Solution to Tute 2, Section 6.2, Question 51

The barrel is obtained by rotating the curve $y=f(x)=R-k x^{2}, \frac{-h}{2} \leq x \leq \frac{h}{2}$ about the x axis. At the ends of the barrel, the radius of the barrel will be equal to the height of the function,

$$
f\left(\frac{h}{2}\right)=R-k\left(\frac{h}{2}\right)^{2}=R-\frac{k h^{2}}{4}
$$

Of course, if $\delta=\frac{k h^{2}}{4}$, then the end radius is $R-\delta$.
Now we find the volume for $0 \leq x \leq \frac{h}{2}$ and double it. As usual, if we rotate a thin vertical sliver around the x axis, we obtain (roughly) a thin disk. So an elemental volume is given by $d V_{i}=\pi r_{i}^{2} d x=\pi\left(R-k x_{i}^{2}\right) d x$.

Note that $\delta=k h^{2} / 4$

So, forming a Riemann sum, we obtain $V \approx \sum_{i=1}^{n} d V_{i}=\sum_{i=1}^{n} \pi\left(R-k x_{i}^{2}\right)^{2} d x$, and in the limit this becomes

$$
\begin{aligned}
V & =\int_{0}^{\frac{h}{2}} \pi\left(R-k x^{2}\right)^{2} d x \\
& =\int_{0}^{\frac{h}{2}} \pi\left(R^{2}-2 k R x^{2}+k^{2} x^{4}\right) d x \\
& =\pi\left[R^{2} x-\frac{2}{3} k R x^{3}+\frac{1}{5} k^{2} x^{5}\right]_{0}^{\frac{h}{2}} \\
& =\pi\left[R^{2} \frac{h}{2}-\frac{2}{3} k R \frac{h^{3}}{8}+\frac{1}{5} k^{2} \frac{h^{5}}{32}\right]-\pi[0] \\
& =\pi h\left[\frac{R^{2}}{2}-\frac{k R h^{2}}{12}+\frac{k^{2} h^{4}}{160}\right]
\end{aligned}
$$

Hence the full volume will be double this.

$$
\begin{aligned}
V_{T} & =\pi h\left[R^{2}-\frac{k R h^{2}}{6}+\frac{k^{2} h^{4}}{80}\right] \\
& =\pi h\left[R^{2}-\frac{2 R}{3} \frac{k h^{2}}{4}+\frac{1}{80} k^{2} h^{4}\right] \\
& =\pi h\left[R^{2}-\frac{2 R}{3} \delta+\frac{1}{80} * 16 \delta^{2}\right] \\
& =\frac{\pi h}{3}\left[3 R^{2}-2 R \delta+\frac{3}{5} \delta^{2}\right] \\
& =\frac{\pi h}{3}\left[2 R^{2}+R^{2}-2 R \delta+\frac{3}{5} \delta^{2}\right]
\end{aligned}
$$

Note that $-2 R \delta$ is a term from $(R-\delta)^{2}=r^{2}$.

And if $r=R-\delta, r^{2}=R^{2}-2 R \delta+\delta^{2}$.

$$
\text { So } \begin{aligned}
V_{T} & =\frac{\pi h}{3}\left[2 R^{2}+R^{2}-2 R \delta+\delta^{2}-\delta^{2}+\frac{3}{5} \delta\right] \\
& =\frac{\pi h}{3}\left[2 R^{2}+r^{2}-\frac{2}{5} \delta^{2}\right]
\end{aligned}
$$

Voila!

