balls must be incorrect. Then some box has 12 or more balls.

31. p: I study hard, q: I get A's, r. I get rich

H_1	If I study hard then I get A's	$p \rightarrow q$
H_2	I study hard	р
С	∴I get A's	q

		H_1	H_2	C	
p	q	$p\rightarrow q$	p	q	
Т	Т	T	T	T	The first row is the only row
Т	F	F	Т	F	in which all the hypotheses
F	Т	Т	F	Т	are true. The conclusion is
F	F	Т	F	F	also true, so we conclude thi
					is a valid argument.

39

p: 4 Megabytes is better than no memory at all.

q: We will buy more memory

r. We will buy a new computer

 H_1 $\neg r \rightarrow \neg p$ If we do not buy a new computer then 4 megabytes is not better than no memory at all

H₂ r We will buy a new computer
 C ∴ p ∴ 4 megabytes is better than no memory at all.

					H_1	H_2	С
p	q	r	$\neg r$	$\neg p$	$\neg r \rightarrow \neg p$	r	p
Т	Т	Т	F	F	T	T	T
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	F	T	T	T
Т	F	F	Т	F	F	F	Т
F	Т	Т	F	Т	T	T	F
F	Т	F	Т	Т	Т	F	F
F	F	Т	F	Т	Т	Т	F
F	F	F	Т	Т	Т	F	F

Invalid argument, row 5 has both hypotheses true but conclusion false.

1.7

1. <u>BS (*n*=1)</u>

LHS=1

RHS=1²=1=LHS.

IS

Assume $1+3+5+\cdots+(2n-1)=n^2$.

Try to prove $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$.

Now

$$LHS = 1 + 3 + 5 + \dots + (2n - 1) + (2n + 1)$$

$$= n^{2} + (2n + 1)$$

$$= (n + 1)^{2}$$

$$= RHS$$
By our inductive assumption.

Proved.

21. <u>BS (*n*=1)</u>

Now $7^1 - 1 = 6$, which is divisible by 6.

(Remember that the answer to the question "Is 7^n -6 divisible by 6?" is true or false, ie a Boolean, not a number. The definition of divisibility is that if A is divisible by B then there exists an integer k with $A=B^*k$.)

IS

Assume that for some integer $n \ge 1$, $7^n - 1$ is divisible by 6, ie there exists an integer k with $7^n - 1 = 6 k$, for some integer k.

Try to prove that 7^{n+1} -1 is also divisible by 6, ie that 7^{n+1} -1=6j, for some integer j.

Now
$$7^{n+1} - 1 = 7 * 7^n - 1 = (6+1) * 7^n - 1 = 6 * 7^n + 7^n - 1 = 6 * 7^n + 6k = 6(7^n + k)$$
,

which is divisible by 6.

Proved.

Tutorial Questions

1.4

28. $\forall x \exists y (x^2 + y^2 = 9)$ False, eg x=5. Then $y^2 = -16$, which is impossible. Hence there is no such y for this x value.

1.5

34. H1 If I study hard or I get rich, then I get A's
$$(p \lor r) \to q$$
 H2 I get A's q \therefore If I don't study hard then I get rich $\neg p \to r$

				H_1	H_2			С
p	q	r	p∨r	(<i>p∨r</i>)→ <i>q</i>	q	$\neg p$	r	$\neg p \rightarrow r$
Т	Т	Т	Т	T	T	F	Т	Τ
Т	Т	F	Т	T	T	F	F	Τ
Т	F	Т	Т	F	F	F	T	Т
Т	F	F	Т	F	F	F	F	Т
F	Т	Т	Т	T	T	Т	T	Τ
F	Т	F	F	T	T	Т	F	F
F	F	Т	Т	F	F	Т	Т	Т
F	F	F	F	T	F	Т	F	F

This is an invalid argument, as row 6 shows both hypotheses true, but the conclusion is false.

44.

$$H_1$$
 $p \rightarrow (q \rightarrow r)$
 H_2 $q \rightarrow (p \rightarrow r)$
 C $\therefore (p \lor q) \rightarrow r$

				<i>H</i> ₁		H_2		С
р	q	r	$q \rightarrow r \ (A)$	$p \to A$	$p \rightarrow r$ (B)	$q \rightarrow B$	$p \lor q$ (D)	$D \rightarrow r$
Т	Τ	Т	Т	T	Т	T	Т	T
Т	Τ	F	F	F	F	F	Т	F
Т	F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	T	F	T	Т	F
F	Т	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	Т	Т	F

F	F	Т	Т	T	Т	Т	F	Т
F	F	F	Т	Т	T	Т	F	Т

Invalid argument, as row 4 has both hypotheses true but the conclusion false.

1.7

2. BS (n=1)

$$LHS = 1.2 = 2$$

 $RHS = \frac{1*2*3}{3} = 2 = LHS$

IS

Assume
$$1.2 + 2.3 + 3.4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
.

Try to prove
$$1.2 + 2.3 + 3.4 + \dots + n(n+1) + (n+1)(n+2) = \frac{(n+1)(n+2)(n+3)}{3}$$
.

Now

$$LHS = 1.2 + 2.3 + 3.4 + \dots + n(n+1) + (n+1)(n+2) = \frac{(n+1)(n+2)(n+3)}{3}$$

$$= \frac{n(n+1)(n+2)}{3} + (n+1)(n+2)$$

$$= (n+1)(n+2) \left[\frac{n}{3} + 1 \right]$$

$$= (n+1)(n+2) \frac{n+3}{3}$$

$$= \frac{(n+1)(n+2)(n+3)}{3}$$

$$= RHS$$

Proved

12. BS (n=1)

$$LHS = \frac{1}{2*1} = \frac{1}{2}$$

 $RHS = \frac{1}{2}$

Hence LHS≤RHS.

Assume
$$\frac{1}{2n} \le \frac{1*3*5*\cdots*(2n-1)}{2*4*6*\cdots*(2n)}$$
.

Try to prove $\frac{1}{2(n+1)} \le \frac{1*3*5*\cdots*(2n-1)*(2n+1)}{2*4*6*\cdots*(2n)*(2n+2)}$.

(Note that of course 2(n+1)=2n+2, on the LHS, and adding 2 to 2n-1 gives 2n+1 on the RHS, and adding 2 to 2n gives 2n+2 also.)

Now
$$RHS = \frac{1*3*5*\cdots*(2n-1)*(2n+1)}{2*4*6*\cdots*(2n)*(2n+2)}$$

$$= \frac{1*3*5*\cdots*(2n-1)}{2*4*6*\cdots*(2n)} * \frac{2n+1}{2n+2}$$

$$\geq \frac{1}{2n} * \frac{2n+1}{2n+2}$$
Noting that $(2n+1)/(2n) \geq 1$.
$$= \frac{1}{2n+2} * \frac{2n+1}{2n}$$

$$\geq \frac{1}{2n+2} = LHS$$

Proved.

ie $LHS \le RHS$

14.
$$\underline{\mathsf{BS}}$$
 $(n=3)$
 $\mathsf{LHS} = 2*3+1=7$
 $\mathsf{RHS} = 2^3 = 8$
 $\mathsf{LHS} \le \mathsf{RHS}$
As always when we use the weak form, this is assumed only for *some* (ie only 1) unknown value of n , here ≥ 3 .
 $\underline{\mathsf{IS}}$
Assume $2n+1 \le 2^n$.
 Try to prove $2(n+1)+1=2n+2+1 \le 2^n$
Now
 $\mathsf{LHS} = 2n+2+1 \le 2^n+3$
 $\le 2^n+2^n=2*2^n=2^{n+1}=\mathsf{RHS}$
Proved.

(Note: I knew that I was looking for 2^{n+1} , which is 2^*2^n . OF course A+A=2A, so I also knew that 2^*2^n could be written as 2^n+2^n , which turned out to be easy to find. This points up the need to review your powers and algebra.)

1.8

2. B.S. (*n*=24, 24, 26, 27, 28)

(Note that I need as many values in my basis step as the value of my smallest stamp. This is because to get to the value n+1c, I have to add a 5c or 7c stamp. Hence the value I am adding a 5c stamp to must be n-4, so that (n-4)+5=n+1. So I will need 5 values, 24, 25, 26, 27 and 28, with 28 being the smallest possible n value in my inductive step.)

Discrete Mathematics

27c=4*5c+1*7c 28c=4*7c

<u>IS</u>

Suppose that postage of 24, 25, 26, 27, 28,...,*n* cents can be made up using only 5c and 7c stamps. We seek to prove that postage of n+1c can be made up using only 5c and 7 c stamps.

Now n+1=(n-4)+5, so by adding a 5c stamp to the postage of n-1c, we can make up n+1c using only 5c and 7c stamps. Proved.