
Discrete Mathemaics

Tutorial 4 Solutions

Preparation

4.1
9.
Input: S, sequence, n, length of S
Output: index, index of first occurrence of largest member of S
procedure findFirst(S, n) {

max = s1
index = 1
for i=2 to n

if (si>sindex)
index = i

return(index)
} findFirst

4.2

4. I will use the table below to show the progress of the insertion sort algorithm,
as done in documents at the Help Centre website. The sorted portion of the
sequence will be in bold italics, and the unsorted portion in plain text. Note that
the algorithm starts with one sorted item, as a sequence of length 1 is always
sorted. Note that the sorted portion is always sorted, but not necessarily in final
order.

34 20 144 55
20 34 144 55
20 34 144 55
20 34 55 144

12. We shall prove this theorem by induction.

BS (n=1)
Now Algorithm 4.2.3 returns a sequence of length 1 immediately, ie sorted (no
second item to be out of sequence). Hence the algorithm correctly sorts a
sequence of length 1.

IS
Assume that it correctly sorts a sequence of length n, for some n≥1.
Try to prove that it will correctly sort a sequence of length n+1.

G R Lockwood, SAIBT, 2007 1

Discrete Mathemaics

Now the algorithm will correctly sort the first n items, by our inductive
assumption. After that item n+1 is copied to val. The next few lines repeatedly
compare sj to val, and copy it up one item if val is smaller. When the while loop
finishes, we have located the first item / cell where the test (j≥1 and val<sj) fails.
Either we have reached the start of the sequence, in which case val was smaller
than all items s1, s2,…,sn and should be inserted at the front, or we have reached
the first cell in which val≥sj. In either case, val should be copied to the preceeding
cell, which it is. Hence the last item is also inserted into its correct place in the
sequence, ie the sequence is correctly sorted.

Proved.

4.3

7.

()

()
()

2

2 2 2 2

2

2 2

2

2

2 4 6 ... 2
2(1 2 3 ...)

(1)2*
2

() 2

ie () , with constant 2.

Also
()

ie () , with constant 1.

Hence ()

n
n

n n n n

f n n n n n n

f n n

f n n n n

f n n

f n n

+ + + +
= + + + +

+
= = +

= + ≤ + =

= Ο

= + ≥

= Ω

= Θ

13.

()
()

1 1 1

2 2

() 1 , ie () *1 ,

() 1 , ie () *1,

f n f n c c n

f n f n c n n

= Ο ≤ = ≥

= Ω ≥ ≥

3

n

()
()

2 2
3 3

2 2
4 4

() , ie g() ,

() , ie g() ,

g n n n c n n n

g n n n c n n n

= Ο ≤ ≥

= Ω ≥ ≥

For some positive constants c1, c2,
n1 and n2.

For some positive constants c3, c4,
n3 and n4.

Hence, applying the appropriate inequalities, we find

2 2 2 2
1 3 1 3 1 3 1

2 2
2 4 4 2 4

() () *1 () , ,

() () *1 , ,

f n g n c c n c n c n c c n n n n

f n g n c c n c n n n n

+ ≤ + ≤ + = + ≥

+ ≥ + ≥ ≥

Ie () () ()2 2() () , () () , so () () 2f n g n n f n g n n f n g n n+ = Ο + = Ω + = Θ

G R Lockwood, SAIBT, 2007 2

Discrete Mathemaics

19. This is a good illustration of the kind of table based approach that is so useful
in these questions.
i j Ops this i Total so far
1 1,2, 3,…,n n n
2 1,2, 3,…,n n n+n=2n
3 1,2, 3,…,n n 3n
…
2n 1,2, 3,…,n n 2n*n=2n2

Hence the total number of operations is 2n2, which is Θ(n2).

22.
i j k Ops this j Ops this i Total so far
1 1 1 1
 2 1 1
 3 1 1
 …
 n 1 1

n n

2 1 1, 2 2
 2 1, 2 2
 3 1, 2 2
 …
 n 1, 2 2

2n n+2n

3 1 1,2,3 3
 2 1,2,3 3
 3 1,2,3 3
 …
 n 1,2,3 3

3n n+2n+3n

4 n+2n+3n+4n
…
n 1 1,2,3,…,n n
 2 1,2,3,…,n n
 3 1,2,3,…,n n
 …
 n 1,2,3,…,n n

n2 n+2n+3n+…+n2

Hence the total number of operations is

()
3 2

2(1)(1 2 3 ...) *
2 2

n n n nn n n + +
+ + + + = = = Θ n .

4.4

10. (a), (b) not done here.

G R Lockwood, SAIBT, 2007 3

Discrete Mathemaics

Input: n
Output: Sn=2+4+6+…+2n
procedure doubleSum(n) {

if (n=1)
return(2)

return(doubleSum(n-1)+2n)
}

18. It is easily seen that there is one pair the first month, and this (adult) pair
gives birth to one pair the second month, ie a1=1, a2=2.

Now the number of pairs alive in the current month, an, is equal to the number of
pairs alive in the previous month plus the children of these pairs. Of course the
number of pairs in the previous month is an-1, but of these only the pairs alive the
month before that give birth. Hence the number of pairs born is an-1. So the total
number of pairs alive in the current month is an=an-1+an-2.

Now the Fibonacci sequence is 1, 1, 2, … with f0=1, f1=1 and fn=fn-1+fn-2. So it
can easily be seen that the first sequence is just the Fibonnaci sequence shifted
left one term, although a proper proof would be inductive. I might do this later if
there is plenty of interest.

19. There is still just one pair after 1 year, because they have not yet reproduced.

Tutorial

4.1

20.
Input: A, matrix of a relation R, n, the size of the matrix
Output: antisymm, a Boolean value that is true if the relation R is antisymmetric,
false if it is not
procedure testAntisymm(A,n) {

for i=1 to n-1
for j=i+1 to n

if (aij=1 and aji=1)
return(False)

return(True)
}

Note that if we find that aij is 0, we do not need to test aji, as it cannot prevent R
from being antisymmetric, no matter what its value.

G R Lockwood, SAIBT, 2007 4

Discrete Mathemaics

4.3

3.

()

()
() () ()

3 2

3 3 3 3

3

3

3

3 3

() 6 12 1
() 6 12 19

ie () , with constant 19

() 6

ie () , with constant 6.

() , , ie ()

f n n n
f n n n n n

f n n

f n n

f n n
3f n n n f n n

= + +

≤ + + =

= Ο

≥

= Ω

= Ο Ω = Θ

5.

()
()

() () ()

() 2 lg() 4 3 lg()
() 2 lg() 4 lg() 3 lg() 9 lg()

ie () lg() , with constant 9

() 3 lg(), ie () (lg() with constant 3

() lg() , (lg() ie () lg()

f n n n n n
f n n n n n n n n n

f n n n

f n n n f n n n

f n n n n n f n n n

= + +
≤ + + =

= Ο

≥ = Ω

= Ο Ω = Θ

14. I am not going to prove this one fully, see the Help Centre website for the
document ComplexityExamps, namely Example 4 and similar exercise. However,
the fastest growing term in f(n) is n3, and the fastest growing term in g(n) is an
nlg(n) term. (We can say this without knowing the exact makeup of g(n), because
we are told the theta notation, which is always the fastest growing term.) Hence
the fastest growing term in f(n)+g(n) is n3, ie ()3() ()f n g n n+ = Θ .

23. Another example of the use of a table.
i j k Ops

this j
Ops this i Total so far

1 1 1 1 1 1
2 1 1 1
 2 1, 2 2

1+2 1+(1+2)

3 1 1 1
 2 1, 2 2
 3 1, 2, 3 3

1+2+3 1+(1+2)+(1+2+3)

4 1+(1+2)+(1+2+3)+(1+2+3+4)
…
n 1 1 1
 2 1, 2 2
 3 1, 2, 3 3
 …

1+2+3+…+n 1+(1+2)+(1+2+3)+…+(1+2+3+…+n)

Note that the n3 term is the fastest
growing term here, hence we know the
theta notation will be n3.

G R Lockwood, SAIBT, 2007 5

Discrete Mathemaics

 n 1, 2,
3,…,n

n

Hence the total number of operations is 1 (1 2) (1 2 3) ... (1 2 3 ...)n+ + + + + + + + + + + .

Now each term is of the form 21 11 2 ... (1)
2 2

i i i i 1
2

i+ + + = + = + . Hence the number

of operations is given by

() ()

() ()
()

2 2 2 2

2 2 2 2

3 2 2

3

1 1 1 1 1 1 1 1*1 *1 *2 *2 3 *3 ...
2 2 2 2 2 2 2 2
1 11 2 3 ... 1 2 3 ...
2 2
1 1 1 1* (1)(2 1) * * (1)
2 6 2 2
1 12 3

12 4

n n

n n

n n n n n

n n n n n

n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛+ + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

= + + + + + + + + +

= + + + +

= + + + +

= Θ

⎞
⎟
⎠

24. Now on the first trip through the for loop, j has the value n, and so the
operation x = x+1 is executed at least once, ie the number of operations is ()nΘ .

The next value that j takes is
3
n⎢ ⎥
⎢ ⎥⎣ ⎦

, and this is the number operations performed

next. Now
3 3
n⎢ ⎥ ≤⎢ ⎥⎣ ⎦

n , ie the number of operations performed now is most
3
nn + .

Next j takes the value 3
3 9

n
n

⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ≤
⎢ ⎥
⎢ ⎥⎣ ⎦

, hence the number of operations so far is at

most 23 3
n nn + + . The next value of j is at most 327 3

n n
= , etc. Continuing in this

way, we have, for some power of 3, 3k, the number of operations is at most

G R Lockwood, SAIBT, 2007 6

Discrete Mathemaics

2 2

1

1

1 1 1... 1 ...
3 3 3 3 3 3

11
3
11
3

3 11
2 3

3 3*1
2 2

k k

k

k

n n nn n

n

n

n n

+

+

⎛ ⎞+ + + + = + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞− ⎜ ⎟
⎝ ⎠=
−

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

≤ =

Hence the number of operations is () (), ie .n nΟ Θ

4.4

11. If the robot is to walk 1 metre, there is only 1 way of doing this (1). If the robot
is to walk 2 metres, there are 2 ways of doing this (11, 2). If the robot is to walk 3
metres, there are 4 ways of doing this (111, 12, 21, 3). Hence W1=1, W2=2,
W3=4.

Now if the robot’s first step is a 1 metre step, there are n-1 metres left to walk,
and this can be done in Wn-1 ways. However if the robot’s first step is 2 metres,
then there are n-2 metres left to walk, and that can be done in Wn-2 ways. And if
the robot’s first step is 3 metres, then there are n-3 metres left to walk, which can
be done in Wn-3 ways. Hence the total number of ways to walk n metres is given
by

1 2n n n nW W W W− −= + + 3− , with the above initial conditions. This leads to the following
recursive algorithm.

procedure Walk(n) {

if (n≤2) then
return(n)

else if (n=3) then
return(4)

else
return(Walk(n-1)+Walk(n-2)+Walk(n-3))

}

G R Lockwood, SAIBT, 2007 7

	Preparation
	4.1
	4.2
	4.3
	4.4
	Tutorial
	4.1
	4.3

