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Some Basic Concepts in Statistics 
 
One of the most important basic concepts in statistics is that of a random 
variable. A random variable is one which can assume certain values, 
dependent on the situation, with certain probabilities. We usually refer to the 
random variable with a capital letter, and individual values with lower case. 
 
Example 1 
Let X be the face value of a fair die when rolled. Then X can take on the 

values 1, 2, 3, 4 , 5 and 6, each with probability 1
6

. So for any x in the set {1, 2, 

3, 4, 5, 6} we can say 1( )
6

P X x= = . The graph of the probability distribution 

looks like this. 
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♦♦♦ 
 
Example 2 
Suppose a fair coin is tossed twice. Let X be the number of times a head is 
obtained. Then the table below gives the possible outcomes and their 
probabilities. 
 

x 0 1 2 
P(X=x) 1/4 1/2 1/4 
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♦♦♦ 
 
Note the basic principle that the sum of all probabilities is always 1. It is 
impossible for the sum to be greater than 1, as that would mean that there 
was more than a 100% chance that something would happen, which is absurd. 
If the sum was less than 1 then we would have neglected some of the possible 
outcomes. Of course all probabilities must be positive or zero. 
 
The random variables above are called discrete random variables. This is 
because they have a finite number of outcomes. It is possible for an infinite 
number of outcomes to also be discrete, for example when that the outcomes 
can be matched up with the integers.  
 
Example 3 
Suppose the random variable Y is given by the number of cosmic rays being 
detected in a one hour period. What is the range of Y? Certainly Y cannot be 
less than 0. What upper limit do we accept? If we accept any upper limit at all, 
then we are limiting the number of cosmic rays entering the Earths 
atmosphere. No matter what upper limit you choose, it is possible to envisage 
a scenario whereby more cosmic rays could be detected in a one hour period. 
This might require so many supernovas exploding next to the Earth that life 
would be impossible, but nevertheless we cannot accept an actual limit. 
Hence we accept a range for Y of 0 y≤ < ∞ , even though in practice we know 
that there will be some practical limit beyond which Y is unlikely to go. 
♦♦♦ 
 
A continuous random variable, by contrast, is one which can take on an 
infinite number of values, and those values cannot be matched up with the 
integers. For example X might be allowed to assume any real number 
between 0 and 1, inclusive. It is a basic result in real analysis that no such 
interval of the real numbers can be matched up with integers (“mapped” to 
the integers in technical parlance). We shall assume this result without proof. 
 
Example 4 
Allow the random variable Z to be a continuous one whose values can range 
from 0 to 1, and every value is equally likely. Actually, for any  

, as there are infinitely many values, all equally likely. So the 
height of the graph at any z value does not represent the actual probability 
that z will occur. Instead we accept that the area between, say, z=a and z=b is 
the probability that . Of course if the interval [a,b] is the same length 
as the interval [c,d], and both intervals are completely within the interval [0,1], 
then . The diagram below illustrates that when the 
areas beneath the graph are equal, then the probability that Z will take a value 
in either of those two areas is equal. Of course this can also be true for 
distributions that are not uniform, but in this case provided the two intervals 
are of equal width then the probabilities will always be equal. 

[0,1]z∈
( )P Z z= = 0

)

a z b< <

( ) (P a z b P c z d≤ ≤ = ≤ ≤
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Probability Density and Distribution Functions 
 
So far we have used the term distribution without really defining it. 
Informally, it describes the way in which the probability is distributed 
between the different values of X. Formally, we have two different concepts, 
that of a probability density function and that of a probability distribution 
function. In fact the density function describes how much probability is at or 
near a value of X. The distribution function shows how much probability 
there is up to the value being considered.  The formal definitions are as 
follows. 
 
Density And Cumulative Distribution Functions For The Discrete Case  
 
In the discrete case, the probability density function f(x) gives the probability 
that the random variable X will assume the value x. The probability 
distribution function F(x)gives the probability that X assumes a value less 
than or equal to x. 
 

Discrete Case 
Density Function f(x)=P(X=x) 
Cumulative Distribution Function F(x)=P(X≤x) 
 
Example 5 
For the case of a fair die being rolled and the value on the face being assigned 

to X, clearly the density function is given by 1( )
6

f x = . In this case the density 

function is constant. However the cumulative distribution function is the 

probability that X is less than or equal to x. In this case, ( )
6
xF x = . The graphs 

are below. 
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Density And Cumulative Distribution Functions For The Continuous Case 
 
Because any particular value of X has a zero probability of occurring, because 
there are infinitely many possible values, the density function f(x) satisfies the 

property that . In other words the probability that X 

will be between a and b is equal to the area beneath f(x) from x=a to x=b. The 
distribution function F(x), by contrast, gives the probability that X will take a 

value of at most x. In other words, . Of course sometimes 

f(x)=0 in most of its domain, so the lower limit of integration won’t always be 
-∞. 

( ) (
b

a
P a X b f x dx≤ ≤ = ∫ )

( ) ( )
x

P X x f u du
−∞

≤ = ∫

 
Example 6 
In the case of the uniform distribution, the probability 

. Now earlier we showed a graph with the 
height at 1, without justifying that. In fact, if the distribution is from 0 to 1, 
then the total area beneath that must be 1 as always. So the height of the line 
must be 1, as the area of a rectangle is base*height. So what is the area 

between x=a and x=b? It must be 

( ) area underneath lineP a x b≤ ≤ =

1
b a−

. Hence 1( )P a x b
b a

≤ ≤ =
−

. 

 
 

 L
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What about the distribution function? We know that the density function 

, when 0≤x≤1. Hence we obtain the distribution function by 
integrating, ie 

( ) 1f x =

[ ]
0

0

( ) ( )

1

x

x

x

F x f u du

du

u

x

−∞
=

=

=

=

∫
∫  

Note that x≤1 here. 

Of course below 0 or above 1, f(x)=0, so F(x)=0 whenever x≤0. And x must be 
no more than 1, so F(x)=1 whenever x≥1. Hence our distribution function 
turns out to be 

0, 0
( ) , 0 1

1, 1

x
F x x x

x

<⎧
⎪= ≤ ≤⎨
⎪ >⎩

 

♦♦♦ 
 
Example 7 
Suppose the random variable X is given by a probability distribution function 
that consists of a straight line through the origin, reaching its maximum value 
when X=1, which is the largest value X can achieve. Then the graph of f(x) 
must be as below, bearing in mind that the total area must be 1. 
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Thus the density function is 

0, 0
( ) 2 , 0 1

0, 1

x
f x x x

x

<⎧
⎪= ≤⎨
⎪ <⎩

≤  

 
Hence the probability that the random variable x is between, say
will be given by the area shown. 
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This area can either be found using some basic geometry (area of a triangle is 
0.5*base*height) or by performing a formal integration. In this case, we find 
that . The distribution function can be found by 
integration as follows. 

(0.5 0.8) 0.39P x≤ ≤ =

2 2

00
( ) 2

x x
F x udu u x⎡ ⎤= = =⎣ ⎦∫ . 

This enables us to answer questions such as which is the x value which 

ensures P(X≤x)=0.5. We solve the equation 2 1
2

x = , ie 0.7071x ≈ . This makes 

perfect sense in light of the above graph, which shows clearly that most of the 
probability occurs in the top half of the domain, ie more than 50% of the 
probability is above x=0.5. 
♦♦♦ 
 
Expected Value And Variance 
 
These concepts convey the same sort of information as the mean and variance 
for a sample of measured data. In other words the mean, or expected value, of 
a distribution is a measure of the “middle” of the distribution. It gives us an 
idea of where the centre of the distribution is located. By contrast, the 
variance of the distribution gives us an understanding of how spread out the 
distribution is, or how far from the mean most of the values are likely to be. 
Their definitions follow. 
 
Mean (Expected Value) 

1. Discrete case: ( ) * ( ) * ( )i i i
i i

E X x P x x f xµ= = = i∑ ∑  

2. Continuous case: ( ) ( )E X fµ
∞

−∞
= = ∫ x dx

f x

 

 
Note that in the continuous case f(x) is considered to be 0 outside the relevant 
domain. Hence this definition suffices for all cases, including those where the 
domain is restricted. 
 
Variance1

1. Discrete case: 2 2Var( ) ( ) ( )i i
i

X xσ µ= = −∑  

2. Continuous case: 2 2Var( ) ( ) ( )X x f xσ µ
∞

−∞
= = −∫ dx

                                                

 

 
Example 8 
Find the mean and variance of X if X is a random variable whose value is 
given by the roll of a fair die. 
 

 
1 Of course the standard deviation, σ, is just the square root of the variance. 
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xi f(xi) xi*f(xi) 
1 1/6 1/6 
2 1/6 2/6 
3 1/6 3/6 
4 1/6 4/6 
5 1/6 5/6 
6 1/6 6/6 
Total  21/6 
 
Hence the expected value, or mean, is 21/6 or 7/2=3.5. (Observe that we 
would expect this value, from the symmetry of the pdf, ie it should be in the 
middle of the set 1,2,…,6.). Note that the mean is not necessarily a value that 
X can actually take. What about the variance? The next table shows how that 
might be found. 
 
xi f(xi) (xi-µ)2 (xi-µ)2*f(xi)* 
1 1/6 6.25 1.041 
2 1/6 2.25 0.375 
3 1/6 0.25 0.042 
4 1/6 0.25 0.042 
5 1/6 2.25 0.375 
6 1/6 6.25 1.042 
  Total 2.92 

 
Hence the variance is 2.92. 
♦♦♦ 
 
For the sake of computational efficiency, and for accuracy because round-off 
error is reduced, it is common to use the form 2 2 ( )i i

i

x f x 2σ µ= −∑ , as below. 

 
Example 9 
 
xi f(xi) xi2 xi2*f(xi) 
1 1/6 1 1/6 
2 1/6 4 4/6 
3 1/6 9 9/6 
4 1/6 16 16/6 
5 1/6 25 25/6 
6 1/6 36 36/6 
  Total 91/6 

 

Hence the variance is 291 (3.5) 2.92
6
− = . 

♦♦♦ 
 

G R Lockwood, UniSA, 2004 9 



Mathematics Help Centre, UniSA 

Example 10 
 
Find the mean and variance of the uniform distribution from Examples 4 and 
6. In this case, f(x)=1. 
 

121

0
0

1( ) *1
2 2
xE X x dxµ

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦
∫  

( )

( )

1 22

0
1 2

0

0.53 3 30.52 2

0.5
0.5

( ) *1

0.5

Now we make a change of variable, setting 0.5.
,  of course, and when 0, 0.5. When 1, 0.5.

Hence,

(0.5) ( 0.5) 0.083
3 3u

Var X x dx

x dx

u x
du dx x u x u

uu du

σ µ

σ
=−

−

= = −

= −

= −
= = = −

⎡ ⎤ − −
= = = =⎢ ⎥

⎣ ⎦

∫
∫

∫

= =  

♦♦♦ 
 
Example 11 
Two fair dice are tossed and the sum is recorded. Find the mean and variance 
of the sum. 
 
Die 1 \ Die 2 1 2 3 4 5 6 
1 2 3 4 5 6 7 
2 3 4 5 6 7 8 
3 4 5 6 7 8 9 
4 5 6 7 8 9 10 
5 6 7 8 9 10 11 
6 7 8 9 10 11 12 
 
x P(x) x*P(x) 
2 1/36 2/36 
3 2/36=1/18 6/36 
4 3/36=1/12 12/36 
5 4/36=1/9 20/36 
6 5/36 30/36 
7 6/36=1/6 42/36 
8 5/36 40/36 
9 4/36=1/9 36/36 
10 3/36=1/12 30/36 
11 2/36=1/18 22/36 
12 1/36 12/36 
 Total 252/36=7 
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Hence the mean is 7, which in this case is an achievable value. Now we can 
find the variance. 
 

x P(x) x2*P(x) 
2 1/36 4/36 
3 2/36 18/36 
4 3/36 48/38 
5 4/36 100/36 
6 5/36 180/36 
7 6/36 294/36 
8 5/36 320/36 
9 4/36 324/36 
10 3/36 300/36 
11 2/36 242/36 
12 1/36 144/36 
 Total 1974/36 

 

Hence the variance is 21974 2107 3
36 36

− = = 5/ 6 . 

♦♦♦ 
 
Example 12 
 
Find the mean and variance of the triangular distribution of Example 7. This 
being a continuous distribution, we need to use the integration formulae. 
 

1

0
1 2

0
13

0

( )

2

2
3

2
3

xf x dx

x dx

x

µ =

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

∫
∫
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12 2

0
2

1

0

1 3 2

0

14
3 2

0

( ) ( )

2 *2
3

4 42
3 9

4 22
4 9 9

1 4 22
4 9 9
9 8 12
36 36 18

x f x dx

x xdx

x x x d

x x x

σ µ= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦

⎛ ⎞= − +⎜ ⎟
⎝ ⎠
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

∫

∫

∫ x

 

♦♦♦ 
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