Tutorial 3 Solutions

Preparation

Section 2.1

 $U=\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A=\{1, 4, 7, 10\}, B=\{1, 2, 3, 4, 5\}, C=\{2, 4, 6, 8\}.$

4. *B*-*A*={2, 3, 5}

10. $A \cup U = U$

16.
$$(A \cup B) - (C - B) = \{1, 2, 3, 4, 5, 7, 10\} - \{6, 8\}$$

= $\{1, 2, 3, 4, 5, 7, 10\}$

25. If 10 take all 3, and 20 take French and music, then 20-10=10 must take French and music but not business.

32.
$$X \times Y = \{ (1, a), (1, b), (1, c), (2, a), (2, b), (2, c) \}$$

Section 2.2

38.

Х	4 <i>x</i> mod 5	Working
0	0	$0 \mod 5 = 0$

1	4	$4 \mod 5 = 4$
2	3	8 mod 5 = 3
3	2	12 mod 5 = 2
4	1	16 mod 5= 1

le
$$f = \{ (0,0), (1,4), (2,3), (3,2), (4,1) \}$$

Yes, f is one to one, as every 2^{nd} member has at most one 1^{st} member relating to it. It is also onto, as every member of X appears as a 2^{nd} member of an ordered pair.

$$n = 2k + 1$$

$$LHS = \left\lfloor \frac{n^2}{4} \right\rfloor = \left\lfloor \frac{(2k+1)^2}{4} \right\rfloor$$

$$= \left\lfloor \frac{4k^2 + 4k + 1}{4} \right\rfloor$$

$$= \left\lfloor k^2 + k + 0.25 \right\rfloor$$

$$= k^2 + k$$

$$RHS = \frac{n-1}{2} * \frac{n+1}{2}$$

$$= \frac{2k}{2} * \frac{2k+2}{2}$$

Section 3.1

= k(k+1)

 $=k^2+k=LHS$

13.
$$R = \{ (a,b), (a,c), (b,a), (b,d), (c,c), (c,d) \}$$

19.
$$R = \{ (1,1), (1,4), (2,2), (2,5), (3,3), (4,1), (4,4), (5,2), (5,5) \}$$

(Note that it is important here to realise that negative numbers and zero can also be divisible by an integer, eg $(1,4) \in R$ since -3 is divisible by 3.)

- 21. Domain of *R*={1, 2, 3, 4, 5}.
- 22. Range of *R*={1, 2, 3, 4, 5}.
- 32. Reflexivity: R is reflexive if $(x,x) \in R$ for all x. So we need to ask is $(x,x) \in R$, ie is x=x true? Yes, it always is, so $(x,x) \in R$ always, ie R is reflexive.

Symmetry: Its not possible for there to be any pairs (x,y) with $x\neq y$. Hence the relation is anti-symmetric (see Example 3.1.15, 6^{th} edition). This is an exception to the rule that you normally have to test both properties.

Anti-symmetry: as noted above, this relation is antisymmetric.

Transitivity: suppose (x,y) and $(y,z) \in R$. Then x=y and y=z, so x=z. Hence $(x,z) \in R$ also. OR: as there are no pairs (x,y) and $(y,z) \in R$ with x, y and z all different, the relation is transitive.

38.
$$R_1 \circ R_2 = \{ (1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,2) \}$$

 $R_2 \circ R_1 = \{ (1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,2) \}$

39. Eg
$$R = \{ (1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3), (4,4) \}$$

Section 3.3

3.
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

8.
$$R = \{(a, w), (a, y), (c, y), (d, w), (d, x), (d, y), (d, z)\}$$

Hence $R_2 \circ R_1 = \{(1,2), (1,3), (2,2), (2,3), (3,1), (3,2), (4,1), (4,2), (4,3)\}$

Tutorial

2.1

52. No these sets are not equal, because one allows real numbers (ie decimal numbers) such as 0.83, 1.52, etc, while the other one only has the integers 1 and 2.

54.
$$= \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\}, \{a,b,c,d\} \}$$

- 60. Yes, this statement is true. Briefly, X-Y is everything that is in X but not Y, while Y-X is everything that is in Y but not X. Hence these two sets will have nothing in common, and so their intersection must be empty. Alternatively, use a Venn diagram.
- 63. This is rubbish. $\overline{X \cap Y}$ incudes things that are outside of X, assuming there are such things. So to construct a counter-example, we need only make sets X and Y proper subsets of the universe. For example, let $U = \{1, 2, 3, 4, 5\}, X = \{1, 2, 3\}, Y = \{3, 4\}$. Then $\overline{X \cap Y} = \overline{\{3\}} = \{1, 2, 4, 5\}$, which is not a subset of X.

75.
$$A\Delta B = \{1, 4, 5\}$$

76. $A\Delta B$ is everything in A or B but not both.

2.2

3.
$$A - B = \{7, 10\}$$
.

39.

00.		
x 0	4x mod 6	Working
0	0	$0 \mod 6 = 0$
1	4	4 mod 6 = 4
2	2	8 mod 6 = 2
3	0	12 mod 6 = 0
4	4	16 mod 6= 4
5	2	20 mod 6 = 2

 $f = \{ (0,0), (1,4), (2,2), (3,0), (4,4), (5,2) \}$

f is not one to one, since, for example, 0 and 3 are both related to 0. It is not onto, since, eg, 1 does not appear anywhere as a 2^{nd} member.

3.1

11.

45. Suppose R and S are both transitive. Let (x,y) and (y,z) be in $R \cap S$. We need to ask is $(x,z) \in R \cap S$? Now if (x,y) and (y,z) are in R and S then $(x,z) \in R$ and S. Hence $(x,z) \in R \cap S$ also. So $R \cap S$ must be transitive.

48. Suppose R and S are both reflexive. Then for every $x \in X$, $(x,x) \in R$ (and S also, but one of R and S is enough for the union). Hence for every $x \in X$, $(x,x) \in R \cup S$. In other words, $R \cup S$ is reflexive.

3.3

6.

10.
$$R = \{(w, w), (w, y), (y, w), (y, y), (z, z)\}$$