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Numerical Solution to Ordinary Differential Equations 
 
We frequently need to solve a differential equation, ie an equation of the form 

( , ); ; ( )dy f x y a x b y a
dx

α= ≤ ≤ = . In other words, we are not given the function 

y but its derivative. This derivative may be only a function of x, but it could be 
a function of x and y. We are also usually given the value of y at one end of 
the domain, ie it is what is called an initial value problem. Fortunately Matlab 
provides some extremely powerful routines to solve these problems. 
 
Matlab has several routines, with syntax as below. Note that Matlab assumes 
the independent variable is t, or time, not x, but of course the syntax is 
unchanged. The ODE should be checked for stiffness first, and if it is stiff, 
then another routine should be used. 
[TOUT,YOUT] = ode23(ODEFUN,TSPAN,Y0) 
[TOUT,YOUT] = ode45(ODEFUN,TSPAN,Y0) 
 
In other words, either of these routines could be used, but generally ode45 
will provide better accuracy. Generally, this should be the first solver you try. 
There are a number of other solvers that could also be discussed, but we will 
concentrate on ode45. The meaning of the parameters in the above call is as 
shown in the following table. 
 
Parameter Discussion 
TOUT A vector of time values returned by the solver.. 
YOUT The y values calculated at each time point in the vector TOUT. 
ODEFUN The name of the Matlab function file used to calculate the 

derivative of y at each time step. 
TSPAN The initial and final times, ie the limits of the independent 

variable. If the value of the function is needed at specific time 
values, then TSPAN should contain all these points. 

Y0 The initial conditions. 
 
Note that y may be a vector, meaning that we may in fact be solving a system 
of ODE’s. In other words, YOUT, Y0 and the output of ODEFUN must also be 
vectors. Our first example will be a single ODE. 
 

Example 1 

Solve the ODE 
2

2, (0) 16
12

dy yy y
dt

= − − = . This arises in the modelling of a fish 

population with overcrowding and harvesting (Borelli, Coleman). Then first 

of all we need a function M file that returns the derivative ' dyy
dt

= . Enter the 

following code into Matlab and save it with the filename Examp1.M. 
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function deriv=Examp1(t,y); 
% Note that t is not explicitly used in this ODE, 
% but it is still a required parameter. 
  
deriv=y-y.^2/12-2; 

 
Now let us suppose we need to find the population over the period t=0 to 10. 
Then we shall first solve the problem without specifying the output values of 
t, and then with time values spaced one month apart. Enter the code below 
and run it. The figure below results. 
 

% Program to call the example Examp1 
tspan=[0 10]; 
y0=16; 
[TOUT,YOUT] = ode45('Examp1',tspan,y0); 
plot(TOUT, YOUT) 
title('Fish Population, Harvesting & Overcrowding') 

 

 
 
Now let us suppose we need to solve a system of ODEs, perhaps the 
following, also from Borrelli and Coleman. It is known as the Lotka-Volterra 
system, a predator-prey system of ODEs that attempts to model the 
population of a single prey species and a single predator, with harvesting. 
The prey species is y, the predator species is x. (In the absence of prey, the 
predator decreases, shown by the term –x , and in the absence of the predator, 
the prey increases, shown by the term y.) 
 

0.2 , (0) 8
10

0.2 , (0) 16
5

dx xyx x x
dt
dy xyy y y
dt

= − + − =

= − − =

1

                                                 
1 For information on the coefficients and why they take the signs they do, consult Borrelli and 
Coleman, Differential Equations A Modeling Perspective  
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Again note that there is no explicit dependence on time in this system. We 
need to redefine x and y to y1 and y2. Then the system becomes as follows. 

1 1 2
1 1 1

2 1 2
2 2 2

0.2 , (0) 8
10

0.2 , (0) 16
5

dy y yy y y
dt
dy y yy y y
dt

= − + − =

= − − =
 

 
The Matlab code to calculate this is as follows. 
 

function derivs=Examp2(t,y) 
% Matlab code for example 2 
  
y1=-y(1)+y(1)*y(2)/10-0.2*y(1); 
y2=y(2)-y(1)*y(2)/5-0.2*y(2); 
  

Output is a column vector. derivs = [y1; y2]; 
 
As usual, although t is not explicitly required in the file it is a necessary 
parameter. To solve this problem with ODE45, try the following call. 
 
 

% Program to call the example Examp1 
tspan=[0 10]; 
y0=[8;16];; 
[TOUT,YOUT] = ode45('Examp2',tspan,y0); 
  
figure(1) 
plot(YOUT(:,1), YOUT(:,2)) 
title('Predator-Prey interaction'); 
xlabel('Predator Population'); 
ylabel('Prey Population'); 
  
figure(2) 
plot(TOUT,YOUT(:,1)); 
title('Predator Population Over Time'); 
xlabel('Time'); 
ylabel('Population'); 
  
figure(3) 
plot(TOUT,YOUT(:,2)); 
title('Prey Population Over Time'); 
xlabel('Time'); 
ylabel('Population'); 

 
This code generates three graphs, the first being the predator and prey 
populations being plotted on the same axes, and the second two being the 
individual populations plotted against time. One of them is shown below. 
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The next section, which will be added when time permits, will show a simple 
example with t explicitly appearing on the right hand side, and more 
complicated examples that do not have a simple formula for the derivatives. 
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