Tutorial 3 Solutions

Preparation

Section 2.1

$U=\{1,2,3,4,5,6,7,8,910\}, A=\{1,4,7,10\}, B=\{1,2,3,4,5\}, C=\{2,4,6,8\}$.
4. $B-A=\{2,3,5\}$
10. $A \cup U=U$
16. $(A \cup B)-(C-B)=\{1,2,3,4,5,7,10\}-\{6,8\}$

$$
=\{1,2,3,4,5,7,10\}
$$

25. If 10 take all 3 , and 20 take French and music, then $20-10=10$ must take French and music but not business.
32. $X \times Y=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$

Section 2.2

38.

x	$4 x \bmod 5$	Working
0	0	$0 \bmod 5=0$

1	4	$4 \bmod 5=4$
2	3	$8 \bmod 5=3$
3	2	$12 \bmod 5=2$
4	1	$16 \bmod 5=1$

le $f=\{(0,0),(1,4),(2,3),(3,2),(4,1)\}$

Yes, f is one to one, as every $2^{\text {nd }}$ member has at most one $1^{\text {st }}$ member relating to it. It is also onto, as every member of X appears as a $2^{\text {nd }}$ member of an ordered pair.
81.

$$
\begin{aligned}
n & =2 k+1 \\
\text { LHS } & =\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{(2 k+1)^{2}}{4}\right\rfloor \\
& =\left\lfloor\frac{4 k^{2}+4 k+1}{4}\right\rfloor \\
& =\left\lfloor k^{2}+k+0.25\right\rfloor \\
& =k^{2}+k \\
\text { RHS } & =\frac{n-1}{2} * \frac{n+1}{2} \\
& =\frac{2 k}{2} * \frac{2 k+2}{2} \\
& =k(k+1) \\
& =k^{2}+k=\text { LHS }
\end{aligned}
$$

Section 3.1

13. $R=\{(a, b),(a, c),(b, a),(b, d),(c, c),(c, d)\}$
14. $R=\{(1,1),(1,4),(2,2),(2,5),(3,3),(4,1),(4,4),(5,2),(5,5)\}$
(Note that it is important here to realise that negative numbers and zero can also be divisible by an integer, eg (1,4) $\in R$ since -3 is divisible by 3 .)
15. Domain of $R=\{1,2,3,4,5\}$.
16. Range of $R=\{1,2,3,4,5\}$.
17. Reflexivity: R is reflexive if $(x, x) \in R$ for all x. So we need to ask is $(x, x) \in R$, ie is $x=x$ true? Yes, it always is, so $(x, x) \in R$ always, ie R is reflexive.
Symmetry: Its not possible for there to be any pairs (x, y) with $x \neq y$. Hence the relation is anti-symmetric (see Example 3.1.15, $6^{\text {th }}$ edition). This is an exception to the rule that you normally have to test both properties.
Anti-symmetry: as noted above, this relation is antisymmetric.
Transitivity: suppose (x, y) and $(y, z) \in R$. Then $x=y$ and $y=z$, so $x=z$. Hence $(x, z) \in R$ also. OR: as there are no pairs (x, y) and $(y, z) \in R$ with x, y and z all different, the relation is transitive.
18. $R_{1} \circ R_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(4,2)\}$
$R_{2} \circ R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(4,2)\}$
19. $\mathrm{Eg} R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)(4,4)\}$

Section 3.3

3.

$A=\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
8. $R=\{(a, w),(a, y),(c, y),(d, w),(d, x),(d, y),(d, z)\}$
17.
$A_{1}=$

	2	3	4	5
	1	0	1	0
3	0	1	0	0
4	0	0	1	0
5	0	0	0	1

$A_{2}=$

	1	2	3	4
1	0	0	0	0
2	1	0	0	0
3	1	1	0	0

$A_{1} A_{2}=$

	2	3	4	5
1	1	1	0	0
2	1	1	0	0
3	1	1	0	0
4	1	1	1	0

Hence $R_{2} o R_{1}=\{(1,2),(1,3),(2,2),(2,3),(3,1),(3,2),(4,1),(4,2),(4,3)\}$

Tutorial

2.1

52. No these sets are not equal, because one allows real numbers (ie decimal numbers) such as $0.83,1.52$, etc, while the other one only has the integers 1 and 2.
53.

$=\{\varnothing,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, c, d\},\{b, c, d\},\{a, b, c, d\}\}$
60. Yes, this statement is true. Briefly, $X-Y$ is everything that is in X but not Y, while $Y-X$ is everything that is in Y but not X. Hence these two sets will have nothing in common, and so their intersection must be empty. Alternatively, use a Venn diagram.
63. This is rubbish. $\overline{X \cap Y}$ incudes things that are outside of X, assuming there are such things. So to construct a counter-example, we need only make sets X and Y proper subsets of the universe. For example, let $U=\{1,2,3,4,5\}, X=\{1,2,3\}, Y=\{3,4\}$. Then $\overline{X \cap Y}=\overline{\{3\}}=\{1,2,4,5\}$, which is not a subset of X.
75. $A \Delta B=\{1,4,5\}$
76. $A \Delta B$ is everything in A or B but not both.

2.2

3. $A-B=\{7,10\}$.
4.

x^{0}	$4 x \bmod 6$	Working
0	0	$0 \bmod 6=0$
1	4	$4 \bmod 6=4$
2	2	$8 \bmod 6=2$
3	0	$12 \bmod 6=0$
4	4	$16 \bmod 6=4$
5	2	$20 \bmod 6=2$

$$
f=\{(0,0),(1,4),(2,2),(3,0),(4,4),(5,2)\}
$$

f is not one to one, since, for example, 0 and 3 are both related to 0 . It is not onto, since, eg, 1 does not appear anywhere as a $2^{\text {nd }}$ member.

3.1

11.
12. Suppose R and S are both transitive. Let (x, y) and (y, z) be in $R \cap S$. We need to ask is $(x, z) \in R \cap S$? Now if (x, y) and (y, z) are in R and S then $(x, z) \in R$ and S. Hence $(x, z) \in R \cap S$ also. So $R \cap S$ must be transitive.
13. Suppose R and S are both reflexive. Then for every $x \in X,(x, x) \in R$ (and S also, but one of R and S is enough for the union). Hence for every $x \in X$, $(x, x) \in R \cup S$. In other words, $R \cup S$ is reflexive.

3.3

6.

	1	2	3	4	5
	1	0	1	1	1
	1				
2	0	0	1	1	1
3	0	0	0	1	1
4	0	0	0	0	1
5	0	0	0	0	0

10. $R=\{(w, w),(w, y),(y, w),(y, y),(z, z)\}$
