Tutorial 2 Solutions

Preparation Questions

1.4

2. $\forall x \exists y T(x, y)$ For all students x in the group, there is a student y in the group shorter than x. This is false. Let $x=$ Erin, then there is no one in the group shorter than Erin. Hence no such y exists when $x=$ Erin.
3. $\exists x \forall y T(x, y)$ There is a student y in the group, such that for all students x in the group, y is taller than x. False, as there is no student who is taller than everyone in the group. (Marty is taller than everyone else in the group, but he is not taller than himself.)

1.5

15. Place the 100 balls in the 9 boxes. Assume that no box has more than 11 balls in it. Then the maximum number of balls that I can have placed in the boxes is $11 * 9=99$. But this is a contradiction, because I placed 100 balls to start with. Hence my assumption that no box has more than 11 balls must be incorrect. Then some box has 12 or more balls.
16. p : I study hard, q : I get A's, r : I get rich
$H_{1} \quad$ If I study hard then I get A's $\quad p \rightarrow q$

H_{2}	I study hard	p
	\therefore I get A's	q

39
p: 4 Megabytes is better than no memory at all.
q : We will buy more memory
r : We will buy a new computer
$H_{1} \quad \neg r \rightarrow \neg p \quad$ If we do not buy a new computer then 4 megabytes is not better than no memory at all
$\mathrm{H}_{2} \quad r \quad$ We will buy a new computer
$C \quad \therefore p \quad \therefore 4$ megabytes is better than no memory at all.

H_{1}							
p	q	r	$\neg r$	$\neg p$	$\neg r \rightarrow \neg p$	r	p
T	T	T	F	F	\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}
T	T	F	T	F	F	F	T
T	F	T	F	F	\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}
T	F	F	T	F	F	F	T
F	T	T	F	T	\boldsymbol{T}	\mathbf{T}	F
F	T	F	T	T	T	F	F
F	F	T	F	T	T	T	F
F	F	F	T	T	T	F	F

Invalid argument, row 5 has both hypotheses true but conclusion false.

1.7

1. $\mathrm{BS}(n=1)$

LHS=1
RHS $=1^{2}=1=$ LHS .

IS

Assume $1+3+5+\cdots+(2 n-1)=n^{2}$.
Try to prove $1+3+5+\cdots+(2 n-1)+(2 n+1)=(n+1)^{2}$.
Now

$$
\begin{aligned}
L H S & =1+3+5+\cdots+(2 n-1)+(2 n+1) \\
& =n^{2}+(2 n+1) \\
& =(n+1)^{2} \\
& =R H S
\end{aligned}
$$

Proved.

21. $\mathrm{BS}(n=1)$

Now $7^{1}-1=6$, which is divisible by 6 .
(Remember that the answer to the question "Is $7^{n}-6$ divisible by 6 ?" is true or false, ie a Boolean, not a number. The definition of divisibility is that if A is divisible by B then there exists an integer k with $A=B^{\star} k$.)

IS

Assume that for some integer $n \geq 1,7^{n}-1$ is divisible by 6 , ie there exists an integer k with $7^{n}-1=6 \star k$, for some integer k.
Try to prove that $7^{n+1}-1$ is also divisible by 6 , ie that $7^{n+1}-1=6 j$, for some integer j.
Now $\quad 7^{n+1}-1=7 * 7^{n}-1=(6+1)^{*} 7^{n}-1=6 * 7^{n}+7^{n}-1=6 * 7^{n}+6 k=6\left(7^{n}+k\right)$, which is divisible by 6 .
Proved.

Tutorial Questions

1.4

28. $\forall x \exists y\left(x^{2}+y^{2}=9\right)$ False, eg $x=5$. Then $y^{2}=-16$, which is impossible. Hence there is no such y for this x value.

1.5

34.

H1 If I study hard or I get rich, then I get A's $\quad(p \vee r) \rightarrow q$

H 2	I get A's	q
	\therefore If I don't study hard then I get rich	$\neg p \rightarrow r$

H_{1}										H_{2}
p	q	r	$p \vee r$	$(p \vee r) \rightarrow q$	q	$\neg p$	r	$\neg p \rightarrow r$		
T	T	T	T	\boldsymbol{T}	\boldsymbol{T}	F	T	\boldsymbol{T}		
T	T	F	T	\boldsymbol{T}	\boldsymbol{T}	F	F	\boldsymbol{T}		
T	F	T	T	F	F	F	T	T		
T	F	F	T	F	F	F	F	T		
F	T	T	T	\boldsymbol{T}	\boldsymbol{T}	T	T	\boldsymbol{T}		
F	T	F	F	\boldsymbol{T}	\boldsymbol{T}	T	F	\boldsymbol{F}		
F	F	T	T	F	F	T	T	T		
F	F	F	F	T	F	T	F	F		

This is an invalid argument, as row 6 shows both hypotheses true, but the conclusion is false.
44.
$\mathrm{H}_{1} \quad p \rightarrow(q \rightarrow r)$
$\mathrm{H}_{2} \quad q \rightarrow(p \rightarrow r)$
C $\quad \therefore(p \vee q) \rightarrow r$

				H_{1}		H_{2}		C
p	q	r	$q \rightarrow r(\mathrm{~A})$	$p \rightarrow A$	$p \rightarrow r(B)$	$q \rightarrow B$	$p \vee q(D)$	$D \rightarrow r$
T	T	T	T	\boldsymbol{T}	T	\boldsymbol{T}	T	T
T	T	F	F	F	F	F	T	F
T	F	T	T	T	T	T	T	T
T	F	F	T	\mathbf{T}	F	\boldsymbol{T}	T	F
F	T	T	T	T	T	T	T	T
F	T	F	F	T	T	T	T	F

F	F	T	T	T	T	T	F	T
F	F	F	T	T	T	T	F	T

Invalid argument, as row 4 has both hypotheses true but the conclusion false.

1.7

2. $\mathrm{BS}(n=1)$
$L H S=1.2=2$
RHS $=\frac{1 * 2 * 3}{3}=2=$ LHS
IS
Assume $1.2+2.3+3.4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$.
Try to prove $1.2+2.3+3.4+\cdots+n(n+1)+(n+1)(n+2)=\frac{(n+1)(n+2)(n+3)}{3}$.
Now

$$
\begin{aligned}
\text { LHS } & =1.2+2.3+3.4+\cdots+n(n+1)+(n+1)(n+2)=\frac{(n+1)(n+2)(n+3)}{3} \\
& =\frac{n(n+1)(n+2)}{3}+(n+1)(n+2) \\
& =(n+1)(n+2)\left[\frac{n}{3}+1\right] \\
& =(n+1)(n+2) \frac{n+3}{3} \\
& =\frac{(n+1)(n+2)(n+3)}{3} \\
& =\text { RHS }
\end{aligned}
$$

Proved
12. $\mathrm{BS}(n=1)$
$L H S=\frac{1}{2 *}=\frac{1}{2}$
RHS $=\frac{1}{2}$
Hence LHS $\leq R H S$.

IS

Assume $\frac{1}{2 n} \leq \frac{1 * 3 * 5 * \ldots *(2 n-1)}{2 * 4 * 6 * \ldots *(2 n)}$.
Try to prove $\frac{1}{2(n+1)} \leq \frac{1 * 3 * 5 * \ldots *(2 n-1) *(2 n+1)}{2 * 4 * 6 * \ldots *(2 n) *(2 n+2)}$.
(Note that of course $2(n+1)=2 n+2$, on the LHS, and adding 2 to $2 n-1$ gives $2 n+1$ on the RHS, and adding 2 to $2 n$ gives $2 n+2$ also.)

Now
RHS $=\frac{1 * 3 * 5 * \ldots *(2 n-1) *(2 n+1)}{2 * 4 * 6 * \ldots *(2 n) *(2 n+2)}$
$=\frac{1 * 3 * 5 * \ldots *(2 n-1)}{2 * 4 * 6 * \ldots *(2 n)} * \frac{2 n+1}{2 n+2}$
$\geq \frac{1}{2 n} * \frac{2 n+1}{2 n+2}$
Noting that $(2 n+1) /(2 n) \geq 1$.
$=\frac{1}{2 n+2} * \frac{2 n+1}{2 n}$
$\geq \frac{1}{2 n+2}=$ LHS
ie $L H S \leq R H S$
Proved.
14. $\mathrm{BS}(n=3)$

LHS $=2 * 3+1=7$
RHS $=2^{3}=8$
LHS \leq RHS

IS

Assume $2 n+1 \leq 2^{n}$.
Try to prove $2(n+1)+1=2 n+2+1 \leq 2^{n}$
Now
LHS $=2 n+2+1 \leq 2^{n}+3$
$\leq 2^{n}+2^{n}=2 * 2^{n}=2^{n+1}=$ RHS
Proved.
(Note: I knew that I was looking for 2^{n+1}, which is $2^{*} 2^{n}$. OF course $A+A=2 A$, so I also knew that $2^{*} 2^{n}$ could be written as $2^{n}+2^{n}$, which turned out to be easy to find. This points up the need to review your powers and algebra.)

1.8

2. B.S. $(n=24,24,26,27,28)$
(Note that I need as many values in my basis step as the value of my smallest stamp. This is because to get to the value $n+1 \mathrm{c}$, I have to add a 5 c or 7 c stamp. Hence the value I am adding a 5 c stamp to must be $n-4$, so that (n $4)+5=n+1$. So I will need 5 values, $24,25,26,27$ and 28 , with 28 being the smallest possible n value in my inductive step.)
$24 \mathrm{c}=2 * 5 \mathrm{c}+2 * 7 \mathrm{c}$
25c=5*5c
$26 c=1 * 5 c+3 * 7 c$
```
27c=4*5c+1*7c
28c=4*7c
```


IS

Suppose that postage of $24,25,26,27,28, \ldots, n$ cents can be made up using only 5 c and 7 c stamps. We seek to prove that postage of $\mathrm{n}+1 \mathrm{c}$ can be made up using only 5c and 7 c stamps.

Now $n+1=(n-4)+5$, so by adding a 5 c stamp to the postage of $n-1 \mathrm{c}$, we can make up $n+1 \mathrm{c}$ using only 5 c and 7 c stamps. Proved.

